
Citation: Luo, F.; Liu, Z.; Zou, F.; Liu,

M.; Cheng, Y.; Li, X. Robust

Localization of Industrial Park UGV

and Prior Map Maintenance. Sensors

2023, 23, 6987. https://doi.org/

10.3390/s23156987

Academic Editors: Gaoge Hu and

Bingbing Gao

Received: 09 July 2023

Revised: 27 July 2023

Accepted: 29 July 2023

Published: 6 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Robust Localization of Industrial Park UGV and Prior
Map Maintenance
Fanrui Luo 1, Zhenyu Liu 1,*, Fengshan Zou 2, Mingmin Liu 2, Yang Cheng 1 and Xiaoyu Li 1

1 School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;
202120679@smail.sut.edu.cn (F.L.); tanxiaojian@smail.sut.edu.cn (Y.C.); lxy_4210@smail.sut.edu.cn (X.L.)

2 SIASUN Robot & Automation Co., Ltd., Shenyang 110169, China; zoufengshan@siasun.com (F.Z.);
liumingmin@siasun.com (M.L.)

* Correspondence: liuzhenyu@sut.edu.cn

Abstract: The precise localization of unmanned ground vehicles (UGVs) in industrial parks without
prior GPS measurements presents a significant challenge. Simultaneous localization and mapping
(SLAM) techniques can address this challenge by capturing environmental features, using sensors
for real-time UGV localization. In order to increase the real-time localization accuracy and efficiency
of UGVs, and to improve the robustness of UGVs’ odometry within industrial parks—thereby
addressing issues related to UGVs’ motion control discontinuity and odometry drift—this paper
proposes a tightly coupled LiDAR-IMU odometry method based on FAST-LIO2, integrating ground
constraints and a novel feature extraction method. Additionally, a novel maintenance method of
prior maps is proposed. The front-end module acquires the prior pose of the UGV by combining the
detection and correction of relocation with point cloud registration. Then, the proposed maintenance
method of prior maps is used to hierarchically and partitionally segregate and perform the real-time
maintenance of the prior maps. At the back-end, real-time localization is achieved by the proposed
tightly coupled LiDAR-IMU odometry that incorporates ground constraints. Furthermore, a feature
extraction method based on the bidirectional-projection plane slope difference filter is proposed,
enabling efficient and accurate point cloud feature extraction for edge, planar and ground points.
Finally, the proposed method is evaluated, using self-collected datasets from industrial parks and
the KITTI dataset. Our experimental results demonstrate that, compared to FAST-LIO2 and FAST-
LIO2 with the curvature feature extraction method, the proposed method improved the odometry
accuracy by 30.19% and 48.24% on the KITTI dataset. The efficiency of odometry was improved by
56.72% and 40.06%. When leveraging prior maps, the UGV achieved centimeter-level localization
accuracy. The localization accuracy of the proposed method was improved by 46.367% compared
to FAST-LIO2 on self-collected datasets, and the located efficiency was improved by 32.33%. The
z-axis-located accuracy of the proposed method reached millimeter-level accuracy. The proposed
prior map maintenance method reduced RAM usage by 64% compared to traditional methods.

Keywords: LiDAR-IMU SLAM; feature extraction; prior map maintenance; relocation; unmanned
ground vehicle

1. Introduction

With the rapid development of science and technology, the construction of intelligent
and digital industrial parks has entered a transformative phase [1,2]. Ensuring the stable
operation of UGVs within industrial parks and guaranteeing their accurate arrival at
designated positions are key challenges that must be addressed. The accuracy and efficiency
of pose estimation serve as fundamental prerequisites for achieving the reliable arrival of
UGVs at the designated position [3–5]. Simultaneous localization and mapping (SLAM)
techniques can use external information obtained by sensors to perform real-time 6DOF
state estimation, effectively resolving the problem of precise localization in the absence of

Sensors 2023, 23, 6987. https://doi.org/10.3390/s23156987 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23156987
https://doi.org/10.3390/s23156987
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23156987
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23156987?type=check_update&version=1

Sensors 2023, 23, 6987 2 of 24

prior GPS measurements, thus providing a crucial foundation for UGV operations within
industrial parks [6]. SLAM technology can be classified into visual and LiDAR SLAM.
Visual SLAM, which relies on camera-based scene feature extraction, is susceptible to
lighting conditions and environmental textures, making it unsuitable for real-time UGV
localization [7]. On the other hand, LiDAR SLAM compares the emission signals of laser
beams with the received echo signals to obtain point cloud information from the scene,
which is less affected by environmental factors [8]. Therefore, LiDAR SLAM is better suited
to real-time UGV localization within industrial parks.

1.1. Odometry Based on LiDAR-IMU

Currently, LiDAR SLAM can be classified into loosely coupled and tightly coupled
methods, based on the approaches used for LiDAR-IMU fusion [9]. Loosely coupled
methods involve the direct integration of IMU pre-integration results into the front-end
of the LiDAR odometry. These pre-integration results are utilized as initial estimates for
LiDAR scanning registration, and they serve as prior values for distortion compensation.
The IMU pre-integration results are not incorporated into the joint optimization process.
Zhang et al. [10] proposed LiDAR odometry and mapping (LOAM), which is a widely
recognized and classic loosely coupled method for fusing LiDAR and IMU data. LOAM
has been extensively evaluated on the KITTI dataset [11], demonstrating outstanding
performance, and serving as a milestone in the field. However, ensuring its robustness in
complex environments is challenging, due to its heavy reliance on stable edge and planar
features present in the environment. Shan et al. [12] proposed a lightweight and ground-
optimized version of LOAM (LeGO-LOAM), based on the original LOAM. LeGO-LOAM
adopts a two-step L-M optimization approach on separated ground points and on points
representing edges and planes in space. This method conducts separate three-degrees-of-
freedom pose estimations and combines them to achieve a robust six-degrees-of-freedom
pose estimation. The aforementioned method can enhance pose estimation accuracy while
concurrently reducing system computational complexity. However, its heavy reliance on
ground features poses challenges to achieving robust pose estimation in environments
characterized by complex ground features. On this basis, reference [13] proposed Livox
LOAM specifically designed for solid-state LiDAR systems, and reference [14] proposed
M-LOAM for simultaneous localization and mapping utilizing multiple LiDARs. These
methods are classified as loosely coupled LiDAR-IMU methods.

Unlike loosely coupled methods, tightly coupled methods typically incorporate the
original feature points from LiDAR into IMU data, and they integrate the IMU pre-
integration results into joint optimization. Tightly coupled methods offer the advantage of
mitigating drift by incorporating residual calculations of point-to-edge and point-to-plane
distances, especially in scenarios where the quality of point cloud scene features deteri-
orates. Tightly coupled methods can be primarily categorized into optimization-based
methods and filtering-based methods. Ye et al. [15] proposed a tightly coupled LiDAR-IMU
method known as tightly coupled 3D LiDAR industrial odometry and mapping (LIOM).
The LIOM method mitigates IMU and LiDAR errors by optimizing the sliding window
and incorporating rotation-constrained refinement. It achieves reliable pose estimation in
scenarios with reduced feature availability, via the tightly coupled approach. However,
this method suffers from high computational complexity and significant time consump-
tion. Qin et al. [16] proposed a lightweight tightly coupled method known as robocentric
LiDAR industrial state estimator for robust and efficient navigation (LINS). This method
employs an iterated-error-state Kalman filter (ESKF) to achieve the tight fusion of LiDAR
and IMU measurements, resulting in enhanced efficiency without compromising accuracy.
Shan et al. [17] proposed a tightly coupled LiDAR inertial odometry via the smoothing and
mapping (LIO-SAM) method, based on factor graph optimization. This method introduces
a sliding window of key frames from the LiDAR data, effectively reducing the compu-
tational complexity. The factor graph incorporates IMU pre-integration factors, LiDAR
odometry factors, loop closure factors, and GPS factors for joint optimization, leading to

Sensors 2023, 23, 6987 3 of 24

improved precision. Xu et al. [18,19] proposed FAST-LIO and FAST-LIO2, which utilize the
iterative extended Kalman filter (IEKF) for tightly coupled LiDAR-IMU fusion. FAST-LIO
introduces a novel Kalman gain calculation formula inspired by the matrix inverse lemma.
This formula transforms the dimension of the inverse matrix from the measurement di-
mension to the state dimension. Motion distortion is compensated for using a backward
propagation method. FAST-LIO2 significantly reduces computational burden and enables
high-frequency odometry output at 50 Hz. To enhance computational efficiency, FAST-
LIO2 introduces an incremental k-d tree for map maintenance, leading to an accelerated
K-nearest neighbor (KNN) search speed and improved computational efficiency.

1.2. The Problems in the Real-Time Localization of UGV in Industrial Parks

To fulfill the demands of high-precision and high-frequency odometry for path plan-
ning and motion control of UGVs within industrial parks, LiDAR SLAM encounters the
following novel challenges:

1. Given the intricate and expansive nature of industrial parks, traditional algorithms
encounter challenges in mitigating odometry drift in extensive environments and over
long distances. The utilization of low-frequency odometry with inadequate real-time
performance can result in errors and delays in UGV motion control. Consequently,
traditional methods struggle to fulfill the high-frequency and real-time localization
demands of UGVs [20–23].

2. By leveraging prior maps for real-time localization, the localization accuracy of UGVs
within industrial parks can be significantly enhanced. However, the utilization of prior
maps for large-scale industrial parks presents challenges, as it necessitates substantial
RAM occupancy. Consequently, performing a KNN search on UGVs with limited
RAM capacity becomes arduous and impractical [24].

3. The edge and planar features in industrial park environments exhibit relative promi-
nence; however, they are often accompanied by numerous unstable features. Tra-
ditional methods encounter challenges in efficiently and accurately extracting high-
quality feature points, as well as in concurrently extracting ground points in a targeted
manner. [25–28].

Reference [29] proposed utilizing prior maps to compute the residuals of feature point
clouds, enabling the generation of highly precise and high-frequency poses that fulfill the
odometry accuracy demands of UGVs. Many existing methods maintain a prior map using
Octree or kd-tree structures. While the speed of KNN search may satisfy the requirements,
the associated RAM usage should not be overlooked, especially when dealing with sizable
prior maps. The limited RAM capacity of UGV host systems often poses a challenge in
meeting these requirements. References [30–32] employed calculations of structural tensors,
point feature histograms, and viewpoint feature histograms to extract feature points. While
these methods demonstrate acceptable performance in feature extraction, their extraction
speed is inadequate to meet the requirements of high-frequency odometry. The curvature
feature extraction method categorizes feature points into planar points and edge points.
However, this method exhibits poor performance in accurately extracting stable ground
points as the characteristics of ground points on LiDAR scanning lines differ from planar
points. Hence, further improvements are necessary to enhance the speed and accuracy.

1.3. New Contributions

In summary, to fulfill the real-time localization requirements of UGVs in industrial
parks, this study presents a tightly coupled LiDAR-IMU odometry method that leverages
prior maps. The key contributions of this research can be outlined as follows:

1. A method is proposed for extracting high-quality feature points using a bidirectional
projection plane slope difference filter. This method not only reduces the feature
extraction speed but also enhances the quality of feature points. Moreover, it enables
the separate extraction of ground points and planar points.

Sensors 2023, 23, 6987 4 of 24

2. A maintenance method is proposed for large prior maps, which integrate three-layer
voxels with an ikd-tree structure. This method effectively reduces RAM consumption
and enables the real-time localization of UGVs using the large prior maps.

3. A back-end optimization model incorporating ground constraints is proposed. This
method assigns adaptive weights to observation error equations of ground and planar
points using the proposed pseudo occupancy method. This method addresses the
issue of inadequate lateral or longitudinal constraints that may arise due to a limited
number of points on the plane or ground.

2. Overall System Framework

This paper presents a real-time localization method for UGVs using prior maps.
The method involves searching for the nearest neighbor points in the observation error
equation to calculate the residual within the prior maps. This approach significantly
enhances localization accuracy while maintaining processing speed. The overall design,
as illustrated in Figure 1, is divided into four parts:

1. Data processing for LiDAR and IMU: the initial pose estimation of the current frame
is obtained through the preintegration of the IMU measurements. Subsequently, high-
quality planar and ground points are extracted using a bidirectional projection plane
slope difference filter. The IMU pre-integration results are propagated backwards to
compensate for the motion distortion of LiDAR points in the current frame.

2. Tightly coupled LiDAR-IMU odometry: the error equations for prediction and ob-
servation with ground constraints in the iterated extended Kalman filter (IEKF) are
formulated using the points information and the pre-integration results from the IMU.
As part of the estimation process, the pose is cyclically and iteratively updated.

3. Relocation: the initial frame captured by the LiDAR is detected and corrected using
prior historical keyframes for relocation. The initial frame is registered with the
successfully detected historical keyframe, enabling the acquisition of accurate UGV
position information within a prior map.

4. Prior map maintenance: through the real-time maintenance of the three-layer voxels
comprising the overall ROM voxels, nearest-neighbor RAM voxels, and ikd-tree
voxels, the prior maps can be efficiently maintained, enabling a fast KNN search while
ensuring lightweight operations.

LiDAR

IMU
Data Processing

Bidirectional
Plane Slope

Difference Filter

Distortion
Correction

Pre Integration

Kalman Filter

Residual
Computation
with Ground
Constraints

Added

State
Update

Y

Converged?

N

Priori Map

Prior Map Maintenance

Voxel Map

Search Voxel

Relocation

Relocation
Detection

Prior keyframes

Relocation
Registration

ICP Registration

Neighbor Voxel

6DOF State

Figure 1. Overall system framework.

Sensors 2023, 23, 6987 5 of 24

3. Tightly Coupled LiDAR-IMU Odometry
3.1. Feature Extraction Based on Bidirectional Projection Plane Slope Difference Filter

The current most popular curvature feature extraction method involves calculating
the relationship between each point and neighboring points on the local plane along
the current LiDAR scanning line. However, this method suffers from relatively slow
extraction speed and limited accuracy. Moreover, the curvature feature extraction method
roughly classifies feature points into planar and edge points, but fails to account for
the distinctive characteristics of ground points on the LiDAR scanning lines, leading to
poor performance in extracting stable ground points and potential height value drift.
Additionally, the curvature method exhibits a limited ability to filter out noisy and unstable
points, resulting in potential lateral drift. Considering the scanning characteristics of 3D
LiDAR, each scanning line is captured at a specific angle. When a line scans a plane,
the points do not lie on a straight line in three-dimensional space. This observation makes
feature extraction via projection planes more reliable. To address these limitations, this
paper proposes a feature extraction method based on the bidirectional projection plane slope
difference filter. This method only requires calculating the relationship between a point
on the current line and its preceding and subsequent points. By mapping the calculation
from three-dimensional space to two planes, the proposed method can extract high-quality
ground, planar, and edge points simultaneously. Additionally, special processing is applied
to lines in the proximity of the ground, enhancing both extraction accuracy and speed.
The main steps of the proposed method are as follows.

(1) Near-end ground feature point extraction: the point cloud of the current frame
is denoted as P. Leveraging the characteristics of 3D LiDAR, it is observed that LiDAR
points from lower scanning lines tend to contain more stable ground features. This method
establishes the lowest LiDAR scanning line Pmin as the reference line for near-end ground
feature constraints. The line is divided into n segments based on the sector area, and the
average distance from the LiDAR center to the LiDAR points in each segment is calculated.
The segment Pground with the highest average distance is selected as the constraint for
ground feature points. The average height zground of these selected points represents an
approximate estimation of the ground plane height in the near-end region. The lines
ranging from Pmin to Ph, which are in proximity to the lowest scanning line, are identified
as the near-end ground lines. On the other hand, the lines from Ph to Pmax are classified as
non-near-end ground lines. To mitigate the influence of noise and obstacles in the vicinity of
the ground plane, points with heights, zi

s, of the point i in the LiDAR scanning s-line falling
outside the range [zground − u, zground + u] within the near-end ground lines are filtered out,
where u is the floating range threshold of the near-end ground height. The value of u is set
according to the strictness of the near-end ground point filtering. This process facilitates
the extraction of high-quality near-end ground points, thus enhancing the reliability of
ground feature constraints for pose estimation.

(2) Far-end feature point extraction: this method involves the projection of points from
each LiDAR scanning line, excluding those within the near-end ground lines of the current
frame, onto the l-plane comprising the x-axis and y-axis of the LiDAR coordinate system.
Simultaneously, the points are projected onto the h-plane, which consists of the z-axis and
the angle θ within the plane formed by the x-axis and y-axis. Subsequently, the method
applies a slope difference filter to each LiDAR scanning line on the two projection planes.
The calculations performed in three-dimensional space are projected onto these two two-
dimensional planes via the bidirectional projection plane slope filter. By evaluating the
slope difference of the same LiDAR point on the two projection planes, the smoothness
of the point on the local plane can be determined. This process allows for the efficient
extraction of high-quality ground points, planar points, and edge points. The slope and
slope difference of points in the l-plane and h-plane can be defined as follows:

Kl
i =

ρi+1 − ρi
ρi∆θi

(1)

Sensors 2023, 23, 6987 6 of 24

dl
i = Kl

i − Kl
i−1 (2)

Kh
i =

zi+1 − zi
∆θi

(3)

dh
i = arccos(

∆θi∆θi−1 + (∆θiKh
i)(∆θi−1Kh

i−1)√
(∆θiKh

i)
2 + (∆θi)2

√
(∆θi−1Kh

i−1)
2 + (∆θi−1)2

) (4)

∆θi = θi+1 − θi (5)

In the formula, Kl
i and dl

i are the slope and slope difference of point i on the l-plane.
Kh

i and dh
i are the slopes and slope difference of point i on the h-plane. ρi is the distance

between point i on the l-plane and the LiDAR center. zi is the height value of point i. θi is
the angle value of point i on the l-plane. ∆θi is the difference in angle between point i + 1
and point i on the l-plane. As shown in Figure 2, the extraction effect of a point is shown.
The near-end ground points, high-quality planar points and high-quality ground points
are red, and the corner points are green.

(a) (b)

Figure 2. The results of feature extraction. (a) is the feature extraction effect of the near-ground end.
(b) is the feature extraction effect of the far end.

The slope difference filter formulas enable the evaluation of whether the current point,
along with its preceding and succeeding points on the same line, can be fitted into a straight
line in the l-plane or h-plane. A close approximation to a straight line in the l-plane indicates
that the point lies on a non-ground plane within three-dimensional space. The projection of
ground points onto the l-plane exhibits a circular arc shape. Conversely, an approach to a
straight line in the h-plane suggests that there is no significant change in the z-axis height
between the points. When the slope difference on the l-plane approaches zero and the
slope difference on the h-plane is less than the threshold value for a jump on the h-plane, it
indicates that the point is a stable planar point. The constraint on the l-plane serves to filter
out noise and unstable points. When the slope difference on the l-plane approaches zero
and the slope difference on the h-plane is greater than the jump threshold, it suggests that
the angle between the laser beam of the current point and the plane is small, indicating that
the point is located at the far end of the plane. These points are considered unstable planar
far-end points that need to be filtered out. When the slope difference on the l-plane cannot
approach zero and the slope difference on the h-plane does not approach zero but is less
than the jump threshold, it indicates that the point is a corner point. The constraint on the
h-plane serves to filter out the far jump points. When the slope difference on the l-plane
cannot approach zero and the slope difference on the h-plane is greater than the jump
threshold, it suggests that the point transitions from one plane to another far plane. Lastly,
when the slope difference on the l-plane cannot approach zero and the slope difference on
the h-plane strictly approaches zero, it indicates that the point is a stable ground point.

Sensors 2023, 23, 6987 7 of 24

Algorithm 1 outlines the feature extraction method in this paper. dl
i is the slope

difference on the l-plane of the point i in the current frame. dh
i is the slope difference on

the h-plane of the point i in the current frame. dlm is the threshold at which the slope
difference of the point on the l-plane approaches zero. dhn is the threshold at which the
slope difference of the point on the h-plane strictly approaches zero. dhm is the threshold
at which the slope difference of a point on the h-plane does not jump. Pp is a high-quality
planar point, Pd is a high-quality ground point, and Pd is a high-quality edge point.

Algorithm 1: Feature extraction
Input : P from current frame point cloud
Output : Pp,Pd,P̃

1 for (Pi f rom every points o f P) do
2 put point pi in the corresponding Ps according to LiDAR line s;
3 end
4 Divide Pmin into n equal parts according to the fan shaped area;
5 Put the maximum part of the average distance from the LiDAR to the point in

Pground;
6 Put the average height of the Pground in zground;
7 for (each point Pi

s f rom Pmin to Ph) do
8 if (zi

s > zground − u & zi
s < zground + u) then

9 Put Pi
s into Pd;

10 end
11 end
12 for (each point Pi

s f rom Ph to Pmax) do
13 for (each point Pi

s f rom Ps) do
14 if (i = 0) then
15 Calculate the slope and slope difference kl

i , kh
i of the projection planes l

and h based on (1),(2),(3),(4),(5);
16 end
17 if (i 6= 0) then
18 Calculate the slope and slope difference kl

i , kh
i , dl

i , dh
i of the projection

planes l and h based on (1),(2),(3),(4),(5);
19 if (dl

i < dlm & dh
i < dhm) then

20 Put Pi
s into Pp;

21 end
22 if (dl

i > dlm & dh
i > dhn & dh

i < dhm) then
23 Put Pi

s into P̃;
24 end
25 if (dl

i > dlm & dh
i < dhn) then

26 Put Pi
s into Pd;

27 end
28 end
29 end
30 end

3.2. IMU Preintegration and Compensation of Point Cloud Distortion

The IMU preintegration and compensation of point cloud distortion are performed
using discretized forward and backward propagation. The forward propagation is con-
ducted over the time interval ∆t f between consecutive IMU frames. It begins with the IMU
measurement taken after the LiDAR point timestamp at the start of the current frame and
ends with the IMU measurement taken before the LiDAR point timestamp at the end of
the current frame. On the other hand, backward propagation compensates for point cloud

Sensors 2023, 23, 6987 8 of 24

distortion in the current frame based on the time difference ∆tl between adjacent LiDAR
scanning points.

(1) Forward propagation: in the continuous model, the position, velocity and attitude
of the IMU can be defined as follows:

vG
b = vG

a +
∫

tε[a,b]
RG

t (at − bat − nat) + gGdt (6)

pG
b = pG

a +
∫

tε[a,b]
vt + RG

t (at − bat − nat)t + gGtdt (7)

RG
b = RG

a exp(
∫

tε[a,b]
ωt − bωt − nωtdt) (8)

In the equation, vG
a and vG

b are the velocities of IMU at time a and b in the world
coordinate system. pG

a and pG
b are the positions of IMU at time a and b in the world

coordinate system. RG
a , RG

b and RG
t are the attitude of the IMU at times a, b, and t in the

world coordinate system. at is the acceleration measured at time t in the IMU coordinate
system. vt is the speed at time t in the IMU coordinate system. ωt is the angular velocity
measured at time t in the IMU coordinate system. gG is the gravitational component in the
world coordinate system. bat and nat are acceleration bias and noise at time t. bωt and nωt
are the angular velocity bias and noise at time t. After removing the unknown noise and
offsetting, discretizing and simplifying it, the IMU forward propagation model is defined
as follows:

vk+1 = vk + (RG
k ak + gG)∆t f (9)

pk+1 = pk + vk∆t f (10)

Rk+1 = Rkexp(ωk∆t f) (11)

v0 = v̄i (12)

p0 = p̄i (13)

R0 = R̄i (14)

In the formula, vk, vk+1 and v0 are the speeds of the current frame IMU at times k,
k + 1, and 0 in the world coordinate system. pk, pk+1 and p0 are the positions of the current
frame IMU at times k, k + 1, and 0 in the world coordinate system. Rk, Rk+1 and R0 are
the attitude of the IMU at times k, k + 1 and 0 in the world coordinate system. ak is the
accelerometer measurement at time k in the IMU coordinate system of the current frame.
ωk is the angular velocity measurement at time k in the IMU coordinate system of the
current frame. v̄i, p̄i and R̄i are the true value of velocity, position and rotation matrix of the
last frame after the Kalman filter. When the time k + 1 is the time of the last LiDAR point
in the current frame, vk+1, pk+1 and Rk+1 are the v̂i+1, p̂i+1 and R̂i+1 entering the Kalman
filter at the end of the current frame i + 1.

(2) Backward propagation: similar to the discretized forward propagation, the back-
ward propagation propagates the IMU measurements in the opposite time direction -∆tl
to compensate for the distortion of points in the current frame. This process occurs at the
frequency of LiDAR scanning points. Since the IMU measurement frequency is lower than
the LiDAR scanning frequency, there are multiple LiDAR points between two consecutive
IMU measurements. Consequently, the most recent IMU measurement prior to the times-

Sensors 2023, 23, 6987 9 of 24

tamp of the current LiDAR point is utilized as the input value for backward propagation.
The IMU backward propagation model is defined as follows:

vb = vb+1 − ∆tl(RG
b+1ak + gG) (15)

pb = pb+1 − ∆tlvb+1 (16)

Rb = log((ωk∆tl)
T Rb+1) (17)

vb, pb and Rb represent the velocity, position, and attitude of the b-th point in the
current LiDAR scan frame in the world coordinate system. ak and ωk are the acceleration
and angular velocity obtained from the closest IMU measurement taken prior to the
timestamp of the b + 1-th point in the current LiDAR scan frame. When time b + 1 is the
time of the last LiDAR point in the current frame, vb+1, pb+1 and Rb+1 are the initial inputs
v̂i+1, p̂i+1 and R̂i+1 for the backward propagation in the current frame i + 1.

3.3. Back-End Optimization Based on Iterated Extended Kalman Filter
3.3.1. Error State Estimation

To facilitate error calculation and state update, the state of UGV is defined as [RGT
, pGT

,
vGT

, bT
ω, bT

a , gGT
]T , and the error ε between the estimated state and the actual state is defined

as [εRT
, εpT

, εvT
, εbωT

, εbaT
, εgT

]T . The integrated state can be expressed as [(RGexp[εR])T , (pG+
εp)T , (vG +εv)T , (bω + εbω)T , (ba+, εba)T , (gG + εg)T]T. In the formula, εR represents the error
in the state rotation matrix. εp is the error in the state position. εv is the error in the state velocity.
εbω is the error in the angular velocity bias. εba is the error in the accelerometer bias error.

(1) Predicted error state: the predicted error is defined as the discrepancy between
the real state and the propagated state. By utilizing the propagated formula of the real
state and the propagated formula of the propagated state, the propagated formula of the
predicted error state and the covariance propagation formula are defined as follows:

ε̂i+1 = Fε̂i ∆t f ε̂i + ε̂i (18)

P̂i+1 = Fε̂i P̂iFT
ε̂i
+ Fωi QFT

ωi
(19)

In the formula, ε̂i is the predicted error state at time i. ωi is the Gaussian white noise
at time i. Fε̂i is the error state propagated matrix at time i. Fωi is the Jacobian matrix of the
Gaussian white noise at time i. P̂i and Q are the covariance of ε̂i and ωi at time i. Fε̂i and
Fωi are more concretely derived in [18].

After obtaining the estimation of the propagated error state, the predicted error state
of the iterated update is defined as follows:

ε̃k = ε̂a
k + ha ε̃a

k (20)

Pa+1
k = (ha)

−1Pa
k (ha)

−T (21)

In the equation, ε̃k is the error between the true state of the frame k and the propagated
state of frame k. ε̂a

k is the error between the a-th update state of the frame k and the
propagated state of the frame k. Pa

k is the covariance of the a-th state update of the frame k.
ha is the Jacobian matrix of ε̃k relative to ε̃a

k.
(2) Observed error state: the LiDAR point cloud of the current frame is projected onto

the global coordinate system using IMU preintegration. The residual distance between the

Sensors 2023, 23, 6987 10 of 24

projected points of the current frame and the nearest local plane of the prior map is defined
as the observed state error. The observed error state is defined as follows:

0 = zj = SJ [(Rk Mj + Pk)−MG
j] ≈ za

j + Hk
j ε̄a

k (22)

za
j = SJ [(Ra

k Mj + Pa
k)−MG

j] (23)

In the formula, za
j is the residual distance between point j of the a-th update state of

frame k in state x̂a
k and the nearest local plane in the prior map. zj is the residual distance

between point j of the current frame k in state xk and the nearest local plane in the prior
map. SJ is the normal vector of the local plane fitted by the nearest neighbor points of
point j in the current frame k within the prior map. Mj is the coordinate of point j in the
coordinate system of the current frame k. Ra

k and Pa
k are the rotation matrix and translation

vector of state x̂a
k . Rk and Pk are the rotation matrix and translation vector of state xk. MG

j
is the nearest-neighbor point of point j in the prior map of the current frame k. xk and
x̂a

k represent the true state of frame k and the a-th update state of frame k. ε̄a
k is the error

between the true state and the a-th update state of frame k. Ha
k is the Jacobian matrix of

zj relative to ε̄a
k. The nearest neighbor points are obtained through KNN search in the

ikd-tree.

3.3.2. Iterated State Update with Ground Constraints Added

Combining the predicted error state in (24) and the observed error state in (27) yields
the maximum posterior estimate (MAP). To address the limitations posed by a limited
number of points on the ground or plane, a new MAP formula is proposed, which incor-
porates ground constraints and utilizes a feature extraction method to accurately divide
high-quality ground and planar points. The proposed method assigns adaptive weights
to the observed error equations of plane and ground points. Specifically, a higher weight
is assigned to the observed error equation of ground points when there are more planar
points, and a higher weight is assigned to the observed error equation of planar points
when there are more ground points. By employing this new formula, the insufficiency of
lateral or longitudinal constraints caused by a scarcity of points on the ground or plane can
be reduced. The new formula is defined as follows:

min
ε̄a

k

(
∥∥ε̂a

k + ha ε̄a
k

∥∥2
Pa−1

k
+

m + n
2n ∑n

j=1

∥∥∥za
j + Ha

j ε̄a
k

∥∥∥2

Ua−1
k

+
m + n

2m ∑n+m
j=n+1

∥∥∥za
j + Ha

j ε̄a
k

∥∥∥2

Ua−1
k

) (24)

In the equation,
∥∥x
∥∥2

p = xT Px. Ua
k is the covariance of the observed noise for the a-th

state update in the frame k. n is the number of planar points in current frame k. m is the
number of ground points in current frame k. According to references [33,34], the Kalman
gain Ka

k of the k-th frame and the update error state ¯̄εa+1
a of the a-th iteration in the frame k

after dimensions are reduced are defined as follows:

Ka
k = (HUa

k H + P−1)−1HTUa−1

k (25)

¯̄εa+1
a = −Ka

kza
k − (I − Ka

k H)h−1
a ε̂a

k (26)

If n is greater than m, H = [Ha
1 , · · · , HaT

n , HaT

n+1, · · · , HaT
n+m, · · · , HaT

2n]
T , R = diag(R1,

· · · , Rn, Rn+1, · · · , Rn+m, · · · , R2n), za = [zaT

1 , · · · , za
n, zaT

n+1, · · · , zaT
n+m, · · · , zaT

2n]
T . [HaT

n+m,

· · · , HaT

2n], [Rn+m, · · · , R2n], [zaT
n+m, · · · , zaT

2n] is the pseudo occupancies of ground constraints
reusing high-quality ground points. If m is greater than n, H = [Ha

1 , · · · , HaT
n ,HaT

n+1, · · · ,

HaT
m , · · · , HaT

2m]
T , R = diag(R1, · · · , Rn, Rn+1, · · · , Rm, · · · , R2m), za = [zaT

1 , · · · , za
n, zaT

n+1,

· · · , zaT
m , · · · , zaT

2m]
T . [HaT

n+1, · · · , HaT
m], [Rn+1, · · · , Rm], [zaT

n+1, · · · , zaT
m] is the pseudo occu-

pancies of planar constraints reusing high-quality planar points. By combining the states

Sensors 2023, 23, 6987 11 of 24

of x̂a
k and ¯̄εa+1

a , the updated state x̂a+1
k of time a + 1 can be obtained. When the error be-

tween x̂a+1
k and x̂a

k is small enough, the iteration will be terminated. The final state x̄k and
covariance matrix P̄k of the frame k are defined as follows:

x̄k = x̂a+1
k (27)

P̄k = (I − KH)P (28)

4. Relocation

To obtain the prior pose of UGV in the prior map, a relocation method is devised by
combining detection and correction with the iterative closest point (ICP) method. This
method is integrated into the front-end odometry to initialize the UGV’s pose. The pro-
posed method involves extracting keyframes from significant positions within the prior
map, forming prior keyframes. Following the method described in reference [35], we
generate descriptor matrices for the current frame and historical keyframes. By employing
a two-stage matching approach, candidate relocalization keyframes for the current frame
are identified through the column vectors formed using ring key encoding information.
Rotation and translation offsets are calculated through the row summation of these column
vectors. Subsequently, the descriptor of the current frame is matched with the descriptor
matrix of the candidate relocalization keyframes assigned with the computed offsets, result-
ing in the identification of the relocalization keyframe. A rough correction is then applied
to the UGV’s current attitude using the calculated angle offset. Finally, an accurate UGV
pose within the prior map is obtained by performing ICP point cloud registration on the
corrected initial frame and the relocation keyframe. To address the limitations associated
with traditional point-to-point, point-to-plane, and linear least-squares optimization meth-
ods for point-to-plane ICP [36–38], which involve multiple iterations, time consumption,
and are prone to overfitting, the generalized ICP (G-ICP) [39] is employed for point cloud
registration. This method reduces the number of iterations while improving matching
accuracy.

5. Prior Map Maintenance

The observed equation requires identifying the nearest neighboring points in the prior
map to perform residual fitting. To achieve a fast and stable KNN search on UGVs with
limited RAM and CPU capabilities, the prior map is maintained by combining the proposed
three-layer voxels and the ikd-tree. This method ensures efficient and reliable execution,
as shown in Figure 3.

First, the prior map is voxelized based on the position of the world coordinate system
and stored in ROM accordingly. The voxel files are named [sign(x), 100|x|+ |y|, sign(y)]
according to the voxel positions in a prior map coordinate system, forming the first-layer
ROM voxels. By retrieving file names containing position information, the voxels near
the current position, obtained from the relocation, are extracted from the system ROM
into the corresponding voxel container in RAM, forming the second-layer RAM voxels.
The point clouds within the nearest nine RAM voxel containers to the current position are
loaded into the ikd-tree, forming the third-layer ikd-tree voxels. This method reduces the
number of point clouds in RAM and the size of the ikd-tree, effectively minimizing RAM
consumption, and enabling UGV to perform real-time localization using a large prior map.
Once the initialization of prior map maintenance is completed, the map is continuously
updated in real time. Real-time updates are performed on the second and third layers of
voxels using the 6DOF state estimation output from the odometry. When the LiDAR center
moves to another voxel range, this method removes the point clouds outside the ikd-tree
voxel range of the LiDAR center in the ikd-tree, and inserts the point clouds of the newly
added ikd-tree voxels from the RAM voxels into the ikd-tree. Simultaneously, the RAM

Sensors 2023, 23, 6987 12 of 24

containers outside the RAM voxel range of the LiDAR center at the corresponding position
are emptied. The newly added RAM voxels are extracted from the corresponding ROM
voxel into the corresponding RAM voxel container at the respective position. To ensure
independent operation and avoid interference between the map maintenance modules of
the second and third layers, as well as to prevent any impact on the real-time KNN search
of the odometry, this method runs the RAM voxel maintenance, ikd-tree voxel maintenance,
and odometry in three separate threads. This setup improves the system’s real-time
performance. Additionally, by setting RAM voxels and ikd-tree voxels separately, the real-
time performance of inserting voxel point clouds into the ikd-tree is enhanced, thereby
accelerating the operating cycle of the odometry. The process of prior map maintenance is
summarized in Algorithm 2.

Algorithm 2: Map maintenance

Input : G from prior map points, X from relocation result, X from location
information of odometer

1 Voxelize points G according to its position with voxel edge length l;
2 Create a RAM voxel point cloud container Vxy. Vxy is established to store the point

clouds within the range of x-axis [x*l, (x + 1)*l] and y-axis [yl, (y + 1)*l];
3 put the corresponding voxel points into the corresponding voxel container Vxy;
4 Put the point cloud in each voxel container v into the ROM based on location

information [sign(x), 100|x|+ |y|, sign(y)];
5 Empty point clouds in all voxel containers Vxy;
6 Based on the location information [sign(x), 100|x|+ |y|, sign(y)], put 7×7 ROM

voxels centered around X into the corresponding 7×7 voxel containe Vxy;
7 Construct an ikd-tree from the points in the 3×3 voxel container vs. centered on X;
8 Threadspawn(RAM maintenance,X);
9 Threadspawn(ikd-tree maintenance,X);

10 Function RAM maintenance (X)
11 while (the main program thread did not end) do
12 if (X is not within the center voxel) then
13 Clear non empty Vxy outside of 7×7 Vxy centered on X;
14 Add points of corresponding ROM voxels to the empty Vxy in 7×7 Vxy

centered on X;
15 end
16 end
17 end
18 Function ikd-tree maintenance (X)
19 while (the main program thread did not end) do
20 if (X is not within the center voxel) then
21 Delete points in ikd-tree outside the range of 3×3 Vxy centered on X;
22 Insert points into ikd-tree from 3×3 Vxy ranges centered on X that have

not been inserted in to ikd-tree ;
23 end
24 end
25 end

Sensors 2023, 23, 6987 13 of 24

1

1

Ikd tree

RAM

ROM

ROM voxel RAM voxel

RAM deleted voxel

RAM increased voxel

Ikd-tree voxel

Ikd-tree deleted voxel

Ikd-tree increased voxel

Lidar position

Lidar moving direction

Figure 3. Map maintenance diagram.

6. Experiment and Analysis

In this experimental section, we describe our ablation experiments, which we con-
ducted to analyze the accuracy and efficiency of each proposed component separately and
compare them with advanced SLAM methods. Adhering to the principles of fairness and
impartiality, all comparative experiments were conducted in the same environment, and the
experimental data were both accurate and reliable. The experimental hardware platform
consisted of a laptop, a wheeled UGV, a Velodyne VLP-16 LiDAR, and an Xsens MTI-100
IMU, as depicted in Figure 4. The Velodyne VLP-16 LiDAR mounted on the experimental
platform had a measurement range of 100 m, a vertical viewing angle ranging from +15° to
−15°, a horizontal viewing angle of 360°, and vertical and horizontal resolutions of 2° and
0.1° to 0.4°, respectively. It offered a measurement accuracy of ±3 cm and operated at a fre-
quency of 20 Hz. The Xsens MTI-100 IMU incorporated a built-in gyroscope, accelerometer,
and magnetometer, with a sampling frequency of up to 10 KHz. The laptop utilized in the
experiments featured an Intel (R) Core (TM) i7-12700H processor, operating at a frequency
of 2.3 GHz, with 16 GB of RAM. The software system ran on Ubuntu 18.04 and employed
ROS Melodic [40] as the middleware. The algorithm was implemented in C++.

To evaluate the performance of each module, experiments were conducted using
self-collected indoor and outdoor closed-loop datasets from an industrial park, as well
as publicly available KITTI datasets. The self-collected datasets were acquired within
a standardized industrial park environment. The outdoor dataset encompasses notable
structures within the industrial park, including industrial factories, vegetation, parking
lots, office buildings, and roads. The trajectory length of this dataset is approximately
308 m. The indoor dataset consists of distinctive structures such as columns, beams, walls,
and industrial equipment, with a trajectory length of approximately 202 m. It is important
to note that both the indoor and outdoor datasets were meticulously designed to commence
and conclude at the same position during data collection. To bolster the credibility of the
experiments, the odometry performance was also assessed using the publicly available

Sensors 2023, 23, 6987 14 of 24

KITTI dataset. This dataset was generated by equipping a car with various sensors and
driving along well-structured roads. The car’s setup included a Velodyne HDL-64E LiDAR,
Oxts R3003 IMU, two grayscale cameras, two color cameras, four optical lenses, and a GPS
navigation system.

Figure 4. The UGV for collecting indoor and outdoor datasets.

To assess the accuracy and efficiency of the proposed method, trajectory maps for both
the proposed method and other existing methods are generated. Comparative experiments
are conducted by calculating the time consumption of each module. The corresponding
errors, including trajectory error, absolute pose error, and closed-loop error, are computed.
Additionally, to evaluate the global consistency of each method’s trajectory, the root mean
square error (RMSE) is calculated for each trajectory. Moreover, time consumption curves
for each component are plotted to facilitate a more intuitive analysis of the method’s effi-
ciency.

7. Analysis of Mapping Results without Prior Maps

To evaluate the efficiency and accuracy of the proposed feature extraction method and
odometry method, a horizontal comparison was performed. The proposed method was
compared with FAST-LIO2 and FAST-LIO2 combined with the curvature feature extraction
method. To ensure reliability and credibility, the experiments were conducted using the
KITTI dataset. The evaluation tool EVO [41] was employed to visualize the experimental
trajectories and ground truth trajectory, and to compute the absolute pose error for accuracy
analysis. Furthermore, the number of feature points per frame and the time consumption
curves of each component were plotted to analyze the efficiency.

7.1. Analysis of Mapping Accuracy without Prior Maps

Experiments were conducted on the KITTI dataset using three different methods: FAST-
LIO2, FAST-LIO2 combined with curvature feature extraction, and the proposed odometry
method combined with the bidirectional projection plane slope difference filter feature
extraction. The results and trajectories obtained from these experiments are presented in
Figure 5 and Figure 6, respectively.

Sensors 2023, 23, 6987 15 of 24

(a) (b) (c)

(d) (e) (f)

Figure 5. The results of three methods on the KITTI dataset. (a) is the result of the combination of
proposed odometry method and bidirectional projection plane slope difference filter method. (b) is
the result of FAST-LIO2. (c) is the result of the combination of FAST-LIO2 and the curvature method.
(d–f) are the corresponding local results.

(a) (b)

(c) (d)

Figure 6. The trajectory map generated by EVO. (a) is a 3D trajectory. (b) is a three-axis trajectory.
(c) is a vertical planar trajectory. (d) is a horizontal planar trajectory. The black trajectory represents
the ground truth trajectory. The blue trajectory corresponds to the trajectory obtained using the
proposed method. The green trajectory corresponds to the trajectory obtained using FAST-LIO2
combined with curvature-based feature extraction. The red trajectory corresponds to the trajectory
obtained using FAST-LIO2.

Figure 5 depicts the top view and local details of the running results obtained from
the three methods. The top view (a, b, c) and the local detail view (d, e, f) of Figure 5
provide a visual comparison of the mapping effects of the three methods. Both FSAT-

Sensors 2023, 23, 6987 16 of 24

LIO2 and FAST-LIO2 combined with the curvature feature extraction method exhibit
significant drift, particularly at turns and certain positions where feature degradation
occurs in space. Notably, the FAST-LIO2 combined with the curvature feature extraction
method demonstrates severe vertical height drift. In contrast, the proposed odometry
method, combined with the proposed feature extraction method, effectively suppresses
drift during turns, positions of feature degradation, and vertical heights. Furthermore,
it exhibits minimal translocation at revisited positions. The aforementioned effect can
be attributed to the curvature feature extraction method’s inability to accurately extract
stable ground points, leading to insufficient constraints on vertical height and significant
vertical height drift. Moreover, the curvature extraction method fails to filter out noise and
unstable points during plane feature extraction, resulting in insufficient lateral constraints
and some degree of drift in the lateral direction. The method that does not perform
feature extraction utilizes a large number of original points for residual calculation. While
its vertical height constraints are superior to the curvature method, it fails to filter out
unstable points and noise within the point clouds. When the proportion of noise and
unstable points cannot be ignored, it affects the effectiveness of residual fitting, resulting
in significant drift. In contrast, the proposed method strengthens ground constraints by
filtering ground points near the ground and extracting high-quality ground and planar
points from the far end using the bidirectional projection plane slope difference filter. It
incorporates ground constraints into the back-end optimization formulation, imposing
strict constraints on both vertical height and horizontal plane, which yields outstanding
mapping results. Figure 6 presents the 3D trajectory, horizontal planar trajectory, vertical
planar trajectory, and three-axis trajectory generated by the EVO for the three methods.
Comparing the accuracy of odometry among the three methods, the proposed odometry
method combined with the proposed feature extraction method demonstrates the trajectory
that most closely aligns with the true trajectory. Additionally, it exhibits the best closed-loop
effect at the end. In contrast, FSAT-LIO2 and FAST-LIO2 combined with the curvature
feature extraction method result in significant translocation at the end. Furthermore, FAST-
LIO2 combined with the curvature feature extraction method exhibits severe vertical height
drift. The results depicted in Figure 6 validate the accuracy and efficiency of the proposed
method, confirming the advantages and feasibility of both the proposed feature extraction
method and odometry method.

To assess the global consistency of the three methods and quantitatively evaluate their
errors, we calculate the absolute pose error (APE) between their respective trajectories and
the ground truth trajectory. The calculated APE values are presented in Table 1.

Table 1. Absolute pose error (APE) of the three methods.

Methods/APE Max
(m) Mean (m) Median (m) Min

(m) Rmse (m) Std (m)

Proposed method 25.645 11.785 11.232 1.089 12.787 4.968
FAST-LIO2 33.429 16.553 16.991 1.222 18.319 7.847

FAST-LIO2 + curvature 48.196 22.783 22.108 6.580 24.707 9.559

When testing on the KITTI dataset, the root mean square error (RMSE) of the absolute
pose error obtained using the proposed odometry method combined with the proposed
feature extraction method exhibits a 48.24% increase compared to FAST-LIO2 combined
with the curvature feature extraction method. Furthermore, the RMSE of the proposed
method is 30.19% higher than that of FAST-LIO2. These results demonstrate that the pro-
posed odometry method combined with the proposed feature extraction method achieves
superior performance.

7.2. Analysis of Mapping Efficiency without Prior Maps

This paper presents a comprehensive analysis of three methods by plotting the number
of feature points, the time consumption for feature extraction, and the time consumption for

Sensors 2023, 23, 6987 17 of 24

odometry in each frame. Mean values are calculated to provide a summary of the results.
Through a visual comparison of feature point counts and time consumption across different
method components, the impact of the proposed feature extraction method and odometry
method on time consumption and computational complexity is analyzed. The curves
depicting the number of feature points and time consumption for each component are
illustrated in Figure 7. Furthermore, Table 2 presents the average number of feature points
across all frames and the average time consumption for each component.

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0
0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

Nu
mb

er
Of

 Fe
atu

re
Po

int
s

N u m b e r O f K i t t i S c a n s

� f a s t _ l i o 2
 f a s t _ l i o 2 + c u r v a t u r e _ m e t h o d
 p r o p o s e d _ m e t h o d

(a)

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0
0

5

1 0

1 5

2 0

Fe
atu

re
Ex

tra
cti

on
 Ti

me
 (m

s)
N u m b e r O f K i t t i S c a n s

 f a s t _ l i o 2 + c u r v a t u r e _ m e t h o d
 p r o p o s e d _ m e t h o d

(b)

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

Pr
oce

ssi
ng

 Ti
me

 (m
s)

N u m b e r O f K i t t i S c a n s

 f a s t _ l i o 2
 f a s t _ l i o 2 + c u r v a t u r e _ m e t h o d
 p r o p o s e d _ m e t h o d

(c)

Figure 7. The number of feature points and the curve of time consumption for each part of the KITTI
dataset. (a) is the curve of the number of feature points of each frame. (b) is the curve of the feature
extraction time of each frame. (c) is the curve of the odometry processing time of each frame.

Table 2. The mean number of feature points and the time consumption means of each part on the
KITTI dataset.

Method Proposed Method FAST-LIO2 + Curvature FAST-LIO2

Number of feature points 5155 8549 30321
Feature extraction time (ms) 5.423 8.483 0

Odometer processing time (ms) 7.553 13.164 29.980
Total time(ms) 12.976 21.647 29.980

The feature point count, feature extraction time, and odometry time of the three
methods per frame are compared in Figure 7a–c. The average time consumption and
average number of feature points are presented in Table 2. To analyze the improvement
in odometry efficiency offered by the proposed method, a comparison is made between
the time consumption and calculated amount of the three methods. The proposed feature

Sensors 2023, 23, 6987 18 of 24

extraction method reduces the average number of feature points extracted per frame by
39.70% compared to the curvature feature extraction method. Furthermore, it achieves
an 83.01% reduction in feature points compared to the method without feature extraction.
Consequently, the proposed method achieves higher odometry accuracy with fewer feature
points. In terms of time consumption, the proposed feature extraction method reduces the
average feature extraction time by 36.07% compared to the curvature feature extraction
method. When the proposed feature extraction method is combined with the proposed
odometry method, it reduces the average odometry time by 42.62% compared to FAST-
LIO2 combined with the curvature feature extraction method. Additionally, the proposed
method reduces the average odometry time by 74.81% compared to FAST-LIO2. This
reduction in time consumption is due to the proposed method’s projection of 3D space
onto a 2D plane, which requires less calculation for feature extraction compared to 3D
space feature extraction methods. Overall, the proposed method reduces the overall time
consumption per frame by 40.06% compared to FAST-LIO2 combined with the curvature
method and achieves a 56.72% reduction compared to FAST-LIO2 alone. These findings
demonstrate that the proposed method significantly improves the efficiency of the overall
system, and therefore the real-time requirements for odometry processing are met.

8. Analysis of Localization Results Using Prior Maps

To assess the influence of prior maps on the UGV’s localization accuracy and the
impact of the proposed prior map maintenance method on KNN search speed and RAM
consumption, closed-loop experiments are conducted on self-collected datasets acquired
from indoor and outdoor environments. In the case of utilizing prior maps, horizontal
comparisons are performed using different methods. The located accuracy of each method
is evaluated by analyzing the closed-loop errors along the three axes and the overall
performance. The HTOP [42] is employed to calculate the average RAM consumption of
the proposed map maintenance method and the alternative method, as well as to determine
the average KNN search speed for both methods. Furthermore, this paper presents the
time consumption means of individual components of odometry to analyze the efficiency
and practicality of the proposed method.

8.1. Analysis of Localization Accuracy Using Prior Maps

Closed-loop experiments were conducted on self-collected indoor and outdoor datasets
using FAST-LIO2 combined with the proposed prior map maintenance method, and pro-
posed odometry method combined with the proposed prior map maintenance method
and proposed feature extraction method. When utilizing the prior map for localization,
the observed angle deviation of the closed-loop position in the outdoor results, as well
as the angle and height deviation of the closed-loop position in the indoor results, are
attributed to discrepancies between the prior map coordinate system and the odometry
coordinate system. However, the computed closed-loop error values are accurate. Figure 8
illustrates the indoor and outdoor results, along with the results of the local closed-loop
position. The closed-loop errors for all three axes and the overall errors are presented in
Table 3.

Table 3. Indoor and outdoor closed-loop error of different methods.

Method/Closed-Loop Error ∆x (m) ∆y (m) ∆z (m) Total (m)

FAST-LIO2 + Prior map (Outdoor) 0.018 0.092 0.025 0.097
Proposed method + Prior map method (Outdoor) 0.030 0.032 0.0003 0.044

FAST-LIO2 + Prior map (Indoor) 0.018 0.022 0.004 0.029
Proposed method + Prior map method (Indoor) 0.017 0.012 0.0004 0.021

Sensors 2023, 23, 6987 19 of 24

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. The results of combining different methods with prior maps on indoor and outdoor self-
collected datasets. (a,c,e,g) are the overall and local figures of the indoor and outdoor results of
the proposed odometry method combined with the proposed prior map maintenance method and
proposed feature extraction method. (b,d,f,h) are the overall and local figures of the indoor and
outdoor results of FAST-LIO2 combined with the proposed prior map maintenance method.

Sensors 2023, 23, 6987 20 of 24

The comparative analysis of the intuitive mapping effect and closed-loop error between
the two methods is presented in the outdoor and indoor results, as well as in Figure 8 and
Table 3. In the outdoor test scenario, when FAST-LIO2 is combined with the proposed
prior map maintenance method, it is evident that the initial and final positions overlap,
showcasing an outstanding closed-loop effect. The total closed-loop error measures 0.097 m,
corresponding to a proportion of total mileage of 0.0315%. This achievement demonstrates
a centimeter-level localization accuracy, validating the effectiveness of utilizing prior maps
for localization. Moreover, when the proposed odometry method is combined with the
proposed prior map maintenance method and the proposed feature extraction method,
the initial and final positions also exhibit overlapping characteristics. The utilization of the
proposed feature extraction method facilitates the filtration of unstable point clouds such
as grass and cars, resulting in the extraction of high-quality ground points. Furthermore, it
is observed that the extracted planar points exhibit clearer lines and boundaries compared
to the other method, indicating a high quality of extracted planar points. The total closed-
loop error is reduced to 0.044 m, with a proportion of total mileage of 0.0143%. This
achievement signifies improved localization accuracy, with a smaller number of feature
points. Remarkably, the localization accuracy along the Z-axis reaches the millimeter level.
In the indoor test scenario, the overall closed-loop error for the combination of FAST-LIO2
and the proposed prior map maintenance method is measured at 0.029 m, with a proportion
of total mileage at 0.0144%. The total closed-loop error for the proposed odometry method,
combined with the proposed prior map maintenance method and the proposed feature
extraction method, is reduced to 0.021 m, corresponding to a proportion of total mileage of
0.0104%. In both outdoor and indoor tests, the proposed odometry method, combined with
the proposed prior map maintenance method and the proposed feature extraction method,
achieves an improvement of 54.639% and 38.095% in closed-loop accuracy compared to
the combination of FAST-LIO2 and the proposed prior map maintenance method. These
findings highlight that localization using prior maps meets the required accuracy standards
for UGVs in industrial parks. Additionally, the proposed method significantly enhances
the localization accuracy of UGVs within industrial park environments.

8.2. Analysis of Localization Efficiency Using Prior Maps

To evaluate the localization efficiency of the proposed UGV located method in indus-
trial parks, this paper computes the average time consumption for each segment of both
indoor and outdoor datasets. The results for the average time consumption of each segment
are presented in Table 4.

Table 4. The time consumption means of each part on the indoor and outdoor datasets.

Method Scene

FAST-LIO2 +
Proposed Prior Map

Maintenance
Method

Proposed Method +
Proposed Prior Map

Maintenance
Method

Feature extraction
time (ms)

Outdoor
Indoor

0
0

0.963
1.345

Odometer processing
time (ms)

Outdoor
Indoor

10.561
12.634

6.426
6.964

Total time (ms) Outdoor
Indoor

10.561
12.634

7.389
8.309

The average processing time for the proposed combination of FAST-LIO2 with the
prior map maintenance method is 11.598 ms, and for the proposed odometry method with
the prior map maintenance method and feature extraction method is 7.849 ms. The to-
tal processing speed of the proposed odometry method, when combined with the prior
map maintenance method and feature extraction method, exhibits a 32.33% improvement
compared to the combination of FAST-LIO2 with the prior map maintenance method.

Sensors 2023, 23, 6987 21 of 24

It can be observed that the proposed odometry method, in conjunction with the prior
map maintenance method and feature extraction method, satisfies the requirements for
UGV odometry processing speed in industrial parks, while ensuring sufficient localiza-
tion accuracy. Therefore, it is more suitable for real-time UGV operations in industrial
park environments.

8.3. Analysis of Effectiveness of Map Maintenance

To assess the practicality and validity of the map maintenance module, we employ
the proposed map maintenance method alongside the approach of incorporating all point
clouds from prior maps into the ikd-tree. This enables us to evaluate the associated RAM
usage and KNN search speed. The computed results are presented in Table 5.

Table 5. Test results of map maintenance method.

Method

Average
RAM Con-
sumption

(GB)

Average
RAM Con-
sumption
Percent-

age

KNN
Search

Average
Time (ms)

Number
of Points

in
Ikd-Tree

Map
Range in
Ikd-Tree

(m)

Prior Map
Range (m)

Proposed
map main-

tenance
method

15 98% 0.00316 2,335,000 240× 240 1320× 1320

ikd-tree 5.2 34% 0.00348 12,450,000 1320× 1320 1320× 1320

The prior map area utilized is 1320 m × 1320 m, consisting of approximately 12.45 mil-
lion point clouds. The same number of point clouds, 12.45 million, are added to the ikd-tree.
On average, the RAM usage amounts to 15 GB, occupying 98% of the total RAM. It is
evident that the method of including all prior map point clouds in the ikd-tree exceeds the
host’s RAM capacity, resulting in lag and data loss. Consequently, the system becomes
unable to run when handling larger prior maps of industrial parks. In contrast, the pro-
posed map maintenance method significantly reduces RAM consumption on the host.
Specifically, the number of point clouds in the ikd-tree is reduced to 2.335 million, resulting
in an average RAM usage of 5.2 GB, occupying 34% of the total RAM. This observation
demonstrates the effectiveness of the proposed map maintenance method in reducing
RAM consumption, thereby enabling the loading and maintenance of prior maps for large
industrial parks. Since the search speed of the ikd-tree relies on the number of layers within
the tree structure, and the relationship between the number of layers and the number of
point clouds follows a power-of-two pattern, the KNN search speed of the proposed map
maintenance method is only 10% higher than that of the method that includes all point
clouds in the ikd-tree.

9. Conclusions

This paper presents a method for real-time UGV localization in industrial parks utiliz-
ing prior maps. This paper presents a novel feature point extraction method, improves the
back-end optimization function of FAST-LIO2, and introduces a new prior map mainte-
nance method. To enhance the quality and efficiency of feature extraction, a novel feature
extraction method based on the bidirectional projection plane slope difference filter is
proposed. This method improves extraction speed while maintaining extraction accuracy.
It enables the separate extraction of ground and planar points, as well as edge points, using
a unified method. The back-end optimization incorporates ground constraints through
the proposed pseudo occupancy method, enhancing the vertical and horizontal constraint
effects of ground and planar points. Experimental results on the KITTI dataset demonstrate
that the proposed method significantly improves feature extraction and odometry accuracy
and efficiency. To enable KNN search using prior maps with limited RAM on UGV, a novel

Sensors 2023, 23, 6987 22 of 24

prior map maintenance method is introduced, combining three-layer voxels and the ikd-
tree. This method achieves efficient RAM consumption during prior map maintenance.
The experimental results confirm its effectiveness in reducing RAM consumption. The pro-
posed method achieves centimeter-level localization accuracy, meeting the requirements
for accurate and efficient UGV localization when utilizing prior maps.

In future work, we will focus on the regular updating of the prior map. When
there are changes in the scene information, we will incorporate newly acquired point
clouds of added objects and remove point clouds of disappeared objects from the previous
prior map. The prior map will undergo long-term maintenance to ensure its relevance
and accuracy. Furthermore, in order to improve the accuracy of relocation detection,
the generation method of the descriptor matrix will be enhanced. The original descriptor
matrix only contained the highest point information of the loop key, and will be improved
to more comprehensively represent the point cloud information within the loop key, thereby
achieving more precise relocation detection and reducing false positives and false negatives.

Author Contributions: Conceptualization, F.L. and X.L.; methodology, F.L.; software, F.L.; validation,
F.L., Y.C. and M.L.; formal analysis, F.L. and Z.L.; investigation, F.L.; resources, Z.L., F.Z. and M.L.;
data curation, F.L.; writing—original draft preparation, F.L.; writing—review and editing, F.L.;
visualization, F.L.; supervision, F.Z.; project administration, Z.L.; funding acquisition, Z.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by Shenyang University of Technology: 2023JH2/101300225.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study is not publicly available at this time
but may be obtained from the authors upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pan, Y.; Wu, N.; Qu, T.; Li, P.; Zhang, K.; Guo, H. Digital-twin-driven production logistics synchronization system for vehicle

routing problems with pick-up and delivery in industrial park. Int. J. Comput. Integr. Manuf. 2021, 34, 814–828.
2. Nath, S.V.; Dunkin, A.; Chowdhary, M.; Patel, N. Industrial Digital Transformation: Accelerate Digital Transformation with Business

Optimization, AI, and Industry 4.0; Packt Publishing Ltd.: Birmingham, UK, 2020.
3. Sivaneri, V.O.; Gross, J.N. UGV-to-UAV cooperative ranging for robust navigation in GNSS-challenged environments. Aerosp. Sci.

Technol. 2017, 71, 245–255.
4. Guérin, F.; Guinand, F.; Brethé, J.F.; Pelvillain, H. UAV-UGV cooperation for objects transportation in an industrial area. In

Proceedings of the 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 17–19 March 2015; pp.
547–552.

5. Garzón, M.; Valente, J.; Zapata, D.; Barrientos, A. An aerial–ground robotic system for navigation and obstacle mapping in large
outdoor areas. Sensors 2013, 13, 1247–1267.

6. Taheri, H.; Xia, Z.C. SLAM; definition and evolution. Eng. Appl. Artif. Intell. 2021, 97, 104032.
7. Macario Barros, A.; Michel, M.; Moline, Y.; Corre, G.; Carrel, F. A comprehensive survey of visual slam algorithms. Robotics 2022,

11, 24.
8. Huang, L. Review on LiDAR-based SLAM techniques. In Proceedings of the 2021 International Conference on Signal Processing

and Machine Learning (CONF-SPML), Stanford, CA, USA, 14 November 2021; pp. 163–168.
9. Xu, X.; Zhang, L.; Yang, J.; Cao, C.; Wang, W.; Ran, Y.; Tan, Z.; Luo, M. A review of multi-sensor fusion slam systems based on 3D

LIDAR. Remote Sens. 2022, 14, 2835.
10. Zhang, J.; Singh, S. LOAM: Lidar odometry and mapping in real-time. In Proceedings of the Robotics: Science and Systems,

Berkeley, CA, USA, 12–16 July 2014; Volume 2, pp. 1–9.
11. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark suite. In Proceedings of the

2012 IEEE Conference On computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.
12. Shan, T.; Englot, B. Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In

Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018; pp. 4758–4765.

Sensors 2023, 23, 6987 23 of 24

13. Lin, J.; Zhang, F. Loam livox: A fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV. In
Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August
2020; pp. 3126–3131.

14. Jiao, J.; Ye, H.; Zhu, Y.; Liu, M. Robust odometry and mapping for multi-lidar systems with online extrinsic calibration. IEEE
Trans. Robot. 2021, 38, 351–371.

15. Ye, H.; Chen, Y.; Liu, M. Tightly coupled 3d lidar inertial odometry and mapping. In Proceedings of the 2019 International
Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 3144–3150.

16. Qin, C.; Ye, H.; Pranata, C.E.; Han, J.; Zhang, S.; Liu, M. Lins: A lidar-inertial state estimator for robust and efficient navigation.
In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August
2020; pp. 8899–8906.

17. Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. Lio-sam: Tightly coupled lidar inertial odometry via smoothing and
mapping. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas,
NV, USA, 24 October 2020–24 January 2021; pp. 5135–5142.

18. Xu, W.; Zhang, F. Fast-lio: A fast, robust lidar-inertial odometry package by tightly coupled iterated kalman filter. IEEE Robot.
Autom. Lett. 2021, 6, 3317–3324.

19. Xu, W.; Cai, Y.; He, D.; Lin, J.; Zhang, F. Fast-lio2: Fast direct lidar-inertial odometry. IEEE Trans. Robot. 2022, 38, 2053–2073.
20. Wu, D.; Zhong, X.; Peng, X.; Hu, H.; Liu, Q. Multimodal Information Fusion for High-Robustness and Low-Drift State Estimation

of UGVs in Diverse Scenes. IEEE Trans. Instrum. Meas. 2022, 71, 1–15.
21. Asadi, K.; Suresh, A.K.; Ender, A.; Gotad, S.; Maniyar, S.; Anand, S.; Noghabaei, M.; Han, K.; Lobaton, E.; Wu, T. An integrated

UGV-UAV system for construction site data collection. Autom. Constr. 2020, 112, 103068.
22. Liu, K.; Ou, H. A light-weight lidar-inertial slam system with high efficiency and loop closure detection capacity. In Proceedings

of the 2022 International Conference on Advanced Robotics and Mechatronics (ICARM), Guilin, China, 9–11 July 2022; pp.
284–289.

23. Liu, Z.; Chen, H.; Di, H.; Tao, Y.; Gong, J.; Xiong, G.; Qi, J. Real-time 6d lidar slam in large scale natural terrains for ugv. In
Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 662–667.

24. Hamieh, I.; Myers, R.; Rahman, T. Construction of autonomous driving maps employing lidar odometry. In Proceedings of the
2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 5–8 May 2019; pp.
1–4.

25. Alharthy, A.; Bethel, J. Heuristic filtering and 3D feature extraction from LIDAR data. Int. Arch. Photogramm. Remote Sens. Spat.
Inf. Sci. 2002, 34, 29–34.

26. Guo, S.; Rong, Z.; Wang, S.; Wu, Y. A LiDAR SLAM with PCA-based feature extraction and two-stage matching. IEEE Trans.
Instrum. Meas. 2022, 71, 1–11.

27. Li, Y.; Olson, E.B. Extracting general-purpose features from LIDAR data. In Proceedings of the 2010 IEEE International Conference
on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 1388–1393.

28. Serafin, J.; Olson, E.; Grisetti, G. Fast and robust 3d feature extraction from sparse point clouds. In Proceedings of the 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 4105–4112.

29. Egger, P.; Borges, P.V.; Catt, G.; Pfrunder, A.; Siegwart, R.; Dubé, R. Posemap: Lifelong, multi-environment 3d lidar localization.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2018; pp. 3430–3437.

30. Li, Y.; Olson, E.B. Structure tensors for general purpose LIDAR feature extraction. In Proceedings of the 2011 IEEE International
Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1869–1874.

31. Rusu, R.B.; Marton, Z.C.; Blodow, N.; Beetz, M. Learning informative point classes for the acquisition of object model maps.
In Proceedings of the 2008 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 17–20
December 2008; pp. 643–650.

32. Rusu, R.B.; Bradski, G.; Thibaux, R.; Hsu, J. Fast 3d recognition and pose using the viewpoint feature histogram. In Proceedings
of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp.
2155–2162.

33. Raitoharju, M.; Piché, R. On computational complexity reduction methods for Kalman filter extensions. IEEE Aerosp. Electron.
Syst. Mag. 2019, 34, 2–19.

34. Higham, N.J. Accuracy and Stability of Numerical Algorithms; SIAM: Philadelphia, PA, USA, 2002.
35. Kim, G.; Kim, A. Scan context: Egocentric spatial descriptor for place recognition within 3d point cloud map. In Proceedings of

the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp.
4802–4809.

36. Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. In Proceedings of the Sensor Fusion IV: Control Paradigms and Data
Structures; SPIE: Bellingham, WA, USA, 1992; Volume 1611, pp. 586–606.

37. Chen, Y.; Medioni, G. Object modelling by registration of multiple range images. Image Vis. Comput. 1992, 10, 145–155.
38. Low, K.L. Linear least-squares optimization for point-to-plane icp surface registration. Chapel Hill Univ. North Carol. 2004, 4, 1–3.
39. Segal, A.; Haehnel, D.; Thrun, S. Generalized-icp. In Proceedings of the Robotics: Science and Systems, Seattle, WA, 28 June–1

July 2009; Volume 2, p. 435.

Sensors 2023, 23, 6987 24 of 24

40. Będkowski, J.; Pełka, M.; Majek, K.; Fitri, T.; Naruniec, J. Open source robotic 3D mapping framework with ROS-robot operating
system, PCL-point cloud library and cloud compare. In Proceedings of the 2015 International Conference on Electrical Engineering
and Informatics (ICEEI), Denpasar, Indonesia, 10–11 August 2015; pp. 644–649.

41. Sanfourche, M.; Vittori, V.; Le Besnerais, G. eVO: A realtime embedded stereo odometry for MAV applications. In Proceedings of
the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 2107–2114.

42. Muhammad, H. Htop—An Interactive Process Viewer for Linux. 2015. Available online: http://hisham.hm/htop/ (accessed on
22 May 2015).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://hisham.hm/htop/

	Introduction
	Odometry Based on LiDAR-IMU
	The Problems in the Real-Time Localization of UGV in Industrial Parks
	New Contributions

	Overall System Framework
	Tightly Coupled LiDAR-IMU Odometry
	Feature Extraction Based on Bidirectional Projection Plane Slope Difference Filter
	 IMU Preintegration and Compensation of Point Cloud Distortion
	Back-End Optimization Based on Iterated Extended Kalman Filter
	Error State Estimation
	Iterated State Update with Ground Constraints Added

	Relocation
	Prior Map Maintenance
	Experiment and Analysis
	Analysis of Mapping Results without Prior Maps
	Analysis of Mapping Accuracy without Prior Maps
	Analysis of Mapping Efficiency without Prior Maps

	Analysis of Localization Results Using Prior Maps
	Analysis of Localization Accuracy Using Prior Maps
	Analysis of Localization Efficiency Using Prior Maps
	Analysis of Effectiveness of Map Maintenance

	Conclusions
	References

