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Abstract: Despite the high demand for Internet location service applications, Wi-Fi indoor localization
often suffers from time- and labor-intensive data collection processes. This study proposes a novel
indoor localization model that utilizes fingerprinting technology based on a convolutional neural
network to address this issue. The aim is to enhance Wi-Fi indoor localization by streamlining
the data collection process. The proposed indoor localization model leverages a 3D ray-tracing
technique to simulate the wireless received signal strength intensity (RSSI) across the field. By
incorporating this advanced technique, the model aims to improve the accuracy and efficiency of
Wi-Fi indoor localization. In addition, an RSSI heatmap fingerprint dataset generated from the ray-
tracing simulation is trained on the proposed indoor localization model. To optimize and evaluate the
model’s performance in real-world scenarios, experiments were conducted using simulated datasets
obtained from the publicly available databases of UJIIndoorLoc and Wireless InSite. The results
show that the new approach solves the problem of resource limitation while achieving a verification
accuracy of up to 99.09%.
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1. Introduction

With the application and development of related technologies based on user location
information, location-based services have become essential for daily work and life [1].
This is particularly crucial in large and complex indoor environments, such as museums,
airports, supermarkets, hospitals, underground mines, and other areas in which there is an
urgent need for location-based services. Positioning technologies can be classified into two
types: outdoor and indoor positioning technologies. In an outdoor environment, global-
positioning systems, BeiDou-positioning systems, and other global navigation satellite
systems (GNSSs) can provide users with meter-level location services widely utilized in
daily activities, providing accurate positioning in outdoor spaces [2]. The global-positioning
system (GPS) has made navigation systems practical for many land vehicle applications.
Abbott et al. [3] introduced a method of integrating a GPS with a simplified inertial naviga-
tion system (INS) and provided a technique of using velocity aiding to improve positioning
accuracy and reliability. With the increasing popularity of mobile devices with positioning
capabilities, such as GPS phones, Zheng et al. [4] applied a collective matrix factorization
method to mine interesting locations and activities. They used them to recommend to users
areas for performing specific exercises and activities to participate in when visiting partic-
ular sites. GPS-based location services provide more convenient and effective technical
support for outdoor positioning.

However, in an indoor environment, where humans are located 80% of the time,
GNSS positioning accuracy is drastically reduced owing to the obscuration of buildings
and the multipath effect, hindering the satisfaction of the demand for accurate indoor
location services [5]. With the development of wireless indoor positioning technologies,
such as Wi-Fi, Bluetooth, and ultra-wideband technology, various indoor positioning
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technologies and systems have been proposed for providing location services in large
buildings [6]. Bluetooth and Wi-Fi indoor localization are two standard wireless signal-
based localization techniques. They can both utilize the features of wireless signals, such as
received signal strength indicators (RSSIs) or channel state information (CSI), to estimate
location information. They can also adopt the fingerprinting method, which builds a
fingerprint database by collecting the signal features at different locations in advance and
determines the optimal location by matching algorithms.

Indoor localization has many application scenarios and practical needs, such as emer-
gency management, navigation services, logistics management, smart homes, etc. Filip-
poupolitis et al. [7] proposed to use of Bluetooth low-energy (BLE) technology to address
the occupancy problem in emergency management using beacons installed in buildings
to provide the location information of users and combining machine-learning methods to
determine whether there were occupants in specific areas. Moreover, in intelligent energy
management, Tekler et al. [8] proposed a novel plug load management system that also
combined BLE and machine-learning methods to determine occupancy in specific areas and
reduced the plug load energy consumption and user burden through intelligent plug load
automation. Balaji et al. [9] proposed leveraging existing Wi-Fi infrastructure in commercial
buildings and smartphones carried by building occupants to provide occupancy-based
fine-grained HVAC actuation in a smart home domain. Tekler et al. [10] used a feature
selection algorithm to select the most essential features from sensor data. Then, they used
different deep-learning models to predict occupancy based on these features.

Owing to the large availability of existing infrastructure, Wi-Fi is widely used in homes,
hotels, cafes, airports, shopping malls, and other large or small buildings, making Wi-Fi
one of the most compelling wireless technologies for location services [11]. Considering the
ubiquity of mobile devices and routers in the experimental site and the comprehensive cov-
erage of Wi-Fi signals, this paper chooses to use Wi-Fi technology for this research. Typically,
a Wi-Fi system consists of several fixed access points (APs) deployed in locations known
by the system or network administrator that provide easy accessibility and installation.
Mobile devices that can connect to Wi-Fi (e.g., laptops and cell phones) can communicate
with each other directly or indirectly (through APs), permitting the implementation of a
location function in addition to a communication function [12]. This Wi-Fi positioning
system with fingerprinting technology is becoming increasingly popular, and using the
ubiquitous received signal strength intensity (RSSI) signal received by a Wi-Fi device for
positioning is an effective way to identify a user’s location in indoor environments. To
measure the distance between nodes, the RSSI (received signal strength indicator)-ranging
technique utilizes the principle of regular signal attenuation with increasing distance for
wireless signals [13]. The signal strength of a transmitting node can be obtained from an
RF chip register. Based on the received signal strength, the receiving node calculates the
transmission loss of the signal and converts it to distance using a theoretical or empirical
model [14]. This ranging technique only requires a wireless transceiver at a node; no
additional hardware is needed, keeping the application cost low.

With the advent of artificial intelligence, the challenges faced in indoor positioning
have provoked the use of deep learning to improve the efficiency of positioning frameworks,
ushering in cross-era changes. Chen et al. [15] proposed multisource information fusion
positioning technology to effectively utilize Wi-Fi fingerprint data and the geomagnetic
field for positioning, addressing the problem that Wi-Fi signals are unstable in complex
indoor environments and buildings distort the local geomagnetic field, resulting in low
positioning accuracy at a single location source. Liu et al. [16] proposed a joint convolutional
neural network (CNN)-based channel state information (CSI) fingerprint indoor localization
method to obtain average positioning errors of 24.7 cm and 48.1 cm in two positioning
scenarios in a gallery and a laboratory, respectively, and verified that the joint localization
algorithm was effective.

Considering the advantages of Wi-Fi fingerprint-based indoor localization methods
combined with neural network methods, this study proposes a CNN-based fingerprint
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indoor localization model consisting of two stages. In the offline stage, a fingerprint
database containing all the reference points in the localization area is constructed for
offline training. Meanwhile, in the online scene, an algorithm is applied to match real-time
fingerprint information from a user with the offline fingerprint database and estimate the
user’s location. This algorithm addresses the problem of the limitation of resources in
front-end data collection while providing a low-cost and high-accuracy indoor positioning
solution. The main contributions of this study are as follows:

1. 3D ray-tracing technology is proposed to generate RSSI signals in the localization
area, as simulated location information can avoid the inherent noise and instability of actual
wireless signals, which can cause instability in localization performance.

2. To address small-scale intensive localization needs and tackle the problem of minor
differences in RSSI signal characteristics among APs in localization, the construction of a
Wi-Fi fingerprint heatmap set is proposed, which can better characterize the differences in
intensity characteristics at different reception points.

3. The lack of localization accuracy demonstrated by traditional CNN models is im-
proved upon in this study, providing a framework with excellent localization performances
for areas with different depths.

4. Experiments are conducted with the synthetically created and UJIIndoorLoc in-
door localization datasets [17]. The simulated and actual measurement results verify the
effectiveness of our proposed localization method.

2. Related Work

An indoor positioning system effectively uses Wi-Fi APs and radio signal strength
(RSS) to facilitate localization [18]. However, implementing a fingerprint-based approach
requires time-consuming radio surveys and data acquisition to construct a database for
each building. The task of front-end data collection is costly in both time and labor. RSS
values are incredibly dependent on the environment, making front-end data collection
exceptionally difficult, resulting in meager qualification rates of data collected in the field,
which do not meet current survey standards [19]. In some large-scale scenarios of localiza-
tion, Zhang et al. [20] proposed to convert collected Bluetooth RSS into fingerprint images
required for calculation and establish a CNN for classification training. However, tedious
collection work is often needed before research is carried out. In addition, different devices
have different signal sensitivities, and data elimination is an important step. Liu et al. [21]
proposed constructing a ratio fingerprint by calculating the ratios of different RSSIs from
important contribution access points, which somewhat alleviated the collection work.
However, in small-scale scenarios, the percentages of different RSSIs from important contri-
bution access points were also reduced, and the method of constructing ratio fingerprints
was no longer suitable for this scenario.

To address the above issues, Li et al. [22] uploaded the RSSI fluctuations of detected
Bluetooth nodes to the cloud and performed real-time correction of the RSSI values.
Sinha et al. [23] simulated constantly varying RSSI values based on reference RSSI val-
ues to achieve data augmentation. Both methods processed the data at the front end,
significantly saving resources in front-end data collection. Sun et al. [24] verified that the
deployment of radio mapping could dramatically reduce the front-end data collection effort.
However, the inherent fluctuation in RSSs generally does not guarantee that the position
containing the highest probability predicted by each classifier is actual, resulting in a severe
barrier to desired performance in existing fusion methods. To overcome these drawbacks,
Hashem et al. [25] proposed the design and implementation of WiNar, a Wi-Fi indoor
location determination system based on the round-trip time that combines the advantages
of fingerprinting and range-based techniques to overcome the various challenges of indoor
environments. A localization model based on CNNs and extended short-term memory
networks was also proposed [26]. Guo et al. [27] used the k-nearest neighbors (KNN)
algorithm and outlier detection methods to construct an indoor localization framework for
simple fingerprints. The existence of just a single evaluation index and poor adaptability to



Sensors 2023, 23, 6992 4 of 19

outlier detection hindered the ability of this framework to achieve significant improvement
in localization performance. Xie et al. [28] proposed using a back-propagation (BP) neural
network and a weighted KNN algorithm to obtain higher localization accuracy. Wi-Fi
indoor localization is highly environment-dependent; however, the BP algorithm was
susceptible to initial weights.

These studies highlight the difficulties in providing accurate indoor localization,
described as follows. Due to a lack of front-end resources, data collection is labor-intensive
and costly under resource constraints. Uneven data cause unsatisfactory localization
performances. Finally, improvement in the localization capability of models is hindered by
an imbalance in training sample features.

In this study, we use a 3D ray-tracing technique to construct fingerprint datasets of a
localization area [29], addressing the problems of data contamination and consumption
in field collection. Furthermore, considering that the differences in data features in self-
constructed localization areas are typically too small, we propose the construction of a
fingerprint heatmap to characterize the uniqueness of sample features.

To validate the performance of the proposed model in localization, experiments are
conducted using the indoor positioning database UJIIndoorLoc and the simulation database,
Remcom Wireless InSite 3.3.0 [30]. The results show that the proposed model performs
well regarding localization accuracy while ensuring low power consumption.

3. System Model

The traditional fingerprint-based indoor positioning process is illustrated in Figure 1,
mainly separated into offline and online phases. In this process, data are collected, finger-
print datasets are constructed offline, and fingerprint data matching is performed online
to obtain a user’s location [31]. This fingerprint-based indoor positioning method often
requires high cost and time-consuming labor in the offline phase, and the qualification rate
of the collected data is shallow, which does not meet the survey standard at this stage.
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We improved the traditional indoor positioning process by considering the differences
in positioning data for different positioning scenarios in this study, and we show a depiction
of the constructed system model in Figure 2. In the offline phase, data were collected, and
fingerprint datasets were built. The original data for large-scale scenarios were used with
the UJIIndoorLoc dataset, and the actual data for small-scale scenarios were used with
the Remcom Wireless InSite 3.3.0 software. Due to the difference in data density between
the large-scale and small-scale scenarios, grayscale and thermal fingerprint maps were
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obtained for these scenarios after fingerprint processing. A fingerprint dataset was also
constructed and input into the localization network for training to receive the model’s
weights. In the online phase, the raw fingerprint data of the collected unknown points were
transformed into corresponding fingerprint maps according to the scenario’s requirements,
and the localization information of the desired points was retrieved from the model weights
in the offline phase.
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3.1. RSSI Loss Modeling

The fingerprint-based localization method used the wireless signal strength fingerprint
to achieve localization. Wireless signal strength can be expressed as a function of distance
and the path loss exponent, which captures the effect of the environment on the signal
attenuation, as shown in Equation (1). In the equation, Pt is the transmit power, n is the path
loss exponent, d is the distance from the radio source, and d0 is a reference distance [32].
This equation implies that the wireless signal strength decreases logarithmically with
length increase.

RSSI(dBm) = Pt(dBm)− 10n·log10
d
d0

(1)

The received power Pr is inversely proportional to the square of the free-space distance
d between the transmitter and the receiver, which is given by Equation (2):

Pr = Pt·Gt·Gr

(
λ

4πd

)2
(2)

where Pt is the transmission power, Gt is the transmitter gain, Gr is the receiver gain, and
λ is the wavelength [33]. Researchers often use the inverse relationship between received
power and the distance to a transmitter at a known location, usually measured in meters or
kilometers, to locate wireless transmitter receivers [34].

3.2. Convolutional Neural Network Mode

The typical structure of a CNN is shown in Figure 3. A CNN consists of an input layer
(input is a digital matrix of the original image), a stacked convolutional layer, a pooling
layer, a fully connected layer, and an output layer [35].
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3.2.1. Convolutional Layer

Convolution in a convolutional layer refers to calculating an inner product based on
multiple convolution kernels with certain weights to perform internal product operations
on a local set of pixels from an input image or feature. The final output value obtained is
one of the extracted features.

3.2.2. Pooling Layer

The pooling layer is a sampling layer that downsamples the output features of the
previous convolutional layer. It further reduces the algorithm’s computational complexity
by filtering features and reducing the size of the feature matrix. The main advantages
of a pooling layer are feature dimensionality reduction, reduction in overfitting, and
improvement in the fault tolerance of a model.

3.2.3. Fully Connected Layer

After convolution, excitation, and pooling, the data are input to the fully connected
layer. The main reason for using a fully connected layer is that too many neurons before
the fully connected layer cause a network to learn too much, resulting in overfitting.
Therefore, it is necessary to introduce a dropout operation to perform a routine to increase
the robustness of a model, such as randomly removing some neurons in the neural network
or performing local normalization and data augmentation. After the data reach the fully
connected layer, the network can be treated as a simple multiclassification neural network,
and the SoftMax function can obtain the final data.

4. Indoor Position Methods

In response to the lack of front-end data in existing Wi-Fi indoor localization methods,
this study proposes a Wi-Fi indoor localization method based on an improved CNN. The
indoor localization flowchart presented in this study is shown in Figures 4 and 5. The
criterion for distinguishing between large-scale and small-scale scenarios was whether
room-level or building- and floor-level localization were performed. Figure 4 shows a
large-scale technique for building- and floor-level localization. In the first step, the RSSI
values of the reference points of the large-scale locations were collected. The collected data
were processed in the second step to construct fingerprint grayscale datasets. In the third
step, training was performed on the improved CNN. Finally, the localization results were
obtained. Figure 5 shows a small-scale scenario for room-level localization. For small-scale
locations, an environment was constructed and simulated to obtain the RSSI values of
the reference points in the first step. The construction of a thermal fingerprint dataset
followed this. Then, training occurred with the improved CNN, followed by the output of
the localization results. These two scenarios could be performed separately according to
specific needs, or they could be integrated for procedures that required both. Therefore,
this could more finely meet the localization needs of different techniques.
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4.1. Floor-Level Large-Scale Dataset Processing

Computers recognize images simply by identifying the colors of pixels, and image
storage also involves the conversion of colors to a numeric type to yield a sizeable numeric
matrix by which the image information is stored [36]. As CNNs are generally composed of
RGB values for image recognition tasks, this color feature is handy for recognizing objects
of different categories. However, within the same type, color is not as important; texture
features are more important. As RSSI signal strength attenuation between neighboring
APs located in large-scale scenes is readily apparent and it is easier to obtain prominent
differences in location features when processing fingerprints at the image level, this paper
created a floor-level large-scale dataset by combining a single-channel Wi-Fi fingerprint
grayscale map with the UJIIndoorLoc database.

UJIIndoorLoc Dataset

In this study, we used the UJIIndoorLoc database to process large-scale data for
indoor localization. This publicly available dataset contains WLAN fingerprinting data
collected from three buildings of Universitat Jaume I with four or more floors and an area
of approximately 110,000 m2. The data were gathered from over 20 users and 25 Android
devices in 2013. The database has 19,937 training records and 1111 validation records,
each with 529 attributes. The attributes include the Wi-Fi fingerprint, the coordinates, the
building ID, the floor ID, and other information, such as the user, the device, the timestamp,
the space, and the relative position. The Wi-Fi fingerprint consists of 520 intensity values of
the received signal strength intensity (RSSI) of detected wireless access points (WAPs). The
RSSI values range from −104 dBm (inferior signal) to 0 dBm, and 100 indicates that a WAP
was not detected. The database can be used for classification or regression tasks, such as
identifying the building and floor or estimating the latitude and longitude of a user. Here,
−110 dBm was used to denote a WAP that was not detected. The following describes the
method for processing the fingerprint grayscale map to achieve a better performance with
the proposed localization scheme.

To obtain the wireless signal strength fingerprint, RSSIn,k
m , it was denoted as the offline

wireless signal strength database. m is the index of the location acquisition point for which
m = 1, 2, 3, ···, M; M is the total number of location acquisition points set in the indoor
environment; n is the index of a fingerprint collected at the nth acquisition point, where
n = 1, 2, 3, ···, N; N is the total number of fingerprint samples collected; j denotes the
index of the AP where j = 1, 2, 3, ···, J; and J is the total number of APs available in the
environment. For maximum wireless signal strength RSSIMax and minimum wireless
signal strength RSSIMin, the normalized distribution of the wireless signal strength could
be obtained from Equation (3), as follows:

RSSIn,k
m,new =

RSSIn,k
m − RSSIMin

RSSIMax − RSSIMin
(3)
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By processing the source, it was possible to obtain distributions for many acquired
Wi-Fi intensities. As introduced above, each raw fingerprint datapoint in the UJIIndoorLoc
dataset consisted of 520 RSSI (received signal strength intensity) values from the received
wireless access points. To fully display them on the fingerprint grayscale map, we filled in
the missing data with zeros after transforming them into a 24 × 24 matrix to expand each
fingerprint datapoint to 1 × 576. Each fingerprint record obtained was a one × n vector.
Each vector was multiplied by 255 and then transformed into a 24 × 24 matrix. This
24 × 24 matrix converted the image into a set of pixel values, whereby the localization
image used in this study (Figure 6) was a single-channel grayscale map.
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4.2. Room-Level Small-Scale Dataset Processing

Due to the limitations of the localization area and the similarity of RSSI data values in
small-scale scenarios, insufficient data volume can hardly express the localization features
of specific locations, even though data collection considers each localization point as much
as possible. Therefore, this paper used a Wi-Fi fingerprint heatmap, which used different
colors to represent the different RSSI values received by each localization point from the
same transmitter. Such a heatmap could show noticeable differences and similarities
between features and samples, expressing more representative elements of the localization
points with less data.

Using Wireless InSite Simulation Dataset

Wireless InSite 3.3.0 is a software tool that can simulate the propagation of electro-
magnetic waves in complex indoor and outdoor environments. It can help with indoor
positioning by providing accurate and realistic models of wireless channel characteristics,
such as path loss, delay spread, angle of arrival, and received signal strength. Wireless
InSite can also help design and optimize wireless systems and networks, such as Wi-Fi,
5G, IoT, and radar, by evaluating the performances and coverages of different antenna
configurations, transmitter locations, and frequency bands. Because of the advantages of
Wireless InSite, we used it to simulate the RSSI values of Wi-Fi signals propagated in real
scenarios. The following is the specific method we used to construct the dataset.

The Wi-Fi fingerprint heatmap we construct was a fingerprint map of a single AP that
identified the signal strengths of different receiving points at the localization point by color.
The fingerprint heatmap of the localization point was formed by receiving RSSI values
from 12 fixed transmitters in the localization area. The coordinates of the fixed transmitters
in the same area were the same. In the image, only the signals of the fixed transmitters
were considered, and other coordinate points were set as unselected WAPs. Figure 7 shows
the fingerprint heatmaps of two different APs in the localization area. The x-axis and y-axis
represent the coordinates of the transmitting points in the area, and the colors represent the
magnitudes of the signal strengths of different APs at the transmitting points.
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Figure 7. Fingerprint heatmaps of two different access points in the localization area.

4.3. Improved Convolutional Neural Network Model

We propose a deep-learning model based on convolutional neural networks (CNNs) to
predict user location from multinoise wireless signal strength fingerprint maps. Compared
with traditional CNNs, our model performed better on the dataset constructed in this
paper by improving the network structure and parameters. Considering the significant
differences between the images with and without features in the fingerprint maps, we
considered adding a ReLU function after the convolutional layer and dense layer to increase
nonlinearity, filter out the values of the featureless areas, and improve the sparsity of the
model. At the same time, we added separate convolutional structures before and after the
dense layer to increase the extraction of compelling features multiple times. We called our
model DS-CNN, which stands for deep signal-strength convolutional neural network. The
DS-CNN consisted of four convolutional layers, four pooling layers, two fully connected
layers, two dense layers, and a SoftMax layer, which output the indoor location probability.
Figure 8 and Tables 1 and 2 show a structural model diagram of the indoor location network,
the output shape of each layer, and parameter settings for the proposed offline training
dataset, respectively.
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Table 1. The output shape of each layer in our method.

Layer Parameter Output Shape

Input Training data (224, 224, 3, m)
Conv2D 1 Conv2D (222, 222, 32, m)
Conv2D 2 Conv2D (109, 109, 64, m)
Conv2D 3 Conv2D (52, 52, 32, m)
Conv2D 4 Conv2D (24, 24, 64, m)

MaxPooling1 MaxPooling2D (111, 111, 32, m)
MaxPooling2 MaxPooling2D (54, 54, 64, m)
MaxPooling3 MaxPooling2D (26, 26, 32, m)
MaxPooling4 MaxPooling2D (12, 12, 64, m)

Flatten K = 0 (9216, m)
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Table 1. Cont.

Layer Parameter Output Shape

dense1 K = 1,179,776 (128, m)
dense2 K = 516 (4, m)
Output K = Nrp (N, m)

Table 2. Parameter settings for our method.

Parameter Value

Convolutional layers 4
Pooling 4

Pooling size 2 × 2
Stride 1

Dense layers 2
Fully connected layers 2

SoftMax layer 1
Kernel 3 × 3

5. Simulation Analysis
5.1. Need for Simulation Environment

In indoor positioning algorithms and technologies, the accuracy and reliability of
predicted positioning results are the most critical concerns. An indoor environment contains
more uncertainties than an outdoor environment, with more obstructions that can cause
unpredictable attenuation of signal strength during the propagation of wireless signals [37].

5.1.1. Non-Line-of-Sight Propagation

Communication between devices generally involves a transmitter and a receiver, with
the signal ideally directed along a straight line between the two points. However, there are
many obstacles between a transmitter and receiver in an indoor environment, such as doors,
windows, walls, and furniture. These obstacles can hinder signal refraction or reflection in
the propagation process, resulting in a receiver not receiving accurate data. The blocking of
signal attenuation by such indoor obstacles is called non-line-of-sight propagation.

5.1.2. Multipath Propagation

Because multiple wireless signals are simultaneously present in a room during data
transmission, indoor obstacles cause the numerous signs to reflect, scatter, and bypass; thus,
the final signal received by a receiver is likely composed of the sum of multiple wireless signal
strength vectors. This effect leads to a signal distortion effect called multipath propagation.

5.1.3. Shadow Effect

Indoor environments typically comprise multiple rooms or studios for confidentiality
in everyday activities. In these areas, signal attenuation can occur at the corners of walls,
creating blind spots. As a result, the signal received by a receiver varies as it moves. This
variation in signal strength is known as the shadowing effect.

In order to verify the impact of the aforementioned influencing factors on front-end
data acquisition, we conducted multiple measurements of four access points (APs) at the
field site at different times of the day. The measurement results are shown in Figure 9
below. The measurement results were influenced by the multipath effect caused by the
activities of personnel and nonvisual propagation at the field site. The RSSI value of an
AP fluctuated significantly at different times, causing the RSSI data values collected at
the front end to vary significantly. Thus, the constructed offline dataset did not have
localization characteristics.
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5.2. Simulation Environment Setup

The small-scale natural environments were rooms 407, 512, and 308 of the School of
Electrical Information of Wuhan Institute of Technology and the corridor area.

The simulated walking step was assumed to be 0.5 m. A total of 836 points and
8312 data records were manufactured and collected. Figures 10 and 11 show illustrations
of the 3D scene simulated with Wireless InSite and the actual scene in the experiment. In
the simulation scene, TX represents the transmitter’s position, and the receiving points
are distributed throughout the area at an interval of 0.5 m. Detailed simulation parameter
settings are shown in Table 3.
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Table 3. Parameter settings for Wireless Insite.

Layer 407 Value 512 Value

Length × width × height/m 17.5 × 8 × 3.5 7.5 × 4 × 3.5
Transmit signal frequency/GHz 5

Transmit power/dBm 23
Transmit antenna height/m 1
Receive antenna height/m 1
Type of transmit antenna half-wave dipole
Type of receive antenna isotropic

Polarization form of transmit antenna vertical
Polarization form of receiving antenna vertical

Sampling interval at the receiver/m 0.5
Noise figure of receiver/dBm 3

Transmit signal frequency/GHz 5

To make the simulated scene as close as possible to the location of the actual room,
the sizes and makeups of the items in the room were manufactured to match the path
loss incurred in the virtual space. However, in practical scenarios, the materials used for
buildings are too complex and the materials available in simulation software are too simple,
which makes it impossible to simulate accurately. Moreover, the human activities in the
laboratory and the temperature changes throughout the day caused the difference between
the actual measurement and the simulation to be within the 3–4 dBm range. As shown
in Figure 12, we deployed the same transmitter and receiver in the natural and simulated
scenarios. We collected the RSSI values from the same transmitter at a distance of 15 m.
The results show that the trend of the actual measured RSSI values was clearly below the
simulated values.
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5.3. Accuracy Comparison of Different Algorithms for the UJIIndoorLoc Database

This section compares the accuracy of the proposed method using the UJIIndoorLoc
database with the already existing depth model indoor localization framework of CNNLoc
and others (shown in Figure 13) to verify that the proposed network outperformed other
networks in terms of indoor accuracy. The CNNLoc network was proposed by Song
et al. [38] for multibuilding and multifloor indoor localization. Our proposed DS-LocCNN
framework was compared with CNNLoc, a traditional CNN, KNN, and an SVM [39,40]
concerning the average floor accuracy using the UJIIndoorLoc dataset. As shown in
Table 4, the best floor accuracy of the well-performing CNNLoc was 96.03%, and the
highest accuracy of the proposed method for floor localization was 96.67%, higher than the
well-performing CNNLoc and other localization methods.
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Table 4. Average building accuracy of different algorithms with the UJIIndoorLoc datasets.

Method First Building/% Second Building/% Third Building/%

Ours 96.32 96.67 96.41
CNNLoc 96.03 96.03 96.03

CNN 80.13 87.41 82.04
SVM 79.29 86.01 80.90
KNN 77.99 84.01 78.29

In order to verify the iterative accuracy performance of the proposed method on the
UJIIndoorLoc dataset, validation experiments were conducted using traditional CNN and
MobileNet models. Validation experiments were performed using a conventional CNN
and MobileNet. Figure 14 shows plots of the accuracy and loss of the proposed method
for 30 iterations of training and validation sets from the UJIIndoorLoc dataset. Figure 15
shows the accuracies of the traditional CNN and MobileNet for 30 iterations of training
and validation sets from the UJIIndoorLoc dataset. Table 5 records the best performances
of the three methods over 30 iterations.
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Table 5. Performances of different algorithms with the UJIIndoorLoc dataset.

Method Training Accuracy/% Validation Accuracy/% Training Loss/% Validation Loss/%

Ours 99.54 96.41 0.0123 0.1360
MobileNet 70.85 67.79 1.8511 1.7125

CNN 85.12 72.35 0.9302 0.8798

The UJIIndoorLoc dataset was used as an experimental object in large-scale scenarios.
Although it had a rich representation of each raw datapoint and clear differences between
different WAPs, the signal strength from the same transmitter in the same area was similar
to the fingerprint map, which did not show an advantage in simple feature extraction.
Therefore, the performances of MobileNet and CNN were not satisfactory.

5.4. Accuracy Comparison of Different Algorithms for the Simulated Dataset

Validation experiments were conducted using traditional CNN and MobileNet models
to verify the proposed method’s performance on the simulated dataset with iterative
accuracy. Figure 16 shows the accuracy and loss of the proposed method for the simulated
dataset with 30 iterations of training and validation sets. Figure 17 shows the accuracies
of the traditional CNN and MobileNet for the simulated dataset with 30 iterations of
training and validation sets. The best performances of the three methods for the simulated
Wireless Insite dataset are shown in Table 6. The proposed method in this paper achieved
an accuracy of 99.06% on the validation set, which was better than the performances of
either the traditional CNN or MobileNet.

Undeniably, the location of adjacent APs in indoor positioning significantly impacts
positioning accuracy and limits a network model’s performance. Compared with large-
scale scenarios, small-scale scenarios had the advantage of adding heat maps to process
front-end datasets. As the results show, this method of enhancing the specific area features
of a fingerprint map was effective.
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5.5. Accuracy Comparison of Different Algorithms for the Measured Dataset

Validation experiments were conducted using a traditional CNN and MobileNet to
verify the proposed method’s performance on the measured dataset with iterative accuracy.
Figure 18 shows the accuracy and loss of the proposed method for the measured dataset
with 30 iterations of training and validation sets. Figure 19 shows the accuracies of the
traditional CNN and MobileNet for the measured dataset with 30 iterations of training and
validation sets. The best performances of the three methods for the measured dataset are
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shown in Table 7. The proposed method in this paper achieved an accuracy of 99.10% for
the validation set, which was better than the performances of either the traditional CNN
or MobileNet.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 19 
 

 

 
Figure 17. Accuracies of the traditional CNN and MobileNet for 30 iterations of training and vali-
dation sets with the simulated dataset. 

Table 6. Performances of different algorithms for the simulated Wireless Insite dataset. 

Method Training Accuracy/% Validation Accuracy/% Training Loss/% Validation Loss/% 
Ours 99.12 99.06 0.0185 0.0168 

MobileNet 84.18 83.90 0.9372 0.8764 
CNN 85.12 78.05 0.9263 0.8945 

5.5. Accuracy Comparison of Different Algorithms for the Measured Dataset 
Validation experiments were conducted using a traditional CNN and MobileNet to 

verify the proposed method’s performance on the measured dataset with iterative accu-
racy. Figure 18 shows the accuracy and loss of the proposed method for the measured 
dataset with 30 iterations of training and validation sets. Figure 19 shows the accuracies 
of the traditional CNN and MobileNet for the measured dataset with 30 iterations of train-
ing and validation sets. The best performances of the three methods for the measured da-
taset are shown in Table 7. The proposed method in this paper achieved an accuracy of 
99.10% for the validation set, which was better than the performances of either the tradi-
tional CNN or MobileNet. 

 

Figure 18. Accuracy and loss of the proposed method for 30 iterations of training and validation sets
with the measured dataset.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 19 
 

 

Figure 18. Accuracy and loss of the proposed method for 30 iterations of training and validation sets 
with the measured dataset. 

 
Figure 19. Accuracies of the traditional CNN and MobileNet for 30 iterations of training and vali-
dation sets with the measured dataset. 

Table 7. Performances of different algorithms for the measured dataset. 

Method Training Accuracy/% Validation Accuracy/% Training Loss/% Validation Loss/% 
Ours 99.78 99.10 0.0011 0.0012 
CNN 88.00 85.86 0.8635 0.8964 

MobileNet 83.78 75.89 1.8610 1.7307 

6. Conclusions 
In this study, we proposed a neural-network-based localization method for Wi-Fi fin-

gerprint indoor localization. Our approach considered the needs of localization areas of 
different scales. We processed the acquired raw data to construct a grayscale fingerprint 
map for large-scale scenarios and a thermal fingerprint map for small-scale settings, which 
could better fit the training requirements of the corresponding scenario data. We con-
ducted experiments on both simulated and real datasets, and the results showed that our 
proposed method could achieve over 99% validation accuracy for both. Our approach 
could reduce the workload of front-end data collection to some extent and also provided 
data support for algorithm validation in localization research. 

Similarly, this study still needs to be continuously optimized in future work. 
1. The existing method only considered RSSI values in ideal environments when sim-

ulating and measuring the positioning data. Since RSSI values are very sensitive to devices 
and environments, future work should aim to reduce the impacts of uncertain factors on 
measurement, improve the model’s compatibility with RSSI value fluctuations, and fur-
ther optimize its performance in positioning. 

2. The existing method was based on convolutional neural networks for positioning 
result classification and discussed the location results in small-scale and large-scale sce-
narios. Future work should be more fine-grained, consider point-level location output, 
and optimize the model for more accurate location positioning. 

Author Contributions: Conceptualization, H.Z.; methodology, X.L. and H.Y.; validation, H.Z.; writ-
ing—original draft, H.Z.; writing—review and editing, L.C. All authors have read and agreed to the 
published version of the manuscript. 

Figure 19. Accuracies of the traditional CNN and MobileNet for 30 iterations of training and
validation sets with the measured dataset.

Table 7. Performances of different algorithms for the measured dataset.

Method Training Accuracy/% Validation Accuracy/% Training Loss/% Validation Loss/%

Ours 99.78 99.10 0.0011 0.0012
CNN 88.00 85.86 0.8635 0.8964

MobileNet 83.78 75.89 1.8610 1.7307

6. Conclusions

In this study, we proposed a neural-network-based localization method for Wi-Fi
fingerprint indoor localization. Our approach considered the needs of localization areas of
different scales. We processed the acquired raw data to construct a grayscale fingerprint
map for large-scale scenarios and a thermal fingerprint map for small-scale settings, which
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could better fit the training requirements of the corresponding scenario data. We conducted
experiments on both simulated and real datasets, and the results showed that our proposed
method could achieve over 99% validation accuracy for both. Our approach could reduce
the workload of front-end data collection to some extent and also provided data support
for algorithm validation in localization research.

Similarly, this study still needs to be continuously optimized in future work.
1. The existing method only considered RSSI values in ideal environments when

simulating and measuring the positioning data. Since RSSI values are very sensitive to
devices and environments, future work should aim to reduce the impacts of uncertain
factors on measurement, improve the model’s compatibility with RSSI value fluctuations,
and further optimize its performance in positioning.

2. The existing method was based on convolutional neural networks for positioning
result classification and discussed the location results in small-scale and large-scale scenar-
ios. Future work should be more fine-grained, consider point-level location output, and
optimize the model for more accurate location positioning.
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