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Abstract: Inputting text is a prevalent requirement among various virtual reality (VR) applications,
including VR-based remote collaboration. In order to eliminate the need for complex rules and
handheld devices for typing within virtual environments, researchers have proposed two mid-air
input methods—the trace and tap methods. However, the specific impact of these input methods
on performance in VR remains unknown. In this study, typing tasks were used to compare the
performance, subjective report, and cognitive load of two mid-air input methods in VR. While the
trace input method was more efficient and novel, it also entailed greater frustration and cognitive
workload. Fortunately, the levels of frustration and cognitive load associated with the trace input
method could be reduced to the same level as those of the tap input method via familiarity with VR.
These findings could aid the design of virtual input methods, particularly for VR applications with
varying text input demands.
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1. Introduction

Virtual reality (VR) has become a popular tool for entertainment in gaming and
for enhancing office productivity, collaboration, applications, and training, as well as in
the training and interaction of special robots [1–9]. Text input is an essential element of
communication, recording, and reporting in VR.

1.1. Text Input in VR

Recent studies have addressed the challenges of text input in the context of VR. VR
input technologies primarily rely on auxiliary devices such as physical keyboards, touch
screens, controllers, and data gloves, each offering unique advantages and disadvantages.

Physical keyboards enable high-speed typing, but their lack of portability is a sig-
nificant drawback [10]. The input speed of physical keyboards could reach 30 words per
minute (WPM), with an accuracy rate of around 80% [11]. Touch screens and controllers
offer better portability and typing speeds exceeding 8 WPM, but they are heavy and can de-
tract from the user’s sense of immersion in the VR environment [12–21]. Additionally, some
text input methods based on controllers involve a substantial learning cost. Users need
to memorize the actions corresponding to each letter to effectively use the controller for
input [22]. Some researchers have proposed a pen-based virtual reality text input method
that does not require spatial positioning and allows for direct actions such as rotating the
pen, achieving a maximum input speed of 6.6 WPM. Despite presenting a novel text input
model, this study fell short in terms of portability and input speed [23]. Data gloves are
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more portable and allow users to enter letters using glove sensors based on specific input
rules, but the learning curve is steep [24–28]. Image-recognition-based handwriting input
is a new method of text entry. Its principle involves using neural networks to recognize ges-
ture trajectory images, with users needing to write the desired input in mid-air. Currently,
the recognition accuracy of this technology can reach up to 87.1% [29]. Regrettably, no study
has accurately reported the input speed for this method to date. Another solution involves
handwriting recognition based on flexible pressure sensors, where neural networks are
used to recognize writing trajectories on flexible materials for input, achieving speeds of
up to 12.3 WPM [30]. However, in previous studies, compared to typing, handwriting
input often fell behind in terms of input speed and user experience [31,32]. Additionally,
there are VR input methods based on head or eye motion [17], but these can cause motion
sickness [33–36]. Voice-based input is also one of the virtual reality text input methods that
has received attention in recent years. The speed of voice input is fast, with a WPM of 60–70.
However, voice input is greatly influenced by the sound environment. When the ambient
noise reaches 70 decibels, only 37.5% of users continue to use voice input [37]. Therefore, we
believe that a suitable VR input method should strike a balance between typing efficiency,
portability, and motion sickness. The text input solutions in VR mentioned in the above
studies have each shown their respective drawbacks in terms of input efficiency, portability,
and user experience. The mid-air text input methods proposed in this study are freehand
text input methods. Our research focused on this interaction method, demonstrating the
feasibility of mid-air text input methods in VR.

1.2. VR Text Input via Mid-Air Interaction

Mid-air text input methods offer distinctive advantages in the realm of VR. Mid-
air interaction has evolved to include freehand interactive methods with hand-tracking
sensors like Leap Motion, which allow users to express themselves with their hands. Studies
have demonstrated that this natural hand interaction greatly enhances the immersion and
engagement experience in VR [38–40].

Researchers have developed input techniques for large displays using mid-air inter-
action, such as wall displays or televisions [41–45]. Various researchers have determined
that this input technique holds potential in VR. For instance, a tap VR input method was
evaluated that utilized “direct interaction” with no space between the keyboard and fin-
gertips, and participants achieved a typing speed of 14 WPM [46]. A recent study also
mentioned the trace input method for text input in virtual reality and conducted a prelimi-
nary evaluation, suggesting that the race input method holds promise. However, this study
did not objectively compare the trace input method with other traditional input methods,
so the advantages and disadvantages of the two different input methods in VR are still
unknown [47]. Although mid-air interaction is a promising technology for VR immersion,
it may also cause fatigue. Even with limited mid-air interaction, participants may suffer
from discomfort, known as “gorilla arm syndrome”, which is the fatigue resulting from
holding one’s hands up for extended periods [48]. Our research objectively compared the
trace input method and the tap input method in terms of performance, experience, and
workload among different VR user groups, providing evidence to understand the strengths
and weaknesses of the two input methods and their suitable user groups.

1.3. Typical Input Methods: Tap and Trace

The tap input method (Tap) and the trace input method (Trace) are two prominent
text input mechanisms employed in physical user interfaces [32,49]. With Tap, users input
each letter by tapping on the keyboard individually. On the other hand, Trace involves the
participant sliding their finger over all the letters of a word on the keyboard to input the
whole word. Compared to Tap, Trace exhibits superior performance on various devices such
as smartphones, smartwatches, and augmented reality [31,32,36,50,51]. These studies have
established that Trace outperforms Tap in numerous interactive settings, including touch
screens, head-based virtual screens, and controllers. However, the prior applications of Tap



Sensors 2023, 23, 6988 3 of 15

and Trace did not encompass mid-air interaction scenarios in which text input necessitated
“indirect interaction” (users could not directly touch the front virtual keyboard).

Mid-air Tap and Trace are freehand interactive approaches that require users to raise
their arms and move their hands to interact indirectly with a virtual keyboard. When
utilized in VR, mid-air input methods necessitate users to control their upper limbs more
precisely, which could prove challenging and exhausting. Although indirect interaction
can reduce the accuracy of mid-air interaction, it also increases the diversity of interactive
positions [52–54]. Hence, the efficiency of these VR mid-air input methods remains largely
unexplored. This study postulated that the mid-air Trace method would outperform mid-
air Tap in VR. We anticipated that the trace method would exhibit a higher input efficiency,
since drawing a trace is a quicker interaction than tapping each button sequentially. Addi-
tionally, fatigue would be minimized with Trace, because the interaction time for inputting
the same text would be reduced.

The experience of users with VR may also influence the performance of these input
methods. A recent study concluded that more extensive experience with large displays
resulted in fewer errors [55]. Firstly, we posited that VR-experienced users may perform
better in mid-air input tasks, since they are more acclimatized to interacting with objects
in VR. Secondly, as VR familiarity grows, participants may have higher expectations for
the efficiency of text input in VR. A user who is well-versed in VR may prefer the trace
input method due to its efficiency. Hence, this study compared two mid-air text input
methods in VR, focusing on performance, subjective feedback, and cognitive load, among
two groups of participants who differed in their prior VR experience. With the emergence
of metaverse platforms, users can engage in social interactions via immersive experiences
in the virtual world, breaking down social barriers. In the virtual world, everyone can
communicate through natural interactions via gesture interaction and feel a sense of equality
and freedom in the metaverse. This study lays the foundation for researching face-to-face
immersive input experiences for users, which holds strong potential for establishing social
relationships based on the metaverse.

2. Materials and Methods
2.1. Participants

After obtaining approval from the Ethics Committee of Tsinghua University, the study
recruited a total of thirty-eight right-handed participants. However, due to incomplete
recording, only the data of 35 valid participants (17 males and 18 females) aged between
18 and 29 years (M = 21.43, SD = 3.211) were included in the final analysis. Participant
selection was based on a standard protocol. All participants possessed a bachelor’s degree
or above or were currently studying in a university. Participants were categorized into two
groups based on their previous experience with virtual reality devices. The experienced
group included individuals who had used virtual reality devices five times or more with a
total duration of more than one hour over the past year. Alternatively, participants who
reported no experience with virtual reality devices were recruited into the inexperienced
group. None reported prior experience using Trace, while all participants reported a high
frequency of using the QWERTY keyboard (similar to that used to implement Tap) on
smartphones in the past. Furthermore, none of the participants claimed any experience
with text entry in virtual reality or expertise with Leap Motion. The inexperienced group
comprised 19 participants (10 females and 9 males), while the experienced group included
16 participants (8 females and 8 males). Finally, all participants had normal or corrected
vision and were free from physical diseases. Participation in the study was rewarded with
RMB 150.

2.2. Apparatus

In this study, we constructed a virtual reality system that consisted of an advanced
VR headset (HTC Vive Pro Eye; 110◦ horizontal field of view; 1440 × 1600 pixels per eye;
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90 Hz), combined with an eye-tracker (110◦ trackable field of view; 120 Hz) and a computer
(CPU: i7-10875 H 2.30 GHz, GPU: GTX 2070 SUPER).

In order to enable gesture recognition, we developed a custom program using Leap
Motion (140◦ × 120◦ field of view; 10–80 cm interaction depth), which we positioned on the
VR headset. We defined three distinct gestures to control the cursor movement, including
clicking letters, cursor movement, and line feeding, as illustrated in Figure 1.
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We utilized an Android 5.5.1 virtual machine operating the QWERTY virtual keyboard,
namely the Google Input Application, which supported both Trace and Tap input methods.
As shown in Figure 2, Tap involved individually tapping each letter in the given word
prompt, such as the word “digital”, with seven letters. Participants moved the cursor via
gesture (b) and tapped each letter one by one using gesture (a). In contrast, with Trace,
participants drew a continuous trace across all letters of the word prompt in order. To
begin, participants placed the cursor on the initial letter of the word using gesture (b) and
clicked the first letter with gesture (a). Subsequently, they sustained the clicking and moved
the cursor across all letters in turn, with a trace appearing on the path of the cursor. The
trace virtual keyboard then processed the trace in real time, displaying the predicted words
on the virtual keyboard. Participants could then move the cursor and select their desired
word from the options bar using gestures (a) and (b). If the correct word prediction was the
first option, participants could confirm and switch to the next line using gesture (c), which
involved turning their palm 180◦ and back.
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The participants were able to observe the real-time user interface (UI) of the virtual
machine through a head-mounted display (HMD), with phrases being sequentially dis-
played on top of it. Whenever a phrase was completed by the participants, they would then
press the trigger button on the controller to move on to the next phrase. The experimental
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setting adopted a gray background, intended to facilitate participants’ concentration. The
participants’ hands were displayed via a model with 50% transparency, as depicted in
Figure 3.
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Figure 3. Virtual environment.

Fifteen practice phrases and ten experimental phrases were randomly selected for each
method and for each participant, taken from MacKenzie and Soukoreff’s phrase list [56].
For each method, each user had different phrases. These phrases contained only 16 to
43 lowercase letters. A schematic representation of the experimental system used in this
study is depicted in Figure 4.
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2.3. Procedure

Upon providing informed consent, the participants devoted a minimum of 30 min to
acquainting themselves with the proper utilization of the tap and trace input techniques via
Leap Motion. This practice persisted until the completion of five precise phrases entered
using each method. Such measures ensured that the eventual experimental data exclusively
reflected variances between the input methods, as opposed to unfamiliarity with the Leap
Motion system. Following this, participants received concise instructions on employing the
VR headset and controllers.

The first step entailed the participants entering practice phrases using one of the
input methods for approximately 20 min, amounting to a total of 15 phrases. The second
step involved a rest period to counteract any potential impact of fatigue. Continuing to
the third step in the experimental phase, participants endeavored to input 10 phrases
with celerity and precision within an approximate 10 min timeframe, using the input
approach with which they had previously familiarized themselves during the first step.
Upon accomplishing the aforementioned tasks, the participants removed the HMD and
dedicated around 10 min to filling out questionnaires. After this, in order to alleviate
possible fatigue, they underwent another rest phase before repeating the entire experiment
by performing the same steps as outlined above, except with the alternative input technique.
Demographic data, such as age and gender, were obtained following the completion of the
abovementioned stages. Each break lasted for 15 min; however, participants were at liberty
to request additional rest time. Consequently, seven participants opted for longer break
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intervals, ranging from 18 to 23 min. Each person expended around 180 min performing
the experiment, and input errors were not allowed to be rectified. To promote the ease of
eventual data analysis, the participants switched to the subsequent row upon concluding
each word, instead of each phrase. Table 1 shows the description of the experimental stages.

Table 1. Description of the experimental stages.

No. Stage Duration (min) Description

1 Pre-experiment practice 30 Familiarization with tap and trace input methods, entering five
precise phrases using each method with Leap Motion

2 VR equipment training As needed Instruction on employing the VR headset and controllers

3 Practice before experiment 20 Entering 15 phrases using one of the input methods for
familiarization

4 Rest 15 Rest period to counteract any potential impact of fatigue

5 Experiment 10 Inputing 10 phrases with precision and celerity using the input
method practiced before

6 Filling out questionnaires 10 Removing the HMD and completing the questionnaires

7 Rest 15 (or longer) Rest period to alleviate possible fatigue

8 Second round of experiment 40 Same as steps 3–6, but with the alternate input method

9 Collection of demographic data As needed Collection of data such as age and gender

2.4. Design

The present study employed a 2 × 2 mixed design, with the input method (Trace
vs. Tap) serving as the within-subject factor, while VR experience (experienced group
vs. inexperienced group) was employed as the between-subject factor. The dependent
variables for this study were typing performance, subjective experience, and workload.

2.4.1. Typing Performance

To assess the typing performance, we measured typing speed (WPM), typing accuracy
(WAcc), and typing efficiency. The WPM formula was

WPM = (|T| − 1)/S × 12 (1)

where T denotes the number of characters that were input, while S refers to the duration of
the input (measured in seconds) [57].

WAcc was determined by calculating the percentage of correctly entered words (C)
from the total number of words (T) [58]. The WAcc formula was

WAcc = C/T (2)

However, the efficiency of an input method could not be comprehensively assessed by
merely measuring the speed or accuracy independently. Rather, it was necessary to consider
the trade-off between these two factors. Previous studies permitted participants to correct
input errors, so if all errors could be amended, the speed would indicate the effectiveness
of the method. However, practical experiments showed that errors were still committed by
participants, prompting the need to take the trade-off into account [31,32]. Fitts’ law defines
the speed–accuracy trade-off as the quotient of the task’s degree of difficulty divided by
the task’s mean time, which measures the number of bits of task difficulty that an interface
can process per second [31,32]. Similarly, in this study, we examined the typing efficiency
(TE) by calculating the product of the input speed (without error correction) and the input
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accuracy, thus indexing how many words the user could accurately enter with the specific
input method per unit time. The TE formula was

TE = WPM×WAcc (3)

In this study, we performed repeatability tests by comparing the typing accuracy
during the practice phase and the experimental phase, aiming to assess the impact of the
learning effect on the input performance. When participants were assigned to one of the
input methods, they first entered 15 sentences during the practice phase. After a rest period,
they continued to input 10 sentences during the experimental phase. We then compared the
input accuracy of this method between the practice and experimental stages to perform the
repeatability test. The same procedure was applied when participants used the other input
method. We ensured that all sentences used in the experiment were selected randomly.
Also, the order of the input methods was balanced using a Latin square design.

2.4.2. Subjective Experience

We evaluated the users’ subjective experiences by measuring their user experience,
susceptibility to motion sickness, and perceived exertion.

To evaluate the participants’ user experiences for each method, the User Experience
Questionnaire (UEQ) was implemented. This instrument comprises 26 pairs of contrasting
attributes, spread across six facets—attractiveness (referring to the overall appeal of the
product); perspicuity (pertaining to the level of difficulty of use); dependability (encom-
passing factors such as predictability, controllability, and security); stimulation (measuring
the level of excitement induced by interaction with the product); novelty (assessing the
creativity of the product design); and efficiency (evaluating the effectiveness of interaction
efforts). Participants responded using a scale with seven options, ranging from negative to
positive. Higher scores indicated a better user experience [59].

To assess motion sickness caused by VR, the VR sickness questionnaire (VRSQ) was
employed. This nine-item scale evaluates two facets—oculomotor and disorientation
factors—through four response options. Based on the questionnaire responses, a motion
sickness score ranging from 0 to 100 was obtained, with higher scores indicating more
severe motion sickness [60].

The Borg CR10 scale was utilized to gauge the participants’ overall perceived physical
exertion. This single-item scale has a range of 0 to 10, with higher scores indicating a higher
perceived level of exertion [61].

2.4.3. Workload

We assessed the workload through subjective and cognitive means. NASA TLX and
pupil diameter were employed to measure these variables [62,63].

NASA TLX is a scale for evaluating the subjective workload associated with various
tasks. Participants are rated on factors such as mental and physical demands. A higher
score indicates a heavier workload [62]. In our study, we employed this tool to evaluate
and compare the scores of two different virtual reality (VR) input methods across these
workload dimensions. This included an assessment of the overall workload score as
well as the scores for each individual dimension. We conducted a variance analysis to
identify significant differences between these two input methods across various workload
dimensions.

In addition, the mean pupil diameter is an essential indicator for estimating cognitive
load during input tasks. This study collected data on the right-eye pupil diameter of the
participants while performing text input tasks at a sampling rate of 90 Hz. We calculated
the mean pupil diameters individually during the text input tasks completed with different
input methods. The pupil diameter is an indicator of cognitive load level, with larger
diameters corresponding to higher cognitive loads [63].
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3. Results

In this study, the learning effect was assessed using a paired T-test, while other
dependent variables were analyzed through a 2 × 2 mixed-design ANOVA. The NASA
TLX was also analyzed using separate ANOVA tests for each dimension. For the overall
rating, a weighted approach was applied, whereby the product of each subscale score
and the workload factor paired-choice task’s weight score was divided by the sum of the
weights. The effect size was calculated using partial eta squared (ηp

2) in the ANOVA tests.
A follow-up analysis was carried out through simple main effects to explore significant
interactions.

3.1. Typing Performance
3.1.1. Words Per Minute (WPM)

Text entry methods had a significant main effect on the WPM. Participants typed
faster using Trace (M = 5.9, SD = 1.5) than Tap (M = 4.3, SD = 0.9): F(1, 33) = 68.4,
p < 0.001, ηp

2 = 0.67. There was no significant difference between the experienced group
and the inexperienced group in terms of typing speed: F(1, 33) = 0.3, p = 0.58, ηp

2 = 0.01.
A significant interaction between the text entry method and VR experience was found:
F(1, 33) = 4.1, p = 0.05, ηp

2 = 0.11. The follow-up analysis revealed that Trace produced a
higher typing speed than Tap in both groups, p < 0.001. Figure 5 shows the typing speed
for each set of experimental conditions.
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3.1.2. Word Accuracy

The text entry method had a significant main effect on the WAcc. Participants in-
put text more accurately with Tap (M = 0.9, SD = 0.1) than Trace (M = 0.8, SD = 0.1):
F(1, 33) = 18.3, p < 0.001, ηp

2 = 0.36. There was no significant difference between the
experienced group and the inexperienced group in terms of typing accuracy: F(1, 33) = 0.3,
p = 0.57, ηp

2 = 0.01. Neither was there an interaction effect between the input method and
the VR experience: F(1, 33) = 0.0, p = 0.99, ηp

2 < 0.001.

3.1.3. Typing Efficiency

The text entry method had a significant main effect on the typing efficiency. Par-
ticipants input text more efficiently with Trace (M = 4.4, SD = 1.3) than Tap (M = 3.7,
SD = 1.1): F(1, 33) = 13.7, p = 0.001, ηp

2 = 0.29. There was no significant difference be-
tween the experienced group and the inexperienced group in terms of typing efficiency:
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F(1, 33) = 0.01, p = 0.94, ηp
2 < 0.001. Neither was there an interaction effect between the

input method and the VR experience: F(1, 33) = 2.0, p = 0.17, ηp
2 = 0.06.

3.1.4. Effect of Learning on Typing Accuracy

The WAcc was compared by a paired t-test between the practice and experimental
tasks for both input methods. There were no effects of learning on the typing accuracy,
p > 0.42.

3.2. Subjective Experience
3.2.1. User Experience

The text entry method had two significant effects on user experience. Participants
reported a higher perspicuity score when using Tap (M = 2.2, SD = 1.0) compared to Trace
(M = 1.6, SD = 1.2): F(1, 33) = 7.1, p = 0.01, ηp

2 = 0.18. Participants also reported a higher
novelty score when using Trace (M = 2.2, SD = 0.8) compared to Tap (M = 1.5, SD = 1.2):
F(1, 33) = 15.6, p < 0.001, ηp

2 = 0.32. The text entry method had no significant effect on other
facets, p > 0.13. There was no significant difference between the experienced group and the
inexperienced group in terms of the six facets of user experience, p > 0.28. No interaction
effects were found, p > 0.25.

3.2.2. Motion Sickness

There was no significant difference in terms of motion sickness between each method:
F(1, 33) = 0.02, p = 0.88, ηp

2 = 0.001 and F(1, 33) = 0.2, p = 0.66, ηp
2 = 0.01, respectively.

Additionally there were no significant interaction effects: F(1, 33) = 1.8, p = 0.19, ηp
2 = 0.05.

A further analysis of the VRSQ’s sub-dimensions (oculomotor and disorientation
factors) found no significant effects of the input method on the VR experience, p > 0.65. No
significant interaction effect was found, p > 0.11.

3.2.3. Perceived Exertion

No significant main effect on perceived exertion was found for the methods or VR
experience: F(1, 33) = 0.8, p = 0.39, ηp

2 = 0.02 and F(1, 33) = 0.7, p = 0.40, ηp
2 = 0.02,

respectively. There was no significant interaction effect: F(1, 33) = 0.06, p = 0.81, ηp
2 = 0.002.

3.3. Workload
3.3.1. Subjective Workload

The text entry method had a significant main effect on the overall task workload:
F(1, 33) = 4.2, p = 0.05, ηp

2 = 0.11 (Trace: M = 42.7, SD = 15.2; Tap: M = 36.0, SD = 15.1).
The input method had three significant main effects in terms of effort, mental load, and
frustration. The effort score with Trace (M = 10.1, SD = 6.9) was higher than with Tap
(M = 7.9, SD = 6.5): F(1, 33) = 5.3, p = 0.03, ηp

2 = 0.14. The mental load reported by
participants with Trace (M = 5.2, SD = 7.8) was higher than with Tap (M = 2.3, SD = 2.9):
F(1, 33) = 5.6, p = 0.02, ηp

2 = 0.15. The frustration reported by participants when using
Trace (M = 8.1, SD = 8.0) was higher than when using Tap (M = 4.2, SD = 5.0): F(1, 33) = 6.3,
p = 0.02, ηp

2 = 0.16. A significant interaction in terms of frustration between the method
and the VR experience was found: F(1, 33) = 5.3, p = 0.03, ηp

2 = 0.14. No significant main
effect between the experienced group and the inexperienced group was found, p > 0.18.
The follow-up analysis revealed that participants without VR experience reported higher
levels of frustration when using Trace than when using Tap, p = 0.01. The participants with
VR experience reported lower levels of frustration when using Trace than when using Tap,
p = 0.04. Figure 6 shows the statistical analysis of the subjective workload. Figure 6 does
not distinguish between participants but instead presents the average scores and standard
deviations for all test participants.
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3.3.2. Cognitive Workload (Mean Pupil Diameter)

Pupil diameter is considered a significant indicator of cognitive load during typ-
ing tasks. The text entry method had a significant effect on pupil diameter, with Trace
(M = 3.2, SD = 0.1) presenting higher values than Tap (M = 3.2, SD = 0.1): F(1, 33) = 7.3,
p = 0.01, ηp

2 = 0.18. No significant main effect between the experienced group and the
inexperienced group on pupil diameter was detected: F(1, 33) = 0.3, p = 0.59, ηp

2 = 0.01.
A significant interaction was found between the input method and the VR experience:
F(1, 33) = 8.2, p = 0.007, ηp

2 = 0.20. The follow-up analysis revealed that participants
without VR experience had a larger mean pupil diameter when using Trace (M = 3.2,
SD = 0.1) compared to Tap (M = 3.1, SD = 0.1), p < 0.001. Figure 7 shows the mean pupil
diameter.
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4. Discussion

Based on the outcomes of TE, user experience, and workload, both input methods
exhibited benefits and drawbacks in various areas. Overall, the results indicated that the
text entry methods had significant main effects. Additionally, in terms of certain indicators
such as WPM, frustration, and cognitive workload, we observed notable interactions
between the input method and the virtual reality experience.

4.1. The Performance of the Input Methods

Through prolonged practice, satisfactory results in terms of both speed and accuracy
can be achieved through physical keyboard and touch interfaces in physical interactions.
However, in VR, there exists no physical medium for tapping and tracing. With Tap in
VR, the user input each individual letter by tapping on virtual keys, resulting in a higher
accuracy at the expense of input speed. In contrast, Trace required the user to input a
word by drawing with a trace through the relevant letters, which led to faster typing at the
cost of reduced accuracy. As expected, Trace outperformed Tap in terms of speed, whilst
Tap exceled in accuracy. In this study, we utilized typing efficiency (TE) to analyze the
speed–accuracy trade-off and provide a comprehensive assessment of the true performance
of these input methods. After a thorough evaluation, we concluded that Trace was more
effective than Tap in promoting typing efficiency.

A meaningful interaction between variables indicated that the VR experience had a
larger impact on the input speed of Trace compared to Tap. Figure 5 illustrates the disparity
between the VR-experienced and -inexperienced participants in terms of their input speed.
The VR-experienced participants were able to input text more swiftly when using Trace
compared to VR novices, while no significant difference was observed when using Tap.
This could be attributed to the proficiency that the experienced users possessed in mapping
physical hand movements to their virtual reality counterparts, enabling them to manipulate
virtual objects with greater ease and finesse. As Trace necessitated drawing a continuous
trace to input words, it required more precise control than Tap, which may have also
contributed to the observed differences in input speed.

According to the literature, both the trace and tap input methods exhibit faster input
speeds for smartwatches compared to smartphones [31,32]. In contrast to current research,
we discovered that smartphones had faster input speeds than VR mid-air input. It appears
that as the size of a device’s user interface increases, the input speed decreases. Inputting
on smartwatches only requires finger movement, while inputting on smartphones requires
more finger dexterity, and mid-air input as a type of gestural input method in VR demands
upper-limb movement. The range of movement of typing may be a crucial factor affecting
input speed. The literature also suggests that on smartphones, Trace is more precise than
Tap [31], whereas the opposite holds true on smartwatches [49]. In this study, Tap was more
precise than Trace. Drawing a trace in one attempt may be difficult on small user interfaces
(UIs) such as those on smartwatches, and Trace, as a type of mid-air input method, may
cause inevitable limb shaking, ultimately leading to mistouching issues. We believe that
Trace UIs require redesigns for use with small smart devices and mid-air input. Optimizing
button size and spacing, highlighting the button to be selected, and using a fuzzy word
recognition algorithm to improve fault tolerance in virtual mid-air keyboards may be
plausible solutions.

4.2. The Subjective Experience of the Input Methods

The Trace input method offers a fresh and inventive experience for users, with its
distinctive interactive features attracting many willing participants. Conversely, Tap’s
input method is characterized by its clarity, making it particularly accessible to beginners.
Although neither method is known to induce motion sickness, this study found that
continuous mid-air input tasks lasting 10 min elicited a perception of severe exertion.
Therefore, VR applications utilizing mid-air input methods should limit the duration and
frequency of their use. Subsequent research could involve designing an input task that
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explores the performance of these input methods under lower-frequency and -duration
conditions.

4.3. The Workload of the Input Methods

In Figure 6, it was demonstrated that VR-proficient users reported experiencing lower
levels of frustration than VR novices when using Trace; however, there was little variation
observed between the two groups when using Tap. Drawing continuous traces in VR
proved to be more manageable for experienced VR users, while tapping presented no
obstacle for either group. As depicted in Figure 7, the experienced VR users’ average pupil
diameter was larger than that of the novices when using Tap, but the diameters were more
or less the same for Trace. While Tap may have been more user-friendly for VR beginners,
it failed to meet the high text input performance expectations of the experienced users. Th
experienced participants expressed a strong desire to complete text input tasks efficiently,
but the slow speed of Tap increased their anxiety and required more effort and willpower,
ultimately resulting in a higher cognitive workload. The results implied that while Trace
may have imposed extra cognitive effort and irritation on VR novices, these adverse effects
gradually diminished with greater exposure to VR technology, thereby transforming Trace
into a superior VR input method.

5. Conclusions and Future Work
5.1. Conclusions

This research presented a comparative analysis of two freehand mid-air input tech-
niques in VR among both novice and experienced participants. Despite the high portability
and minimal motion sickness associated with both gestural input methods, their typing
efficiency proved to be rather low. The trace method outperformed the tap method in terms
of speed, but no significant differences were observed concerning the fatigue caused by
both techniques. This research introduced a new parameter for assessing performance,
namely TE, which comprehensively accounted for the speed–accuracy trade-off, and de-
termined that Trace was more effective than Tap. In the future, the TE may be considered
as another index for evaluating the performance of input methods, as some methods may
have different advantages in terms of speed or accuracy. Contrary to expectations, VR
experience only affected the workload, but not the performance or subjective experience.
This study lays the groundwork for mid-air text input research in VR with the following
conclusions:

(1) Regardless of VR experience, participants displayed greater efficiency in text input
when employing the trace input technique. The trace method was deemed more novel
by users, while the tap method was more easily comprehensible.

(2) Neither of the VR input techniques induced significant motion sickness, yet both were
perceived to require considerable exertion. It is advised to employ short texts for
mid-air input tasks in VR.

(3) All participants reported a heightened level of subjective workload while using the
trace input method; however, after gaining some experience with VR, their level of
frustration decreased to match that of the tap input method.

(4) Participants who lacked experience with VR exhibited lower cognitive workloads
when using the tap input method; however, after gaining some experience with
VR, their cognitive workloads increased to match those required by the trace input
method.

5.2. Limitation

There were discrepancies in the English proficiency levels between the participants.
Additionally, the participant sample seemed to have a lack of diversity. Initially, all par-
ticipants were separated into two groups based on their VR experience rather than their
English proficiency. The Trace task necessitated that participants draw a continuous line,
which required familiarity with the spelling of the words they input. Participants with a
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limited grasp of English may have encountered more errors while completing the Trace
task. Secondly, the study only recruited college students or individuals with a bachelor’s
degree or higher, and so did not accurately represent other demographic groups. This inad-
equacy reduced the ecological validity of the study to some degree. Lastly, the participants
were more familiar with the Tap task than the Trace task, which may have resulted in the
underestimation of the potential of Trace. To address this issue, we may consider asking
invited participants to practice using Trace on their smartphones for 30 min every day for a
week leading up to the trial to ensure their familiarity with it.
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