
Citation: Ishikawa, H.; Aoki, Y.

Boosting Semantic Segmentation by

Conditioning the Backbone with

Semantic Boundaries. Sensors 2023,

23, 6980. https://doi.org/10.3390/

s23156980

Received: 13 July 2023

Revised: 31 July 2023

Accepted: 4 August 2023

Published: 6 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Boosting Semantic Segmentation by Conditioning the
Backbone with Semantic Boundaries
Haruya Ishikawa * and Yoshimitsu Aoki

Department of Electronics and Electrical Engineering, Facility of Science and Technology, Keio University,
3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan; aoki@elec.keio.ac.jp
* Correspondence: haruyaishikawa@keio.jp

Abstract: In this paper, we propose the Semantic-Boundary-Conditioned Backbone (SBCB) frame-
work, an effective approach to enhancing semantic segmentation performance, particularly around
mask boundaries, while maintaining compatibility with various segmentation architectures. Our
objective is to improve existing models by leveraging semantic boundary information as an auxiliary
task. The SBCB framework incorporates a complementary semantic boundary detection (SBD) task
with a multi-task learning approach. It enhances the segmentation backbone without introducing
additional parameters during inference or relying on independent post-processing modules. The SBD
head utilizes multi-scale features from the backbone, learning low-level features in early stages and
understanding high-level semantics in later stages. This complements common semantic segmenta-
tion architectures, where features from later stages are used for classification. Extensive evaluations
using popular segmentation heads and backbones demonstrate the effectiveness of the SBCB. It leads
to an average improvement of 1.2% in IoU and a 2.6% gain in the boundary F-score on the Cityscapes
dataset. The SBCB framework also improves over- and under-segmentation characteristics. Fur-
thermore, the SBCB adapts well to customized backbones and emerging vision transformer models,
consistently achieving superior performance. In summary, the SBCB framework significantly boosts
segmentation performance, especially around boundaries, without introducing complexity to the
models. Leveraging the SBD task as an auxiliary objective, our approach demonstrates consistent
improvements on various benchmarks, confirming its potential for advancing the field of semantic
segmentation.

Keywords: semantic segmentation; semantic boundary detection; multi-task learning

1. Introduction

The problem addressed in this work is the enhancement of semantic segmentation perfor-
mance, with a specific focus on improving segmentation accuracy around mask boundaries.
Semantic segmentation is a fundamental computer vision task that involves assigning a class
label to each pixel in an image, effectively segmenting the image into meaningful regions corre-
sponding to different object categories. While significant progress has been made in semantic
segmentation using deep-learning models and advanced architectures, accurately segmenting
object boundaries remains challenging. Often overlooked, object boundaries are critical for
accurately delineating object shapes and providing precise segmentation results, but they are
inherently ambiguous and can suffer from misclassifications [1].

One notable approach that addresses the challenge of improving segmentation qual-
ities around boundaries is GSCNN [2]. GSCNN focuses on integrating the multi-task
learning of binary boundaries for improving semantic segmentation using a Two-Stream
approach. By considering both pixel-level semantics and boundary information, GSCNN
leverages the global context to enhance the understanding of object structures, leading
to more accurate segmentation results, especially around mask boundaries. Several re-
searchers [3–5] have followed GSCNN by proposing various architectures to improve
semantic segmentation.

Sensors 2023, 23, 6980. https://doi.org/10.3390/s23156980 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23156980
https://doi.org/10.3390/s23156980
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1494-3635
https://orcid.org/0000-0001-7361-0027
https://doi.org/10.3390/s23156980
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23156980?type=check_update&version=2

Sensors 2023, 23, 6980 2 of 42

Another relevant method is SegFix [6], a model-agnostic post-processing technique that
aims to refine the segmentation results by explicitly addressing boundary inconsistencies.
SegFix targets the problem of refining noisy boundaries by employing a novel post-processing
model that is trained separately and iteratively refines the initial segmentation output.

In this context, we present the Semantic-Boundary-Conditioned Backbone (SBCB)
framework, a simple but effective solution aimed at enhancing segmentation performance,
particularly around mask boundaries. The core hypothesis guiding our work is that
leveraging the complementary nature of semantic boundary detection (SBD) as an auxiliary
task within the SBCB framework will significantly improve segmentation performance
across various segmentation architectures without necessitating post-processing modules
or specific architectural modifications. To achieve this, we incorporate the SBD task as an
auxiliary component within a multi-task learning approach, as depicted in Figure 1.

Segmentation
Head

Backbone

Image

Semantic Boundary Detection Head OTF Semantic
Boundary Generation

SBCB Framework
(only during training)

GT Semantic BoundaryPred.

Pred.

GT Segementation Mask

Figure 1. Overview of the Semantic-Boundary-Conditioned Backbone (SBCB) framework. During
training, the semantic boundary detection (SBD) head is integrated into the backbone of the semantic
segmentation head. Ground-truth (GT) semantic boundaries are generated on the fly (OTF) by the
semantic boundary generation module to train the SBD head. This straightforward framework
enhances segmentation quality by encouraging the backbone network to explicitly and jointly model
boundaries and their relation with semantics, as the SBD task is complementary yet more challenging
than the main task.

The primary objective of the SBCB framework is to harness additional information
from semantic boundaries during the training process. During training, we introduce
a lightweight SBD head to the segmentation model’s backbone, training it jointly with
the main segmentation task. This SBD head leverages multi-scale features from the back-
bone, allowing it to learn low-level features in the early stages and understand high-level
semantics in the later stages. By exploiting the complementary nature of the SBD task,
which focuses on discerning boundaries between different object categories, we effectively
enhance the segmentation backbone’s representational capabilities, as demonstrated in
Figure 2. We achieve this without requiring major architectural alterations or introducing
additional computational overhead during inference. The contributions of this work are
summarized below:

• Semantic boundary detection as an auxiliary task: We introduce the Semantic-Boundary-
Conditioned Backbone (SBCB) framework, a novel training approach for semantic
segmentation. It leverages semantic boundaries as an auxiliary task to enhance seg-
mentation models without adding computational overhead during inference.

• Seamless integration into a wide range of architectures: The SBCB framework is flexible
and can be applied to various existing backbones, such as ResNet and HRNet. We
provide guidelines and implementations on customized architectures, such as BiSeNet,
STDC, and the recent vision transformers.

Sensors 2023, 23, 6980 3 of 42

• Efficient data preprocessing during training: The SBCB utilizes an on-the-fly ground-truth
generation algorithm for semantic boundaries called the OTFGT module, which is
efficient and compatible with commonly used training dataloaders.

• Extensive benchmarks: Along with the SBCB framework, we introduce the Binary-
Boundary-Conditioned Backbone (BBCB) framework as a comparison method, aiming
to explore the impact of different auxiliary tasks. Furthermore, extensive experiments
validate the SBCB framework’s effectiveness in improving IoU, the boundary F-score,
and over- and under-segmentation measures.

• Potential directions for further studies: Our research investigates novel explicit methods for
leveraging the features obtained from the SBD head employed in the SBCB framework to
facilitate feature fusion. We demonstrate the SBCB framework’s potential contributions to
advancing research in multi-task models for semantic segmentation and SBD.

• Accessibility and transparency: The SBCB framework is open-source to benefit the
community (source code: https://github.com/haruishi43/boundary_boost_mmseg).

Figure 2. Visualization of the backbone features and segmentation errors of DeepLabV3+ with and
without the SBCB framework. Starting from the left, the columns represent the input image, last-stage
features without the SBCB, last-stage features with the SBCB, segmentation errors without the SBCB,
and segmentation errors with the SBCB. Backbone features conditioned on semantic boundaries
exhibit boundary-aware characteristics. Consequently, this results in better segmentation, especially
around the mask boundaries. Best seen in color and zoomed in.

By addressing this problem, we aim to advance the state of the art in semantic seg-
mentation, particularly in scenarios where accurate boundary delineation is crucial, such
as urban scenes, medical imaging, and remote sensing. For example, precise object segmen-
tation masks can significantly benefit various downstream applications, such as object pro-
posal generation [7], depth estimation [8], and image localization [9]. The proposed SBCB
framework is expected to yield improved segmentation results, leading to more precise
object delineation and overall better performance on challenging datasets like Cityscapes.

2. Related Work
2.1. Semantic Segmentation

In computer vision, semantic segmentation stands out as one of the most prominent
and challenging tasks, leading to a diverse array of prior works aimed at addressing this
problem. Long et al. [10] proposed an influential approach by introducing an end-to-end
trainable fully convolutional network, which was adapted from image classification models
for semantic segmentation. To capture multi-scale contextual information, Chen et al. [11]
introduced dilated convolutions and atrous spatial pyramid pooling (ASPP) in their work.

https://github.com/haruishi43/boundary_boost_mmseg

Sensors 2023, 23, 6980 4 of 42

Another line of research by Zhao et al. [12] involved the creation of a pyramid-pooling module
(PPM) to model multi-scale contexts. They also utilized an auxiliary FCN head to ensure
stable training. Various methods [13–19] have been introduced to enhance the recognition
of both local and global contexts by incorporating non-local operators [20] and self-attention
mechanisms [21]. More recently, the adoption of vision transformers [22,23] for semantic
segmentation has gained popularity, primarily due to their capacity to learn long-range
contexts [24,25]. Moreover, there has been a notable surge of interest in universal image
segmentation models [26–29] and interactive segmentation models [30–32], facilitated by
the increasing popularity of larger models and datasets.

2.2. Edge and Semantic Boundary Detection

Similar to semantic segmentation, edge and boundary detection has been widely
studied. Xie et al. [33] introduced a CNN model that can be trained end-to-end, which
paved the way for various edge detection models, like those in [34,35]. Yu et al. [36]
extended the task of binary edge detection to semantic boundary detection (SBD) by
formulating the problem as multi-label pixel-wise classification. Hu et al. [37] introduced a
dynamic fusion model with adaptive weights for better contextual modeling. Liu et al. [38]
proposed DDS, a deep supervision framework that supervises all side outputs and is
currently the state-of-the-art method for SBD.

2.3. Boundary-Aware Semantic Segmentation

There are many approaches to incorporate edges and boundaries into semantic segmen-
tation, such as multi-task learning (MTL) [2–5,39–41], boundary-aware architectures [42,43],
boundary-aware loss functions [44–46], and post-processing modules [6,47].

A widely used approach for boundary-aware segmentation is to apply MTL [48–51] to
explicitly model edges and segmentation masks by jointly optimizing the network for the
two tasks. In MTL, it is common to use a multi-head architecture with a shared backbone
for memory efficiency. The backbone aims to learn a shared representation between the
tasks, but this often fails due to the backbone being designed for a single task, leading
to worse results [48,49]. Takikawa et al. [2] introduced an MTL framework using binary
boundary detection as an auxiliary task to improve semantic segmentation, especially
for pixels near mask boundaries. Similarly, Li et al. [3] introduced a novel framework
for explicitly modeling the body and edge features. Graph representation has become
increasingly popular for boundary-aware semantic segmentation, as proposed in [39,40].
Recently, ref. [41] proposed a lightweight encoder–decoder architecture utilizing boundary
detection as auxiliary task.

Zhen et al. [4] introduced the first joint semantic segmentation and semantic boundary
detection (JSB) model and proposed the iterative pyramid context module and duality
loss, which enforces consistency between the two tasks. Yu et al. [5] proposed a complex
dynamic graph propagation approach to couple the two tasks and refine segmentation and
boundary maps.

SegFix [6] is a model-agnostic post-processing network that refines the output of a
segmentation model with an independent network. The key idea of this method is to
replace unreliable predictions in the mask boundaries with reliable interior labels. The
post-processing network requires separate training.

Recently, there have been some creative approaches, like PIDNet [52] and SDN [53].
PIDNet addresses the overshoot phenomenon observed in segmentation networks by
employing boundary guiding. SDN introduces a boundary-aware segmentation model by
formulating boundary feature enhancement as an anisotropic diffusion process.

2.4. Positioning of Our Approach

Our approach is centered around developing a boundary-aware semantic segmenta-
tion system through the utilization of multi-task learning for semantic boundaries. In this

Sensors 2023, 23, 6980 5 of 42

work, we propose a novel training framework that conditions the segmentation model’s
backbone by integrating well-established semantic boundary detection heads [36–38].

An essential aspect of our approach is that conditioning the backbone alone allows
us to achieve competitive performance. This sets our method apart from existing joint
models for semantic segmentation and boundary detection [2,4,5,41], which often require
intricate modeling and complex feature fusion. Notably, our approach is designed as a
single-step process that does not introduce additional parameters during inference. This is
in contrast to post-processing methods like SegFix [6], which necessitates extra training
and inference steps. Furthermore, our research focuses on a versatile training technique
that can be applied across a wide range of existing segmentation models, distinguishing it
from prior studies with more specific scopes.

3. Approach

The Semantic-Boundary-Conditioned Backbone (SBCB) framework, as illustrated
in Figure 1, enhances semantic segmentation by incorporating a semantic boundary de-
tection (SBD) head into the backbone network during training. This SBD head receives
multi-scale features from selected stages of the backbone and is supervised using ground-
truth (GT) semantic boundaries, which are dynamically generated on the fly using GT seg-
mentation masks. Remarkably, during inference, when the task does not require semantic
boundary information, the SBD head can be omitted, resulting in a semantic segmentation
model without an increase in parameters.

To thoroughly introduce the SBCB framework, our paper proceeds with a systematic
approach in the following sections. In Section 3.1, we comprehensively review existing SBD
architectures while introducing the specific SBD heads utilized in our experiments. Moving
forward, in Section 3.2, we delve into the details of the framework by applying the SBCB ap-
proach to two prominent backbone networks, namely, DeepLabV3+ and HRNet. In Section 3.3,
we elucidate the on-the-fly (OTF) semantic boundary generation module, which is a pivotal
component that endows this framework with remarkable flexibility and ease of use. Finally,
in Section 3.4, we expound upon the loss function employed within the SBCB framework,
which plays a crucial role in effectively optimizing and training the model.

3.1. Semantic Boundary Detection Heads

This section presents an overview of significant SBD models based on Convolutional
Neural Networks (CNNs) that have emerged over the years. Understanding these SBD
heads is crucial for comprehending their application in the SBCB framework and the
conducted experiments. Additionally, we highlight some effective modifications that we
have made during our reimplementation. Furthermore, we introduce the “Generalized”
versions of these SBD heads, which are utilized in the SBCB framework.

CASENet. The CASENet architecture [36], proposed by Yu et al., presents a novel nested
design without deep supervision on ResNet [54]. The architecture, shown in Figure 3b,
modifies the ResNet backbone to capture higher-resolution features (detailed in Section 5.7).
In each stage of the backbone (excluding stage 4), the features are passed into the Side Layer,
comprising a 1× 1 convolutional kernel, followed by a deconvolutional layer, increasing
the resolution to match the input image. Throughout this paper, we interchangeably use
the terms “Stage” and “Side”. Stages are based on the original backbone papers, often
excluding the Stem. However, we use “Side”, a term used in the SBD-related literature,
which includes the Stem. The last Side Layer (Side 5) produces an Ncat × H ×W tensor,
while the other Side Layers (Sides 1 to 4) generate 1× H ×W outputs, where Ncat is the
number of categories, and H and W are the height and width of the image. The outputs of
the Side Layers are then processed by a Fuse Layer, which performs sliced concatenation of
each feature, resulting in a (4× Ncat)× H ×W feature. This feature is further processed
by a 1× 1 convolution kernel to produce an Ncat × H ×W logit, supervised using the
ground-truth semantic boundaries. Additionally, the output of the last Side Layer is also
supervised with the same ground-truth semantic boundaries, acting as an auxiliary signal.

Sensors 2023, 23, 6980 6 of 42

Further details on the semantic boundary supervision loss LSBD for the Fuse Layer and the
last Side Layer are explained in Section 3.4.

DFF Head
Fuse Layer

Side Layer

Side Layer

Side Layer

Side Layer

Aux

Prediction

Backbone

Image

Side1
(Stem)

Side2

Side3

Side4

Side5

CASENet Head

FuseSide Layer

Side Layer

Side Layer

Side Layer

(ResNet)

Aux

Prediction

Adaptive
Weight Learner

1×1 conv
+ BN + relu

3×3 conv

Upsample

...

Sliced C
oncatenation

1×1 conv

Side Layer Fuse Layer

1×1 conv
+ BN + relu

1×1 conv
+ BN + relu

1×1 conv
+ BN + Sigmoid

Adaptive Weight Learner

DDS Head

FuseSide Block

Side Block

Side Block

Side Block

Aux

Prediction

Side Block

Semantic

Binary

Side Block

Basic
(Res)Block

Basic
(Res)Block

Side
Layer

Backbone (ResNet)

(a)

(b)

(c)

(d)

Figure 3. Overview of popular semantic boundary detection (SBD) architectures: The backbone
produces multi-level features, as shown in (a). CASENet (b) utilizes Sides 1, 2, 3, and 5 of the backbone
with modified Side Layers, employing a 1× 1 convolutional kernel and bilinear upsampling with a 3× 3
convolutional kernel. The features are concatenated and processed by a grouped 1× 1 convolutional
kernel. DFF (c) enhances CASENet by adding the Adaptive Weight Learner, which learns attentive
weights applied to Fuse Layer outputs. DDS (d) expands on CASENet, incorporating Side 4 features
and a deeper Side Block, supervised using a deep supervision method with binary boundaries for all
Side Blocks. The auxiliary output from the last Side Block is also supervised with semantic boundaries.

In our implementation, we observed checkerboard artifacts in the original Side Layer
outputs. To address this, we replaced the Side Layers with bilinear upsampling, followed by
a 3× 3 convolutional kernel, as depicted in Figure 3. This modification was adapted from
techniques introduced for generative models using deconvolution [55], and we ensured
that it did not increase the number of parameters.

DFF. The DFF architecture, introduced in [37], enhances the CASENet model by incorporat-
ing the Adaptive Weight Learner. This addition refines the output of the Fuse Layer using
attentive weights. As depicted in Figure 3c, the Fuse Layer produces sliced concatenated
features. Instead of using a standard 1× 1 convolutional kernel, the Adaptive Weight
Learner calculates weights, which are then applied to the tensor and summed to produce
an output tensor of size Ncat × H ×W.
DDS. DDS [38] is the latest method that surpasses CASENet and DFF. It introduces a deeper
Side Block composed of two ResNet Basic Blocks followed by a Side Layer. Figure 3d shows
an overview of the network. Unlike CASENet, DDS explicitly supervises all Side Blocks,
with the final output supervised by semantic boundaries and earlier outputs supervised by
binary boundaries.
Generalized SBD heads. To enable seamless integration within the SBCB framework, we
introduce a generalized SBD head that can be applied to diverse backbone networks and
segmentation architectures. This SBD head, referred to as the Generalized SBD head, is
illustrated in Figure 4. Within our framework, we achieve this generalization by incorpo-

Sensors 2023, 23, 6980 7 of 42

rating flexible Side and Fuse Layers, accommodating any of the previously mentioned SBD
heads (CASENet, DFF, and DDS). The Side Layer can be adapted from CASENet’s Side
Layers or DDS’s Side Blocks, while the Fuse Layer can take the form of either CASENet’s
Fuse Layer or DFF’s Fuse Layer with the Adaptive Weight Learner. Moreover, our approach
allows for the manipulation of the number of Sides, offering versatility to the framework.
Specifically, in DDS, the Nth side output is supervised using semantic boundaries, while
binary boundaries supervise the earlier side outputs. This adaptability empowers the
Generalized SBD head to seamlessly integrate with different segmentation architectures
and backbones, providing enhanced flexibility for the SBCB framework.

As a formal definition, the features obtained from the kth stage backbone are Sk, and
the features obtained from the kth Side Layer are Bk. SSBD represents a set of semantic
boundary predictions, and SBin represents a set of binary boundary predictions. For
CASENet and DFF, SSBD = {BN , Bfuse}, where BN represents the last side output, and
Bfuse represents the final fused prediction, as shown in Figure 4. For DDS, we supervise
SSBD = {BN , Bfuse} and SBin = {Bk, . . . B2, B1}. Concretely, the Generalized SBD head can
be defined as follows:

{SN , . . . , Sk, . . . , S1} = Backbone(I) (1)

Bk = SideLayerk(Sk) (2)

Bfuse = Fuse({BN , . . . , Bk, . . . , B1}), (3)

where I is the input image.

Backbone

Side N

Generalized SBD Head

Fuse

Side Layer N

Side Layer 2

Side Layer 1

Aux

Prediction

 Side Layer Side

Side 2

Side 1

Semantic Side Layer

Binary Side Layer

Binary Side Layer

Binary Side Layer

Figure 4. Overview of the Generalized SBD head. The Generalized CASENet Architecture is an
extended version of the original CASENet architecture shown in Figure 3. In this generalized version,
the last (Nth) Side Layer is referred to as the Semantic-Side Layer, and its corresponding input feature
is called the Semantic Side. Conversely, the 1 ∼ (N − 1)th Side Layer is termed the Binary-Side
Layer, with the input side feature denoted as the Binary Side, having a single channel like other SBD
architectures. This generalization allows for the flexibility of accommodating an unrestricted number
of Sides and Side Layers, enabling the application of this SBD head to various backbone networks.
Moreover, this generalization can be extended to work with DFF and DDS architectures.

Sensors 2023, 23, 6980 8 of 42

3.2. SBCB Framework

In this section, we will demonstrate the application of the SBD heads reviewed in
Section 3.1 within the SBCB framework. As mentioned earlier in Section 3, the SBCB
framework incorporates an SBD head into the backbone, with each multi-scale feature
directed to different Side Layers. Certain crucial factors need to be considered to ensure the
ease of implementation across various backbones.

Is the feature with the largest resolution passed to the first Side Layer? To capture
boundary details effectively, the first Side Layer must receive features with the largest
resolution. Hence, we follow the SBD architecture convention and utilize the backbone’s
stem if possible (B1). Generally, a feature resolution of 1 or 1/2 of the input resolution
suffices for the first Side Layer.
Which backbone features should be passed to which Side Layer? When applying the
SBCB to hierarchical backbones like ResNet, earlier stages (B1 ∼ BN−1) are best-suited
for the Binary-Side Layers, while the last stage (BN) naturally fits the Semantic-Side
Layer. Fortunately, most semantic segmentation architectures utilize hierarchical backbones,
making the application of the SBCB framework straightforward. In cases such as HRNet,
where features are hierarchical and branching out, it is crucial to incorporate all the features,
typically by concatenating them.
Do the Side Layers receive features with sufficient resolution? Although semantic seg-
mentation models generally work with higher input resolutions, some backbones may
reduce feature resolution excessively. In such cases, it is beneficial to adjust the convolu-
tional kernel’s strides and dilations to increase the feature resolution. The goal is to ensure
that the first side feature has a resolution of at least 1/2 of the input image. This technique,
known as the “backbone trick”, is discussed in detail in Section 5.7.

To enhance the comprehensiveness of the framework, we will present case stud-
ies demonstrating the application of the SBCB framework to popular architectures like
DeepLabV3+ and HRNet. Furthermore, we will showcase how the SBCB framework can
be seamlessly applied to other architectures, including those with heavily customized
backbones. The detailed implementation and results of these case studies are provided
in Section 6.

DeepLabV3+ + SBCB. Figure 5a illustrates the CASENet head applied to DeepLabV3+.
The architecture follows a similar design to the SBD architectures with ResNet, and we
utilize the “backbone trick” when dealing with small input image sizes. Implementing
various SBD heads on DeepLabV3+ is generally straightforward, and we can readily
incorporate the DDS head by incorporating Side 4 features and replacing the Side Layers
with Side Blocks.
HRNet + SBCB. The HRNet backbone consists of four stages, as depicted in Figure 5b.
Since the first stage already reduces the resolution to 1/4, we utilize the features from the
stem for the first Side Layer. Unlike ResNet, HRNet maintains consistent feature resolutions
across its stages while branching out into smaller resolutions in each stage. To effectively
incorporate these features, we resize and concatenate the features from each stage before
passing them through the Side Layer. By including all the features from each stage, we aim
to achieve improved conditioning of the backbone for enhanced performance.

Sensors 2023, 23, 6980 9 of 42

Backbone

Side1
(Stem)

Side2

Side3

Side4

Side5

ASPP + Bot. C1 Bot.

Seg. Head

ResNet

SBD head

FuseSide Layer

Side Layer

Side Layer

Side Layer

Aux

Prediction

Backbone

FCN

Seg. Head

SBD head

Fuse
Side Layer

Side Layer

Side Layer

Side Layer

Aux

PredictionStage 1

Stem

Stage 2

Stage 3

Stage 4

HRNet

Resize Concat

Resize Concat

Resize Concat

Resize

Concat

Resize Concat

(a) DeepLabV3+ + SBCB (CASENet) (b) FCN HRNet + SBCB (CASENet)

Figure 5. A diagram showcasing how the SBCB framework is applied to a DeepLabV3+ segmentation
head is shown in (a). A diagram showcasing how the SBCB framework is applied to the HRNet
backbone with an FCN segmentation head is shown in (b).

3.3. On-the-Fly Ground-Truth Generation

For the SBD and edge detection tasks, boundaries are manually annotated by human
annotators. In some datasets, like Cityscapes, automatic preprocessing scripts are provided
to generate GT boundaries from semantic and instance masks. These boundaries are
generated before training and remain unchanged during training. On the other hand, for
semantic segmentation tasks, it is a common practice to resize and rescale the GT masks
during training to mitigate overfitting and introduce variations to the dataset. However,
resizing the boundaries can result in inconsistent boundary widths, as illustrated in Figure 6.
This will lead to the model learning inconsistent boundary widths, which is undesirable.

Image Mask

Preprocessed Edge

0 4 8 12 16

4

8

12

16

OTF Edge

0 4 8 12 16

4

8

12

16

Rescale x2 + Crop

(a) Data rescaled by a factor of 2.

Image Mask

Preprocessed Edge

0 4 8 12 160
4
8

12
16

OTF Edge

0 4 8 12 160
4
8

12
16

Rescale x0.5 + Crop

(b) Data rescaled by half.
Figure 6. The two figures represent sample validation images, masks, and boundaries from the
Cityscapes validation split, which we rescaled and cropped to 512× 512. In each figure, we compare
the two methods of preprocessing. The one on the left uses preprocessed boundaries, and the one on
the right uses OTFGT boundaries. We can observe that OTFGT boundaries have consistent boundary
widths, while preprocessed boundaries vary depending on the rescale value.

Sensors 2023, 23, 6980 10 of 42

To address this issue, we developed a straightforward semantic boundary generation
algorithm called the on-the-fly (OTF) semantic boundary GT generation module (OTFGT),
as illustrated in Figure 7. This module takes a GT semantic segmentation mask MGT as
input and produces a semantic boundary mask BGT. For each category c ∈ C, where MGT

c
is a binary 2D array representing the category, we calculate a binary 2D array of boundaries
BGT

c using the equation:

BGT
c = Threshr(DT(MGT

c) + DT(1−MGT
c)). (4)

Here, DT is a Euclidean distance transform function that computes the L2 norm for
each binary pixel using the method in [56]. We obtain the outer distance with DT(MGT

c)
and the inner distance with DT(1−MGT

c). We then add the two distances to acquire the
distances from the mask boundaries. The Threshr function thresholds the distance based
on the radius r with the following condition:

Threshr(d) =

{
1 d(i, j) ≤ r
0 d(i, j) > r

. (5)

We repeat the algorithm to generate the semantic boundaries of all categories C. For
further details and Python code snippets, please refer to Appendix A.

Segmentation Masks

Distance Maps Threshold Distance

Semantic Boundaries

Figure 7. Overview of the OTFGT module. We apply distance transforms to segmentation masks
to obtain category-specific distance maps. We then threshold the distances by the radius of the
boundaries to obtain category-specific boundaries. The boundaries are concatenated to form a
semantic boundary tensor for supervision.

3.4. Loss Functions

The model generates segmentation and boundary maps with pre-defined semantic
categories from an input image. For the segmentation map, we apply cross-entropy (CE)
loss, denoted by LSeg, to each pixel. As for the SBD head, binary cross-entropy (BCE) loss,
LSBD, is applied for multi-label boundaries SSBD, following the approach in [36]. While
CASENet and DFF utilize only multi-label boundaries for supervision, DDS introduces the
deep supervision of edges by supervising earlier side outputs (SBin) with binary boundary
maps using BCE loss, LBdry [38].

The overall loss function used is defined as:

L = LSeg + α
SSBD

∑ LSBD + β
SBin

∑ LBdry, (6)

where α and β are constants that balance the effects of losses from each task. We use the GT
boundaries obtained from OTFGT (BGT) to supervise the boundaries.

Sensors 2023, 23, 6980 11 of 42

4. Experimental Setup
4.1. Datasets

In our experiments, we utilized four datasets: Cityscapes, BDD100K, Synthia, and
ADE20K datasets. We visualize the datasets in Figure 8, and the explanation of each dataset
is provided below:

Cityscapes. The Cityscapes dataset [57] is a widely used benchmark for semantic segmentation
and semantic boundary detection. It contains 2975 training images, 500 validation images, and
1525 testing images, with annotations for 19 semantic categories. This dataset serves as the
standard benchmark for evaluating SBD methods [36–38,58], and we conducted quantitative
studies for both semantic segmentation and SBD on the validation set, while we benchmarked
our method on the test set for semantic segmentation.
BDD100K. The BDD100K dataset [59] was designed for multi-task learning in autonomous
driving scenarios. It is the largest driving video dataset, comprising 100,000 video frames with
annotations for ten tasks, including semantic segmentation. For our experiments, we used
10,000 images with a resolution of 1280× 720, split into 7000 training and 1000 validation
images. The dataset’s annotated labels align with those of the Cityscapes dataset.
Synthia. The Synthia dataset [60] is a computer graphics dataset generated using a simu-
lator, serving as an auxiliary dataset for Cityscapes and domain adaptation experiments.
We utilized the “Rand” set of the dataset, containing 13,400 images with a resolution of
1280× 760 and annotations for semantic categories matching Cityscapes. We explored the
effect of the SBCB framework with precise boundary annotations using this stand-alone
dataset, dividing it into 10,400 training, 1500 validation, and 1500 test images.
ADE20K. The ADE20K dataset [61] is a scene-parsing dataset with 150 fine-grained se-
mantic concepts. It consists of 20,210 training and 2000 validation images. Notably, this
dataset’s domain is entirely different from previous street scene datasets, posing a challenge
for evaluation.

Cityscapes BDD100k

Im
ag

e
G
T

Se
gm

en
ta
tio
n

O
n-
th
e-
fly

Bo
un

da
rie

s

Synthia

Figure 8. The three main datasets that we used for the experiments. We show a sample input
image, segmentation GT, and the result of OTF semantic boundary generation for each dataset. The
color of the segmentation masks and boundaries corresponds to the colors used in the Cityscapes
dataset. For Synthia, the visualization contains separate colors for each mask instances. Humans
annotated the Cityscapes and BDD100K datasets, and the segmentation masks are clean but tend
to have imperfections around the boundaries and exhibit “polygon” masks. On the other hand,
the Synthia dataset is data from a game engine, and the annotations are pixel-perfect, making
this a challenging dataset for semantic segmentation. The segmentation mask for Synthia also
contains instance segmentation, which is used for OTF semantic boundary generation but not for
the segmentation task. The BDD100K and Synthia datasets are less widely used than the Cityscapes
dataset. However, the BDD100K and Synthia datasets contain more variations in natural noise and
corruption (weather, heavy light reflections, etc.), which will help benchmark the methods fairly. The
images are best seen in color and zoomed in.

Sensors 2023, 23, 6980 12 of 42

4.2. Evaluation Metrics

Segmentation Metrics. We evaluated the segmentation performance using the mean
of intersection over union (mIoU). To assess the segmentation performance around the
boundaries of the masks, we adopted the boundary F-score, following the approach in [2].
Unless explicitly stated, we used a pixel width of 3 px for the boundary F-score.

Additionally, we employed the region-wise over-segmentation measure (ROM) and
region-wise under-segmentation measure (RUM) recently proposed in [62]. ROM and
RUM enable us to quantitatively measure the over- and under-segmentation character-
istics of the models, providing a more objective evaluation compared to previous quali-
tative assessments. The values of ROM and RUM fall within the range of [0, 1), where a
value of 0 indicates no over- or under-segmentation, while higher values indicate increased
over- or under-segmentation.

Boundary Detection Metrics. We followed [58] and adopted the maximum F-score (mF) at
the optimal dataset scale (ODS) evaluated on the instance-sensitive “thin” protocol for SBD.

4.3. Implementation Details

Data Loading. For the Cityscapes dataset, unless specified otherwise, we used a unified
training crop size of 512 × 1024, 40 k training iterations, and a batch size of 8. For the
Synthia, BDD100K, and ADE20K datasets, we used a crop size of 640× 640. During ablation
studies, discussed in Section 5, we trained for 80 k iterations on Synthia but reduced this
to 40 k iterations for experiments described in Section 6 due to resource limitations. We
further fine-tuned the models evaluated in the Cityscapes test benchmark for an additional
40 k iterations using the training and validation split, following the approach in [5]. Common
data augmentations, such as random scaling (scale factors in [0.5, 2.0]), horizontal flip, and
photo-metric distortions, were applied.
Optimization. During training, we used the SGD optimizer with a momentum coefficient
of 0.9 and a weight decay coefficient of 5× 10−4. The learning rate policy follows the “poly”
learning rate decay, where the initial learning rate of 0.01 is multiplied by (1− iter

max_iter)
γ

with γ = 9.
Loss. For our loss function in Equation (6), we set α = 5 and β = 1.
Inference. For the Cityscapes dataset, we conducted evaluations with single-scale whole
inference. For the Synthia and BDD100K datasets, slide inference was performed. In
Section 6.3, we evaluate semantic segmentation performance using multi-scale and flip
(MS + Flip) inference with scales of [0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0].
Software and Hardware. All experiments were conducted using PyTorch, and the popular
semantic segmentation framework “mmsegmentation” [63] was modified for our task. We
ensured consistent software and hardware configurations for all experimental results. The
models were trained on two NVIDIA A6000 GPUs and evaluated on a single NVIDIA RTX8000.

5. Ablation Studies

In this section, we describe the ablation studies conducted to analyze the impact of
the SBCB framework from various perspectives. In Section 5.1, we compare different SBD
heads and select the most suitable candidate for experimentation throughout the paper.
In Section 5.2, we explore the optimal side configuration to achieve the best performance
with the SBCB framework. In Section 5.3, we examine which semantic categories benefit
the most from the SBCB framework. In Section 5.4, we compare the SBCB framework with
other auxiliary tasks to assess its effectiveness. In Sections 5.5 and 5.6, we compare the SBCB
framework with state-of-the-art multi-task and post-processing methods, demonstrating
its ability to complement these methods and further improve segmentation quality. In
Section 5.7, we investigate the effects of a simple yet effective modification to the backbone
configuration, which improves segmentation and SBD performance. In Section 5.8, we
analyze the effects of the SBCB framework on the SBD task. Finally, in Sections 5.9 and 5.10,
we demonstrate that our framework enhances segmentation around boundaries and ad-

Sensors 2023, 23, 6980 13 of 42

dresses over- and under-segmentation issues through the boundary F-score and region-wise
over-/under-segmentation measures (ROM and RUM) evaluations.

5.1. Which SBCB Head to Use?

In this section, we investigate the effects of using different semantic boundary detection
(SBD) heads for the SBCB framework and determine the most suitable candidate for
further evaluation.

Table 1 presents the performance of the DeepLabV3+ model trained using three differ-
ent SBD heads, namely, CASENet, DFF, and DDS, in comparison with single-task baseline
models. All SBD heads integrated into the SBCB framework demonstrate improvements
over the single-task DeepLabV3+ model. Joint training also contributes to enhancing the
SBD metric (maximum F-score). Additionally, we provide information on the number of
parameters and computational costs (GFLOPs) introduced during training by the SBD
heads. DDS incurs higher costs, but it is the most effective of the three heads. However,
the trade-off of using DDS over CASENet for the SBCB framework may not be advanta-
geous in terms of performance gains, particularly when evaluating DDS on other datasets
and backbones.

Table 1. Results for Cityscapes. The best performant metrics are shown in bold.

Head mIoU mF (ODS) Param. GFLOPs

DeepLabV3+ 79.5 - 60.2 M 506

CASENet
-

63.7 42.5 M 357
DFF 65.5 42.8 M 395
DDS 73.4 243.3 M 2079

SBCB (CASENet) 80.3 74.4 60.2 M 508
SBCB (DFF) 80.2 74.6 60.5 M 545
SBCB (DDS) 80.6 75.8 261.0 M 2228

Figure 9 showcases the qualitative results of applying the CASENet head to DeepLabV3+
compared to the baseline models. The additional semantic boundary supervision enables
the model to detect small, thin objects more effectively. Furthermore, the SBCB framework
enhances boundary detection by reducing artifacts and improving object perception. These
results demonstrate the potential benefits of using SBD heads in the SBCB framework for
semantic segmentation tasks.

Different crop size. We tested the SBD heads on a crop size of 769× 769, another popular
crop size in semantic segmentation. The results, shown in Table 2, exhibit a similar trend to
the results in Table 1, with the CASENet head performing favorably.
Different backbone. We evaluated the effects of using the HRNet-48 (HR48) backbone,
and the results are displayed in Table 3. In this case, the CASENet head outperforms DDS
and DFF by significant margins (1.0% and 0.5%, respectively). The CASENet head achieves
an mF of 78.9%, identical to the heavy and inefficient single-task DDS model.
Different datasets. As performance can vary across datasets, we further evaluated the
SBD heads on the BDD100K dataset and Synthia, as shown in Tables 4 and 5, respectively.
On the BDD100K dataset, the DDS head significantly outperforms the baseline model and
CASENet head. The DFF head also performs better than the CASENet head for this dataset
for the first time. On Synthia, however, the CASENet head performs better than DDS.
Choice of SBD head: CASENet. Considering the additional parameters and computa-
tional costs, using the CASENet head proves to be beneficial. Moreover, the SBD head
in the SBCB framework is only used as an auxiliary signal, and the CASENet head out-
performs DDS in some results. While the DDS head may produce higher metrics when
computational costs are not a concern, for the rest of the analyses in this paper, we used
the CASENet head as our primary SBD head for the SBCB framework.

Sensors 2023, 23, 6980 14 of 42

(a) Original image (b) Ground truth segmentation mask (c) Ground truth boundaries

(e) CASENet(d) DeepLabV3+

(f) DeepLabV3+ SBCB (CASENet) (g) DeepLabV3+ SBCB (CASENet)

Figure 9. Visualizations of the GT and predictions on the Cityscapes dataset. Depicted in (a–c) are
the input image, ground-truth (GT) segmentation map, and GT semantic boundary map. Note that
because the task of SBD is pixel-wise multi-label classification, the visualized semantic boundary maps
have overlapped boundaries. The color of the segmentation and boundaries represents categories
following the visualization format used in Cityscapes. In (d), we show the output of DeepLabV3+, a
popular semantic segmentation model. The semantic boundary detection (SBD) baseline is CASENet,
which we show in (e). The output of DeepLabV3+ trained with the SBCB framework using the
CASENet head is shown in (f,g). We can see that small and thin objects are recognized better using
the framework and smoother boundaries with fewer artifacts. We can also notice improvements in
over-segmentation for both the segmentation mask and semantic boundary results.

Table 2. Results for Cityscapes with input crop size of 769× 769. The best performant metrics are
shown in bold.

Head mIoU mF (ODS) Param. GFLOPs

DeepLabV3+ 78.9 – 60.2 M 506

CASENet
-

68.6 42.5 M 357
DFF 68.9 42.8 M 395
DDS 75.5 243.3 M 2079

SBCB (CASENet) 80.3 74.0 60.2 M 508
SBCB (DFF) 80.0 74.8 60.5 M 545
SBCB (DDS) 80.4 75.6 261.0 M 2228

Table 3. Results for Cityscapes using the HRNet-48 (HR48) backbone. The best performant metrics
are shown in bold.

Head mIoU mF (ODS) Param. GFLOPs

FCN 80.5 – 65.9 M 187

CASENet
-

75.7 65.3 M 172
DFF 75.3 65.5 M 210
DDS 78.9 89.0 M 946

SBCB (CASENet) 82.0 78.9 65.9 M 187
SBCB (DFF) 81.5 78.8 66.0 M 221
SBCB (DDS) 81.0 79.3 89.5 M 1012

Sensors 2023, 23, 6980 15 of 42

Table 4. Results for BDD100K. The best performant metrics are shown in bold.

Head mIoU mF (ODS)

DeepLabV3+ 60.0 -

CASENet
-

55.7
DFF 57.3
DDS 59.9

SBCB (CASENet) 61.4 56.6
SBCB (DFF) 62.0 58.1
SBCB (DDS) 64.1 60.2

Table 5. Results for Synthia. The best performant metrics are shown in bold.

Head mIoU mF (ODS)

DeepLabV3+ 74.5 -

CASENet
-

61.0
DFF 64.8
DDS 67.6

SBCB (CASENet) 75.9 65.2
SBCB (DFF) 75.3 66.5
SBCB (DDS) 75.7 67.0

In Figure 2, we present qualitative visualizations comparing DeepLabV3+ with and
without the CASENet head. The feature maps obtained from the last stage of the backbone
conditioned on SBD show boundary-aware characteristics, resulting in reduced segmenta-
tion errors, especially around the boundaries. This demonstrates the effectiveness of the
SBCB framework in improving the segmentation performance by incorporating boundary
information during the feature extraction process.

5.2. Which Sides to Supervise?

Table 6 presents the effect of using different side configurations for the CASENet head
applied to the ResNet backbone. The original configuration, which includes Sides 1, 2, 3, and 5,
performs the best on two models (PSPNet and DeepLabV3). However, on DeepLabV3+,
the configuration 1 + 2 + 3 + 4 + 5 outperforms the original configuration by 0.2%. While
the performance gains between configurations are negligible, it is worth noting that each
model may have an optimal side configuration within the SBCB framework. For fairness
and consistency, we chose the original configuration (Sides 1, 2, 3, and 5) to evaluate other
models and benchmark our methods for further evaluation. Users of the SBCB framework
should be aware that different models might benefit from different side configurations.

Sensors 2023, 23, 6980 16 of 42

Table 6. Results using ResNet-101 backbone with different side configurations on the Cityscapes
validation split.

Head Sides mIoU ∆

PSPNet

77.6

1 + 5 78.5 +0.9
1 + 2 + 5 78.6 +1.0

1 + 2 + 3 + 5 78.7 +1.1
1 + 2 + 3 + 4 + 5 78.5 +0.9

DeepLabV3

79.2

1 + 5 79.8 +0.6
1 + 2 + 5 79.9 +0.7

1 + 2 + 3 + 5 79.9 +0.7
1 + 2 + 3 + 4 + 5 79.4 +0.2

DeepLabV3+

79.5

1 + 5 80.1 +0.6
1 + 2 + 5 80.1 +0.6

1 + 2 + 3 + 5 80.3 +0.8
1 + 2 + 3 + 4 + 5 80.5 +1.0

5.3. Does It Improve All Categories?

Table 7 presents the per-category IoU comparisons for each model. While the SBCB
framework generally improves most categories, some categories exhibit worse IoU scores.
In particular, the categories “truck”, “bus”, and “train” are more affected, likely due to
their relatively low number of samples and potential confusion with the “car” category.
To address this, additional techniques, such as Online Hard Example Mining (OHEM),
could be employed during training to focus on difficult samples and improve the overall
performance on challenging categories with irregular boundaries and low sample counts.

Table 7. Per-category IoU for the Cityscapes validation split. Red and Blue represents improvements
and degradation.

Method SBCB mIoU Road Swalk Build. Wall Fence Pole Tlight Sign Veg TerrainSky Person Rider Car Truck Bus Train Motor Bike

PSPNet
77.6 98.0 83.9 92.4 49.5 59.3 64.5 71.7 79.0 92.4 64.2 94.7 81.8 60.5 95.0 77.8 89.1 80.1 63.4 77.9

X 78.7 98.3 85.7 92.7 52.7 60.7 66.3 72.7 80.8 92.8 64.3 94.6 82.4 62.7 95.3 79.5 88.6 81.4 66.0 78.7

+1.1 +0.3 +1.8 +0.3 +3.2 +1.4 +1.8 +1.0 +1.8 +0.4 +0.1 −0.1 +0.6 +2.2 +0.3 +1.7 −0.5 +1.3 +2.6 +0.8

DeepLabV3
79.2 98.1 84.6 92.6 54.5 61.7 64.6 71.7 79.3 92.6 64.6 94.6 82.4 63.8 95.4 83.2 90.9 84.2 67.7 78.1

X 79.9 98.4 86.4 93.0 55.3 63.7 66.8 72.9 80.4 94.9 65.4 94.9 83.3 65.9 95.5 81.9 92.3 81.3 68.2 78.9

+0.7 +0.3 +1.8 +0.4 +0.8 +2.0 +2.2 +1.2 +1.1 +2.3 +0.8 +0.3 +0.9 +2.1 +0.1 −1.3 +1.4 −2.9 +0.5 +0.8

DeepLabV3+
79.5 98.1 85.0 92.9 53.2 62.8 66.5 72.1 80.4 92.7 64.9 94.7 82.8 63.6 95.5 85.1 90.9 82.2 69.4 78.4

X 80.3 98.3 85.9 93.4 65.7 65.6 68.5 73.0 81.4 92.8 66.1 95.3 83.3 65.6 95.5 81.3 88.3 78.1 68.7 78.8

+0.8 +0.2 +0.9 +0.5 +12.5 +2.8 +2.0 +0.9 +1.0 +0.1 +1.2 +0.6 +0.5 +2.0 0 −3.8 −2.6 −4.1 −0.7 +0.4

From the table, it is evident that the SBCB framework significantly enhances the segmen-
tation performance for categories characterized by complex shapes, such as “vegetation”,
“terrain”, “person”, and “bike”. The incorporation of boundary-aware features into the
backbone contributes to the segmentation head’s improved capability in accurately pre-
dicting the boundaries of these categories, consequently leading to superior segmentation
results. This observation is visually apparent in Figure 2, where the segmentation errors
surrounding the edges are notably reduced compared to the baseline DeepLabV3+ model,
and it is particularly evident in scenarios such as people riding bikes in the bottom row.

One of the challenges in semantic segmentation arises from the presence of overlapping
classes, which can occur due to occlusion or see-through objects. When occlusion is present,
the predictions near the point of occlusion often become uncertain. This is evident in
Figure 9, where objects like “poles” occlude a considerable portion of a building. The

Sensors 2023, 23, 6980 17 of 42

baseline model exhibits fragmentation in the prediction of the thin pole, as the larger wall
provides more certainty in its segmentation. In contrast, the SBCB framework yields a cleaner
segmentation mask, thanks to its ability to comprehend object boundaries more effectively.

Similarly, in scenarios involving see-through categories, such as the fence overlap-
ping with a building in the same figure, the model faces a challenging task in making
accurate predictions. However, the SBCB framework proves beneficial by generating a
cleaner segmentation mask, leveraging its proficiency in understanding object boundaries
more robustly.

The Cityscapes dataset contains annotations with inherent noise, particularly pro-
nounced in categories featuring irregular boundaries, which inherently pose challenges
to the segmentation task. This noise in annotations could potentially contribute to the
observed variations in IoU scores across categories. Nevertheless, our belief is that the
SBCB framework can still enhance segmentation results, even in the presence of noisy anno-
tations, as long as the generated GT boundaries offer valuable guidance during the model’s
training process. Although detecting such improvements purely based on quantitative
metrics like IoU may be difficult, the qualitative outcomes presented in Figure 2, along with
additional metrics like ROM and RUM (as discussed in Section 5.10), allow us to discern
reduced fragmentation and enhanced accuracy in the segmentation masks.

5.4. Comparisons of Different Auxiliary Signals

The authors who introduced PSPNet [12] added an FCN head to the fourth stage (the
one before the last stage) to the backbone to stabilize training and improve segmentation
metrics. The auxiliary FCN head is trained on the same segmentation task as the main head
and has been widely adopted in open-source projects such as mmseg.

Although not commonly used, various papers have explored using binary edge and
boundary detection as an auxiliary task for semantic segmentation. Despite the difference
in tasks, it has been found that the learned features in the edge detection head can be fused
into the segmentation head.

In this section, we compare the SBCB framework with the mentioned auxiliary tech-
niques, namely, “FCN” and “Binary Boundary Conditioned Backbone (BBCB)”. Note that
BBCB is the SBCB framework applied to binary boundary detection. We applied the
FCN, BBCB, and SBCB to three popular segmentation heads (PSPNet, DeepLabV3, and
DeepLabV3+) with ResNet-101 as the backbone. The results on the Cityscapes validation
split are shown in Table 8.

While all auxiliary signals improve IoU, the models trained using the SBCB framework
consistently perform the best. The improvements obtained with the SBCB compared to the
BBCB are around twofold, demonstrating the importance of the SBD task. The FCN shows
significant gains of 0.7% when applied to PSPNet, but the FCN has a minimal impact on
the other models. Both the BBCB and SBCB complement the FCN, achieving higher IoU
results. Additionally, it is essential to consider the additional parameters introduced by
these auxiliary signals during training. While the SBCB and BBCB only add thousands
of parameters, the FCN adds 2.37 M parameters. Considering the performance gains and
the additional parameters, it is evident that boundary-based auxiliary signals offer more
benefits than the FCN.

Sensors 2023, 23, 6980 18 of 42

Table 8. Tables that compare different backbone-conditioning methods on the Cityscapes validation
split. We investigated the effects on three popular segmentation heads: PSPNet, DeepLabV3, and
DeepLabV3+. Note that all methods use ResNet-101 as the backbone. Also, note that we show the
number of parameters (Params.) during training.

Head FCN BBCB SBCB Param. mIoU ∆

PSPNet

65.58 M 77.6

X +2.37 M 78.3 +0.7
X +0.01 M 78.1 +0.5

X +0.05 M 78.7 +1.1

X X +2.37 M 79.1 +1.5
X X +2.41 M 79.4 +1.8

DeepLabV3

84.72 M 79.2

X +2.37 M 79.3 +0.1
X +0.01 M 79.6 +0.4

X +0.05 M 79.9 +0.7

X X +2.37 M 80.1 +0.9
X X +2.41 M 80.1 +0.9

DeepLabV3+

60.2 M 79.5

X +2.37 M 79.7 +0.2
X +0.01 M 79.9 +0.4

X +0.05 M 80.3 +0.8

X X +2.37 M 80.6 +1.1
X X +2.41 M 80.5 +1.0

We also evaluated the same models and auxiliary heads on the Synthia dataset, as
shown in Table 9. Surprisingly, the FCN and BBCB do not provide significant performance
gains and even have worse metrics than the baselines. However, the SBCB improves upon
the baseline by over 1%. It is plausible that the features learned using the FCN could have
conflicted with the main heads. In contrast to the noisy annotations in Cityscapes, Synthia
contains precise segmentation masks rendered from a CG engine instead of human annota-
tions. The classes “human” and “bike” in Synthia have small and thin segmentation masks,
which adds to the difficulty. Although the features learned by the FCN complemented the
main head features in Cityscapes, it appears that the FCN learned to derive a conflicted
segmentation map for Synthia. The larger number of parameters in the FCN compared
to the SBCB or BBCB might have contributed to this issue. Surprisingly, the BBCB did
not perform as well as expected because it focuses on low-level features without explicitly
modeling high-level semantics.

The SBCB framework conditions the backbone with SBD, a challenging task that
focuses on low-level features while requiring high-level features for accurate boundary
detection. The hierarchical modeling of the SBD task in the SBCB framework leads to better
improvement in segmentation metrics compared to using the FCN or binary boundaries as
auxiliary signals.

Sensors 2023, 23, 6980 19 of 42

Table 9. Tables that compare different backbone-conditioning methods on Synthia.

Head FCN BBCB SBCB mIoU ∆

PSPNet

70.5

X 70.1 −0.4
X 70.7 +0.2

X 71.7 +1.2

X X 70.7 +0.2
X X 71.6 +1.1

DeepLabV3

70.9

X 70.6 −0.3
X 70.7 −0.2

X 71.9 +1.0

X X 70.5 −0.4
X X 71.0 +0.1

DeepLabV3+

72.4

X 72.0 −0.4
X 72.1 −0.3

X 73.5 +1.1

X X 72.3 −0.1
X X 73.5 +1.1

5.5. Comparisons with SegFix

In Table 10, we compare our framework with SegFix [6], a popular post-processing
method. We obtained the results for SegFix by using the open-source code, which re-
fines the output prediction based on the offsets learned using HRNet2x. Comparing the
methods side-by-side, models trained with the SBCB framework, SegFix performs around
0.1% ∼ 0.4% better than the SBCB. However, when combining the SBCB framework with
the FCN (as mentioned in Section 5.4), we achieve competitive performance and signifi-
cantly outperform SegFix on two models.

It is important to consider that SegFix is an independent post-processing model, while
our framework produces competitive results without any post-processing or additional
parameters during inference. SegFix adds a post-processing module that requires separate
training. Furthermore, SegFix is specifically designed to correct predictions around mask
boundaries, which can be challenging for the base model to predict accurately. As a
result, the base model might not actively learn boundary-aware features. In contrast, our
training framework conditions the backbone to be boundary-aware by solving SBD, as
demonstrated in Section 5.9. In other words, SegFix and our framework are complementary
because boundary-aware predictions are easier for SegFix to correct. This is evident from
the significant improvements achieved by using the SBCB along with SegFix, as shown in
the table.

Sensors 2023, 23, 6980 20 of 42

Table 10. Comparison of the use of SegFix with auxiliary heads (SBCB and FCN) on the Cityscapes
validation split.

Model mIoU ∆

PSPNet

77.6

+ SegFix 78.8 +1.2
+ SBCB 78.7 +1.1
+ SBCB + FCN 79.4 +1.8
+ SBCB + SegFix 79.7 +2.1
+ SBCB + FCN + SegFix 80.3 +2.8

DeepLabV3

79.2

+ SegFix 80.3 +1.1
+ SBCB 79.9 +0.7
+ SBCB + FCN 80.1 +0.9
+ SBCB + SegFix 80.8 +1.6
+ SBCB + FCN + SegFix 81.0 +1.8

DeepLabV3+

79.5

+ SegFix 80.4 +0.9
+ SBCB 80.3 +0.8
+ SBCB + FCN 80.6 +1.1
+ SBCB + SegFix 81.0 +1.5
+ SBCB + FCN + SegFix 81.2 +1.7

5.6. Comparisons with GSCNN

GSCNN [2] is a well-known semantic segmentation model that incorporates a binary
boundary detection multi-task architecture with a dedicated boundary detection head,
called the shape stream, branching out from the Side Layers, similar to the SBD heads in the
SBCB framework. The main distinction is that GSCNN explicitly merges the features from
the shape stream into the semantic segmentation head. GSCNN, based on the ResNet-101
backbone, is a customized version of DeepLabV3+ that utilizes an ASPP module.

While it may be challenging to make a direct apples-to-apples comparison due to the
different loss functions and the explicit feature merging in GSCNN, we aimed to evaluate
how effectively the SBCB framework enhances DeepLabV3+ in comparison to different
configurations of GSCNN. Table 11 presents the results of our comparison. The baseline
GSCNN is GSCNN without the image gradient (Canny Edge). “+Canny” is the original
configuration with the image gradient. We also experimented with supervising the shape
stream using the SBD task, denoted by “SBD”, and modified the shape stream by increasing
the channels. Finally, we used the SBCB framework on GSCNN, denoted by “+SBCB”,
which adds the SBD head to the backbone without any other modifications.

Table 11. Comparisons of DeepLabV3+ and GSCNN on the Cityscapes validation split. We show
that the SBCB framework can be applied to train GSCNN.

Model mIoU ∆

DeepLabV3+
79.5

+SBCB (CASENet) 80.3 +0.8
+SBCB (DDS) 80.6 +1.1

GSCNN

80.5 +1.0
+Canny 80.6 +1.1

SBD 80.0 +0.5
+SBCB (CASENet) 80.9 +1.4

Comparing DeepLabV3+ with GSCNN, we observe a substantial improvement of
+1.0% when using GSCNN. The SBD supervision on GSCNN results in a slightly lower

Sensors 2023, 23, 6980 21 of 42

improvement of +0.5%, indicating that boundary signals do have a positive impact on
semantic segmentation. The reduction in improvement can be attributed to the Gated
convolution kernel, which restricts features to a single channel, leading to a degradation in
representation capability.

However, the SBCB framework proves to be highly effective in improving DeepLabV3+.
When utilizing CASENet and DDS as SBD heads, the SBCB framework achieves improve-
ments of +0.8% and +1.1%, respectively. These improvements are competitive with the
results obtained using the original GSCNN configuration, further emphasizing the potential
of the SBCB framework.

The flexibility of the SBCB framework allows it to be easily applied to GSCNN as
well, leading to an even higher improvement of +1.4%. This demonstrates the versatility
and efficacy of the SBCB framework, which can enhance segmentation performance across
different models.

5.7. Backbone Trick

In this section, we explore the use of the “backbone trick”, which is a modification
to the backbone architecture introduced to obtain better edge detection and semantic
boundary detection (SBD) performance. The “backbone trick” involves modifying the
strides and dilations of the backbone stages to increase the output resolutions without
changing the number of parameters, making it suitable for edge detection and SBD tasks.

In edge detection and SBD tasks, higher-resolution feature maps are essential to accu-
rately capture small edges and boundaries. Traditional backbones like ResNet, designed
for image classification, produce smaller feature maps that may not be well suited for edge
detection. By applying the “backbone trick”, we can retain the pre-trained weights while
achieving higher-resolution feature maps, improving edge detection and SBD performance.

Similarly, in semantic segmentation, we modified the strides and dilations of the last
two stages to maintain the final feature resolution at 1/8 of the input image size, which is
commonly used for accurate segmentation. The configurations of the two modifications
are shown in Table 12.

Table 12. This table shows the configurations of the two common types of modifications to the ResNet
backbone. Note that the output feature resolutions are in the order of Stem, Stages 1, Stage 2, Stage 3,
and Stage 4.

Task Stem Stride Strides Dilations Resolutions

Original 2 (1, 2, 2, 2) (1, 1, 1, 1) (1/2, 1/4, 1/8, 1/16, 1/32)
Segmentation 2 (1, 2, 1, 1) (1, 1, 2, 4) (1/2, 1/4, 1/8, 1/8, 1/8)

Edge Det. 1 (1, 2, 2, 1) (2, 2, 2, 4) (1, 1/2, 1/4, 1/8, 1/8)

Tables 13–15 present results using the HED version of ResNet-101 (HED ResNet-101)
on the Cityscapes, BDD100K, and Synthia datasets, respectively. Compared to the normal
segmentation ResNet-101 in Tables 1, 4, and 5, HED ResNet-101 generally achieves better
performance for both single-task and SBCB framework models. The Synthia dataset, in
particular, shows higher performance gains, benefiting from the higher-resolution feature
maps that capture more detailed and precise ground truths.

While the “backbone trick” is commonly applied to ResNet-101, it can also be extended
to other backbones, such as transformer backbones, as demonstrated in Section 6.7. By
conditioning the backbones with SBD through the SBCB framework, we can achieve
significant performance improvements without complex modeling, making it a practical
and effective approach for enhancing edge detection and SBD tasks.

Sensors 2023, 23, 6980 22 of 42

Table 13. Results of the “Backbone Trick” validated on Cityscapes. We modified the ResNet-101
backbone’s stride and dilation at each stage to keep the number of parameters the same but generate
larger feature maps. The authors of [33] introduced this technique, and we prepend “HED” to the
backbone that uses this trick.

Head mIoU mF (ODS) Param. GFLOPs

DeepLabV3+ 79.8 - 60.2 M 506

CASENet
-

68.6 42.5 M 417
DFF 70.0 42.8 M 455
DDS 76.3 243.3 M 2661

SBCB (CASENet) 81.0 75.1 60.2 M 508
SBCB (DFF) 80.8 75.4 60.5 M 545
SBCB (DDS) 80.8 76.5 261.0 M 2228

Table 14. Results of the “Backbone Trick” validated on BDD100K.

Head mIoU mF (ODS)

DeepLabV3+ 59.8 -

CASENet
-

56.6
DFF 58.1
DDS 60.1

SBCB (CASENet) 62.4 59.3
SBCB (DFF) 62.0 58.9
SBCB (DDS) 63.5 60.5

Table 15. Results of the “Backbone Trick” validated on Synthia.

Head mIoU mF (ODS)

DeepLabV3+ 77.0 -

CASENet
-

64.0
DFF 65.6
DDS 68.5

SBCB (CASENet) 78.0 67.5
SBCB (DFF) 77.8 68.9
SBCB (DDS) 78.6 68.4

5.8. Does SBCB Also Improve SBD Metrics?

Based on the previous ablations studies, it is clear that the SBCB framework improves
the metrics for semantic segmentation. In addition to semantic segmentation, we also
evaluated the performance of the models trained using the SBCB framework on semantic
boundary detection (SBD) tasks, as shown in Table 16.

The results demonstrate that models trained with the SBCB framework achieve signifi-
cant improvements in SBD performance compared to state-of-the-art single-task methods.
The improvements range from 5% to over 10%, showcasing the effectiveness of the SBCB
framework in enhancing boundary detection. Moreover, when comparing our DeepLabV3+
model trained with the SBCB framework to the joint semantic segmentation and seman-
tic boundary detection model CSEL, our method outperforms CSEL without explicitly
utilizing the features learned in the segmentation head with feature fusion. This demon-
strates that the SBCB framework, which is primarily designed for semantic segmentation,
effectively improves SBD performance as well.

Sensors 2023, 23, 6980 23 of 42

Table 16. Comparison of SBD models on the Cityscapes validation split using the instance-sensitive
“thin” evaluation protocol. †: Performance reported in [38].

Method Backbone mF (ODS)

CASENet † HED ResNet-101 68.1
SEAL † HED ResNet-101 69.1

STEAL † HED ResNet-101 69.7
DDS † HED ResNet-101 73.8

CSEL[5] HED ResNet-101 78.1

DeepLabV3+ + SBCB (CASENet) ResNet-101 77.8
DeepLabV3+ + SBCB (CASENet) HED ResNet-101 78.4

DeepLabV3+ + SBCB (DDS) ResNet-101 78.8
DeepLabV3+ + SBCB (DDS) HED ResNet-101 78.8

Overall, the SBCB framework’s success can be attributed to its ability to condition the
backbone for semantic segmentation tasks, resulting in improved performance for both
semantic segmentation and semantic boundary detection without the need for complex
modeling explicitly dedicated to boundary detection.

5.9. Does SBCB Improve Segmentation around Boundaries?

In Table 17, we present the boundary F-scores for both baseline models and models
trained with the SBCB framework. The results clearly indicate that the models trained with
the SBCB framework consistently achieve higher boundary F-scores, particularly when the
trimap widths are smaller. The improved boundary F-scores demonstrate the effectiveness
of the SBCB framework in enhancing the model’s ability to accurately detect and delineate
object boundaries. We believe that the SBCB framework enables the backbone to learn and
preserve boundary-aware features, which results in segmentation masks with better quality
around the mask boundaries.

Table 17. Comparison of the boundary F-score, evaluated on the Cityscapes validation split. The
models were trained using the same hyperparameters and ResNet-101 backbone.

Head SBCB 12 px ∆ 9 px ∆ 5 px ∆ 3 px ∆

PSPNet 80.9 79.6 75.7 70.2
X 83.3 +2.4 82.1 +2.5 78.5 +2.8 73.3 +3.1

DeepLabV3 81.8 80.6 76.7 71.2
X 83.4 +1.6 82.2 +1.6 78.7 +2.0 73.4 +2.2

DeepLabV3+ 81.2 80.0 76.4 71.4
X 83.0 +1.8 81.8 +1.8 78.5 +2.1 73.7 +2.3

5.10. Does SBCB Improve Over- and Under-Segmentation?

In this section, we evaluate the effects of the SBCB framework in terms of over-
and under-segmentation using the recently proposed region-based over-segmentation
measure (ROM) and region-based under-segmentation measure (RUM) [62]. The results
are presented in Table 18, where lower ROM and RUM values indicate better segmentation
quality, reflecting reduced over- and under-segmentation, respectively.

Sensors 2023, 23, 6980 24 of 42

Table 18. Comparison of region-based over-segmentation measure (ROM) and region-based under-
segmentation measure (RUM) on the Cityscapes validation split. The models are trained using the
same hyperparameters and ResNet-101 backbone.

Head SBCB ROM ↓ ∆ RUM ↓ ∆

PSPNet 0.078 0.102
X 0.061 −0.017 0.098 −0.004

DeepLabV3 0.072 0.104
X 0.060 −0.012 0.1 −0.004

DeepLabV3+ 0.08 0.094
X 0.065 −0.015 0.086 −0.008

The table clearly shows that the models trained using the SBCB framework consis-
tently exhibit improvements in both ROM and RUM metrics. This indicates that the SBCB
framework effectively mitigates over- and under-segmentation issues in the segmentation
outputs. Semantic boundary conditioning in the SBCB framework reinforces strict distinc-
tion in object groupings, which helps to resolve unwanted partitioning and leads to an
overall improvement in the segmentation quality.

For detailed per-category results of ROM and RUM, please refer to Appendix B.
Furthermore, the qualitative analysis in Figure 9 provides visual evidence of the improved
segmentation around the boundaries. For instance, the over-segmentation of the pole is
notably reduced by the application of the SBCB framework.

While the improvements in under-segmentation may not be as easily distinguishable in
qualitative comparisons, the quantitative evaluation using ROM and RUM metrics confirms
the effectiveness of the SBCB framework in addressing both over- and under-segmentation
issues in semantic segmentation tasks.

6. Experiments

In this section, we present a comprehensive evaluation of the proposed Semantic-
Boundary-Conditioned Boosting (SBCB) approach. The evaluation was conducted by
applying it to various architectures and datasets, aiming to assess its impact on semantic
segmentation performance.

We begin by exploring the effectiveness of SBCB training across a wide range of
backbone architectures and popular segmentation heads in Sections 6.1 and 6.2. Next, we
benchmark our method with the DeepLabV3+ architecture on the Cityscapes dataset in
Section 6.3. We compare the results with state-of-the-art (SOTA) methods to demonstrate
the superiority of our approach. In Section 6.4, we present experiments on the challeng-
ing ADE20k dataset. Furthermore, we provide the results of SBCB training on recent
lightweight segmentation architectures in Sections 6.5 and 6.6 to showcase the flexibility
and effectiveness of the SBCB framework. Finally, we validate the compatibility of the
SBCB training paradigm with modern backbones, ConvNeXt and Segformer, in Section 6.7.
This evaluation underscores the continued relevance and applicability of our approach in
the evolving landscape of semantic segmentation.

6.1. Different Backbones

Tables 19 and 20 present the performance improvements achieved by employing the
SBCB framework during the training of various backbones. Notably, we evaluated our
approach on two datasets with different levels of annotation qualities, demonstrating the
robustness and consistency of the SBCB framework.

Sensors 2023, 23, 6980 25 of 42

Table 19. Effect of using SBCB for different CNN-based backbones on Cityscapes.

Head Backbone SBCB mIoU ↑ ∆ F-Score ↑ ∆ ROM ↓ ∆ RUM ↓ ∆

DenseASPP ResNet-50 77.5 69.0 0.108 0.096
X 78.3 +0.8 70.6 +1.6 0.1 −0.008 0.093 −0.003

DenseASPP DenseNet-169 76.6 69.0 0.077 0.102
X 78.2 +1.6 72.1 +3.1 0.072 −0.005 0.101 −0.001

ASPP ResNeSt-101 79.5 72.3 0.079 0.102
X 80.3 +0.8 75.2 +2.9 0.065 −0.014 0.094 −0.008

OCR HR18 78.9 71.9 0.074 0.093
X 79.7 +0.8 74.0 +2.1 0.066 −0.008 0.092 −0.001

OCR HR48 80.7 74.4 0.073 0.09
X 82.0 +1.3 77.7 +3.7 0.069 −0.004 0.083 −0.007

ASPP MobileNetV2 73.9 66.2 0.074 0.1
X 74.4 +0.5 68.3 +2.1 0.07 −0.004 0.095 −0.005

LRASPP MobileNetV3 64.5 58.0 0.128 0.082
X 67.5 +3.0 62.1 +4.1 0.115 −0.013 0.08 −0.002

Table 20. Effect of using SBCB for different CNN-based backbones on Synthia.

Head Backbone SBCB mIoU ↑ ∆

DenseASPP ResNet-50 69.6
X 70.5 +0.9

DenseASPP DenseNet-169 71.3
X 72.0 +0.7

ASPP ResNeSt-101 72.3
X 73.8 +1.5

OCR HR18 70.1
X 70.9 +0.8

OCR HR48 74.3
X 76.0 +1.7

ASPP MobileNetV2 65.3
X 67.0 +1.7

LRASPP MobileNetV3 60.8
X 64.8 +4.0

Our findings in both tables reveal that the SBCB framework consistently leads to
significant improvements in intersection over union (IoU), even across different backbone
architectures. In particular, the Cityscapes evaluation showcases enhancements in F-score,
ROM, and RUM metrics for every backbone, illustrating the effectiveness of our method.

Furthermore, we provide qualitative results of the SBCB framework on the Cityscapes
dataset in Appendix C, further substantiating the impact and practicality of our approach.
These results collectively underscore the potential of the SBCB in boosting semantic seg-
mentation performance across diverse scenarios.

6.2. Different Heads

In Tables 21 and 22 we present the performance evaluation of models trained with
the SBCB framework, where we utilized different segmentation heads while keeping the
backbone fixed at ResNet-101.

Sensors 2023, 23, 6980 26 of 42

Table 21. Effect of using SBCB with different segmentation heads on Cityscapes. Note that the
backbones for all models are set to ResNet-101.

Head SBCB mIoU ↑ ∆ F-Score ↑ ∆ ROM ↓ ∆ RUM ↓ ∆

FCN 74.6 69.3 0.072 0.104
X 76.3 +1.7 71.6 +2.3 0.058 −0.014 0.096 −0.008

PSPNet 77.6 70.2 0.078 0.102
X 78.7 +1.1 73.3 +3.1 0.061 −0.017 0.098 −0.004

ANN 77.4 70.1 0.074 0.1
X 79.0 +1.6 72.8 +2.7 0.059 −0.015 0.091 −0.009

GCNet 77.8 70.2 0.07 0.103
X 78.9 +1.1 73.0 +2.8 0.058 −0.012 0.092 −0.011

ASPP 79.2 71.2 0.072 0.104
X 79.9 +0.7 73.4 +2.2 0.06 −0.012 0.1 −0.004

DNLNet 78.7 71.2 0.07 0.101
X 79.7 +1.0 73.6 +2.4 0.052 −0.018 0.093 −0.008

CCNet 79.2 71.9 0.068 0.102
X 80.1 +0.9 73.9 +2.0 0.053 −0.015 0.089 −0.013

UPerNet 78.1 71.9 0.082 0.091
X 78.9 +0.8 73.9 +2.0 0.068 −0.014 0.087 −0.004

OCR 78.2 70.6 0.071 0.096
X 80.2 +2.0 74.4 +3.8 0.064 −0.007 0.1 +0.004

Table 22. Effect of using SBCB with different segmentation heads on Synthia. Note that the backbones
for all models are set to ResNet-101.

Head SBCB mIoU ∆

FCN 70.0
X 70.9 +0.9

PSPNet 70.5
X 71.7 +1.2

ANN 70.4
X 71.8 +1.4

GCNet 70.8
X 71.4 +0.6

ASPP 70.9
X 71.9 +1.0

DNLNet 70.5
X 71.9 +1.4

CCNet 70.8
X 71.3 +0.5

UPerNet 72.4
X 73.1 +0.7

OCR 69.7
X 72.4 +2.7

The results in these tables demonstrate the consistent improvement achieved by the
SBCB framework in terms of intersection over union (IoU) and the boundary F-score across
various segmentation heads. Notably, the IoU metric is consistently enhanced for all the
examined heads. ROM is improved for every segmentation head, while RUM is improved
for every head except for OCR. However, OCR has the most gains in IoU and the boundary
F-score, leading us to believe that this is a trade-off in performance.

Sensors 2023, 23, 6980 27 of 42

To complement our quantitative findings, we include qualitative results of the SBCB
framework on the Cityscapes dataset in Appendix C. These visual results further substanti-
ate the efficacy of our proposed approach and showcase the learned features from the last
stage of the backbone.

6.3. Cityscapes Benchmark

Cityscapes Validation Split. Table 23 presents the performance of DeepLabV3+ trained
using the SBCB framework, along with a comparison to other SOTA methods with and
without boundary auxiliary training. Notably, our SBCB-empowered DeepLabV3+ sur-
passes other methods in performance while leveraging an off-the-shelf segmentation head
and backbone, without the need for explicit architecture redesign. This underscores the
effectiveness of our approach in boosting semantic segmentation performance without
significant modifications to the base model.

Table 23. Comparison of our method and state-of-the-art methods on the Cityscapes validation split.
The methods were only trained with fine-annotation data and without additional coarse training data
and Mapillary Vistas pre-training. The sections are divided into three categories: models without
boundary auxiliary, with boundary auxiliary, and with SBCB auxiliary.

Method Backbone mIoU

PSPNet [12] ResNet-101 78.8
DeepLabV3+ [64] ResNet-101 78.8

CCNet [16] ResNet-101 80.5
DANet [13] ResNet-101 81.5
SegFix [6] ResNet-101 81.5

GSCNN [2] ResNet-38 80.8
RPCNet [4] ResNet-101 82.1

CSEL [5] HED ResNet-101 83.7
BANet [41] HED ResNet-101 82.5

DeepLabV3+ SBCB ResNet-101 82.2
DeepLabV3+ SBCB HED ResNet-101 82.6

Furthermore, the SBCB-empowered DeepLabV3+ achieves competitive results com-
pared to joint-task models, which are inherently designed to better incorporate boundary
information into their architectures.

These findings highlight the remarkable capabilities of the SBCB framework in en-
hancing semantic segmentation, offering a compelling alternative to achieve state-of-the-art
results without complex architectural changes.

Cityscapes Benchmark. Table 24 displays the performance of DeepLabV3+ trained using
the SBCB framework and provides a comparison with other SOTA models on the Cityscapes
Benchmark. While our approach did not surpass the performance of SOTA multi-task
methods, DeepLabV3+ trained with the SBCB framework demonstrated competitive perfor-
mance and was able to match the results of some SOTA models. These results underscore
the effectiveness of the SBCB framework in enhancing the performance of DeepLabV3+
on the challenging Cityscapes dataset, positioning it as a compelling alternative in the
landscape of semantic segmentation methods. While not outperforming all SOTA models,
our approach exhibits valuable competitiveness, indicating that performance gains can be
achieved with boundary conditioning.

Sensors 2023, 23, 6980 28 of 42

Table 24. Comparison of our method and state-of-the-art methods on the Cityscapes test split. The
methods were only trained with fine-annotation data and without additional coarse training data
and Mapillary Vistas pre-training.

Method Backbone mIoU

PSPNet [12] ResNet-101 78.4
PSANet [65] ResNet-101 80.1
SeENet [15] ResNet-101 81.2

ANNNet [14] ResNet-101 81.3
CCNet [16] ResNet-101 81.4
DANet [13] ResNet-101 81.5

RPCNet [4] ResNet-101 81.8
CSEL [5] HED ResNet-101 82.1

DeepLabV3+ SBCB ResNet-101 81.4
DeepLabV3+ SBCB HED ResNet-101 81.0

6.4. Experiments on ADE20k

We trained DeepLabV3+ models using both ResNet-50 and ResNet-101 as backbones
and carefully compared their performance against models trained using the SBCB frame-
work on the challenging ADE20k dataset. The compelling results of these experiments
are presented in Table 25, where it is evident that the SBCB framework yields notable
improvements of over 0.5% compared to the base models.

Table 25. Results using ResNet backbones on the ADE20k validation split.

Head Backbone Batch SBCB mIoU ∆

PSPNet

50 8 39.9
50 8 X 40.6 +0.7

101 4 38.2
101 4 X 38.7 +0.5

DeepLabV3+

50 8 41.5
50 8 X 42.0 +0.5

101 4 37.7
101 4 X 38.2 +0.5

6.5. BiSeNet

In our pursuit of broader applicability and performance gains, we extended the
application of the SBCB framework to the Bilateral Segmentation Network (BiSeNet) V1
and V2, which are specialized models designed for real-time semantic segmentation [66,67].

Both BiSeNet V1 and V2 architectures comprise a split backbone, consisting of the
Detail Path (or Spatial Path) and the Semantic Path (or Context Path). The Detail Path
is a shallow CNN with a few stages, retaining large feature resolutions (four stages for
BiSeNet V1 and three stages for BiSeNet V2). The Semantic Path, on the other hand, is a
deeper CNN tailored to capture high-level semantics. While BiSeNet V1 adopts off-the-shelf
architectures like ResNet-50 for the Semantic Path, BiSeNet V2 employs a customized six-stage
ConvNet with FCN auxiliary heads for supervising features from the middle stages.

To incorporate the SBCB framework, we selected specific stages (Sides) of the backbone
to be supervised by the SBD head. Specifically, we chose three stages from the Detail Path
as the Binary Sides for the SBD head and the last stage of the Semantic Path as the Semantic
Side. It is essential to highlight that our approach did not require any modifications to the
original model. We simply added the SBD head by extracting the mid-features from the
backbones. For more details, please refer to Appendix D.

The results obtained through the SBCB framework on BiSeNet (V1 and V2) are pre-
sented in Table 26. As anticipated, applying the SBCB framework led to improvements in

Sensors 2023, 23, 6980 29 of 42

both IoU and boundary F-score metrics, further confirming its effectiveness in enhancing
models based on non-conventional architectures. This outcome underscores the versatility
and potential performance gains offered by the SBCB framework, even for specialized
models like BiSeNet V1 and V2, thereby contributing to the advancement of semantic
segmentation research in real-time scenarios.

Table 26. Results for BiSeNet and STDC on Cityscapes validation split.

Model SBCB mIoU ∆ F-Score ∆

BiSeNetV1 R50
74.3 66.0

X 75.4 +1.1 69.9 +3.9

BiSeNetV2
70.7 63.8

X 71.6 +0.9 66.2 +2.4

STDC V1 FCN (+Detail Head) 73.7 66.5
STDC V1 FCN X 75.4 +1.7 67.9 +1.4

6.6. STDC

Like BiSeNet, the STDC network is efficient for real-time semantic segmentation [68].
However, the STDC network is a single-branch network that replaces the Detail Path with
the Detail Head, which uses the features from the third stage to perform “detail guidance”
only during the training phase. The Detail Head is supervised with “Detail GT”, which is
generated using a multi-scale Laplacian convolution kernel in an on-the-fly manner, similar
to our method. The Detail GT contains spatial details like boundaries and corners.

In the following experiment, we replaced the Detail Head with the SBD head and
trained using the SBCB framework. We took the first four stages of the backbone as the
Binary Sides and used the output of the FFM as the Semantic Side for the SBD head. Please
see Appendix E for more details.

The results are shown in Table 26, where we compare the original STDC with STDC
that replaced the Detail Head with our SBD head. Remarkably, substantial improvements
are observed when employing the SBD head as the auxiliary task, particularly in terms
of IoU metrics. While the Detail Head aims to enhance the segmentation quality around
boundaries, our SBCB framework demonstrates higher improvements in the boundary
F-score, further accentuating its efficacy in leveraging boundary information to enhance
semantic segmentation.

6.7. ConvNeXt and SegFormer

In this section, we explore the applicability of the SBCB framework and the “backbone
trick” on two contemporary architectures: ConvNeXt and SegFormer.

ConvNeXt represents a backbone architecture composed of pure ConvNet components
with design elements borrowed from vision transformers (ViT) [22,69]. On the other hand,
SegFormer is an architecture designed for segmentation, featuring a ViT-based backbone
called the Mix Transformer (MiT), along with a lightweight All-MLP segmentation head [25].
Notably, both architectures incorporate hierarchical feature extraction, rendering them
compatible with the SBCB framework.

In Table 27, we present the results obtained by applying the SBCB framework to these
modern architectures. Additionally, we assess the impact of integrating the “backbone
trick”, denoted by “Mod”, into the backbones.

Sensors 2023, 23, 6980 30 of 42

Table 27. Results of the SBCB framework on modern backbones/architectures on the Cityscapes
validation split.

Head Backbone SBCB mIoU ∆ F-Score ∆

UPerNet

ConvNeXt-base
81.8 74.4

X 82.0 +0.2 75.5 +1.1
Mod ConvNeXt-base X 82.2 +0.4 76.5 +2.1

SegFormer
MiT-b0

75.5 66.9
X 76.5 +1.0 68.1 +1.2

Mod MIT-b0 X 76.8 +1.3 69.7 +2.8

SegFormer
MiT-b2

80.9 73.2
X 81.1 +0.2 74.7 +1.5

Mod MIT-b2 X 81.6 +0.7 76.0 +2.8

SegFormer MiT-b4
81.6 75.5

X 82.2 +0.6 76.7 +1.2

The results demonstrate that the SBCB framework remains effective in improving
these modern state-of-the-art architectures, leading to consistent performance gains in
terms of both IoU and the boundary F-score. This outcome further confirms the versatility
of the SBCB approach and its ability to enhance the performance of contemporary models
by leveraging boundary information, reinforcing its relevance in advancing the field of
semantic segmentation.

7. Feature Fusion

In addition to our primary focus on the Semantic-Boundary-Conditioned Boosting
(SBCB) framework, we also explored the explicit utilization of features obtained from the
semantic boundary head through two feature fusion techniques. These techniques aim to
further enhance segmentation performance by leveraging the knowledge learned in the
SBD head.

Channel-Merge. The first technique, known as Channel-Merge, involves straightforward
channel concatenation with a few convolutional kernels to facilitate feature fusion, as
depicted in Figure 10a. In this method, we take the features before upsampling from
the Side Layers of the SBD head. Each feature is resized and concatenated into a single
tensor, which is further combined with the features obtained from the segmentation head
(e.g., pyramid-pooling module (PPM)). To integrate the features effectively in the channel
direction, we employ two 1× 1 convolutional kernels. It is worth noting that the number
of convolutions can be adjusted according to specific requirements.
Two-Stream Merge. The second technique, known as Two-Stream Merge, establishes a
direct connection between the features learned in the SBD head and the segmentation head,
achieved by employing a 1× 1 convolutional kernel, as illustrated in Figure 10b. This
approach is inspired by the GSCNN architecture, wherein we treat the SBD head as the
shape stream, and the fusion mechanism mirrors that of the GSCNN.

While these feature fusion techniques are not the primary focus of this paper, they serve
as valuable supplementary approaches to leverage the knowledge acquired in the SBD head
for improved segmentation performance. By explicitly incorporating boundary-related
information through these fusion methods, we seek to further enhance the segmentation
quality and offer additional insights into the potential benefits of integrating boundary-
aware features into the segmentation process.

Sensors 2023, 23, 6980 31 of 42

Backbone

Image

Side1
(Stem)

Side2

Side3

Side4

Side5

1×1 conv

1×1 conv

1×1 conv

1×1 conv

PPM 1x1conv

Seg. Head

Bdry. Head

Fuse
Up

Up

Up

Up

Merge Module

Concat Split
Channel

Merge Module

1×1 conv

Split Concat

Backbone

Side1
(Stem)

Side2

Side3

Side4

Side5

ASPP + Bot. C1 Bot.

Seg. Head

ResNet

SBD head

FuseSide Layer

Side Layer

Side Layer

Side Layer

Aux

Prediction

1x1conv

ResNet

1×1 conv

(a) Channel Merge Feature Fusion (b) Two-Stream Feature Fusion

Figure 10. In (a), we show how to apply the Channel-Merge module for explicit feature fusion based
on the SBCB framework. In (b), we show how to apply the Two-Stream approach for explicit feature
fusion modeled after the GSCNN architecture.

Tables 28 and 29 presents the results of two baseline architectures, where we applied
the SBCB framework and feature fusion methods. The evaluation was performed on two
datasets: Cityscapes and Synthia.

Table 28. Comparison of feature fusion methods with baseline methods on Cityscapes.

Model mIoU ∆ F-Score ∆

PSPNet

77.6 70.2
+SBCB 78.7 +1.1 73.3 +3.1

Two-Stream Merge 78.7 +1.0 73.0 +2.8
Channel-Merge 79.1 +1.5 73.2 +3.0

DeepLabV3+

79.5 71.4
+SBCB 80.2 +0.7 73.7 +2.3

Two-Stream Merge 80.5 +1.0 73.6 +2.2
Channel-Merge 80.5 +1.0 74.5 +3.1

Table 29. Comparison of feature fusion methods with baseline methods on Synthia.

Model mIoU ∆ F-Score ∆

PSPNet

70.5 63.7
+SBCB 71.7 +1.2 65.9 +2.2

Two-Stream Merge 71.3 +0.8 65.5 +1.8
Channel-Merge 72.5 +2.0 67.2 +3.5

DeepLabV3+

72.4 67.2
+SBCB 73.5 +1.1 69.1 +1.9

Two-Stream Merge 73.8 +1.4 69.2 +2.0
Channel-Merge 74.0 +1.6 69.9 +2.7

While we initially expected the Two-Stream architecture to exhibit superior perfor-
mance, we observed that, while it performed well on certain datasets, it was outperformed
by the SBCB framework on some occasions. Surprisingly, the Channel-Merge architecture
achieved the best IoU metrics across all models and datasets, and it also displayed the best
boundary F-scores in most cases.

Sensors 2023, 23, 6980 32 of 42

Comparing the SBCB framework with the Channel-Merge approach against the base-
line model, we noticed a significant improvement in segmentation performance when using
the SBCB framework. This highlights the substantial contributions of the SBCB framework,
primarily driven by the representational capabilities of the backbone, while the feature
fusion methods yielded smaller improvements on top of the improvements obtained with
the SBCB framework. This may also highlight the importance of the boundary-aware
feature representations learned by the backbone.

Furthermore, we observed that the Channel-Merge method proved particularly advan-
tageous when the training ground-truth masks were precise. The Synthia dataset, which
provides generated segmentation masks, benefits more from the feature fusion approach
due to its cleaner annotations, whereas the Cityscapes dataset naturally contains noisier
boundaries attributed to human annotators.

It is important to note that feature fusion methods introduce a dependency of the
segmentation head on the SBD head, which in turn increases computational costs. This
dependency also introduces the complexity of designing the fusion methods, which must
be carefully tuned to avoid instability. For example, Channel-Merge might be better than
Two-Stream Merge due to the Merge module mixing various representations obtained
earlier rather than a single representation obtained at the end of the SBD head.

The SBCB framework remains instrumental in consistently enhancing existing segmen-
tation models without modifications to the original architecture. The insights gleaned from
the SBD heads hold promise for inspiring novel joint architectures, such as Channel-Merge
and Two-Stream Merge.

8. Conclusions

We present the SBCB framework, a compelling and straightforward training approach
that effectively enhances segmentation performance. At its core, the framework incor-
porates a semantic boundary detection (SBD) head, which is applied to the hierarchical
features of the backbone and supervised by semantic boundaries. Our exploration of differ-
ent SBD heads revealed that the CASENet architecture significantly improves segmentation
quality without introducing a substantial increase in parameters during training.

Through comprehensive experiments on popular backbones and segmentation heads,
conducted on the challenging Cityscapes and Synthia datasets, we demonstrate the efficacy
of the SBCB framework. It consistently improves segmentation quality while effectively
addressing the challenges of over- and under-segmentation, particularly in regions near
boundaries. The obtained results reveal significant average improvements, with the SBCB
framework boosting IoU by 1.2%, the boundary F-score by 2.6%, ROM by 0.011, and
RUM by 0.005 on the Cityscapes dataset.

Moreover, our explorations extend beyond conventional architectures, as we applied
the SBCB framework to customized backbones and recent transformer-based architectures.
The results illustrate the versatility of our approach, confirming its compatibility with
various models and architectures.

In addition to its inherent effectiveness, we offer modifications and feature fusion
methods to promote the broader utilization of semantic boundaries for semantic segmenta-
tion. The Channel-Merge technique, in particular, yields notable improvements, especially
when dealing with precise training ground-truth masks.

Looking ahead, we envision applying the SBCB framework to other segmentation
tasks, such as depth estimation, panoptic segmentation, universal image segmentation [28],
and interactive segmentation models [30], aiming to influence and improve other dense
prediction tasks. This framework can also be extended to support other tasks for auxiliary
supervision such as depth, normal, and distance transforms. The success and effectiveness
of the SBCB framework open up exciting possibilities for future research in semantic
segmentation and related areas.

Sensors 2023, 23, 6980 33 of 42

Author Contributions: H.I. proposed, implemented, and conducted all the experiments. Y.A. super-
vised the project. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Grands-in-Aid for Scientific Research Grant Number
JP20J2212 under the Japan Society for the Promotion of Science (JSPS).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created.

Acknowledgments: We thank the people at Aero Asahi Corporation for participating in discussions,
Jiani Liu for providing feedback and revising the manuscript, our colleagues for contributing to the
discussion and revision, and reviewers for providing valuable feedback on improving this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SBD Semantic Boundary Detection
SBCB Semantic-Boundary-Conditioned Backbone
OTFGT On-the-Fly Ground Truth
MTL Multi-Task Learning
GT Ground Truth
CNN Convolutional Neural Network
FCN Fully Convolutional Network
ASPP Atrous Spatial Pyramid Pooling
PPM Pyramid-Pooling Module
OTF On-the-Fly
CE Cross-Entropy
BCE Binary Cross-Entropy
mIoU Mean Intersection over Union
mF Mean F-score
ROM Region Over-segmentation Metric
RUM Region Under-segmentation Metric
ODS Optimal Dataset Scale
MS Multi-Scale
SOTA State of the Art

Appendix A. On-the-Fly Ground-Truth Generation (OTFGT) Algorithm

In this section, we provide a simple Python code for generating semantic boundaries
from semantic segmentation masks using the OTFGT module, as shown in Code 1.

Code 1: The algorithm for the on-the-fly ground-truth (OTFGT) module. The mask2bdry

function takes in a binary segmentation mask and produces a boundary. The function uses
ignore_mask to ignore unnecessary boundaries, like boundaries near the frame of the image.
The mask2sbd function takes in a segmentation mask and produces a semantic boundary
detection ground truth.

import cv2
import numpy as np

def mask2bdry(m, ignore_mask, radius):
"""Convert binary mask to boundaries.

Args:
m (np.ndarray): 2D binary mask
ignore_mask (np.ndarray): 2D binary mask
radius (int): boundary thickness

Returns:
bdry (np.ndarray): 2D boundary

Sensors 2023, 23, 6980 34 of 42

"""
inner = cv2.distanceTransform(((m + ignore_mask) > 0).astype(np.uint8), cv2.DIST_L2)
outer = cv2.distanceTransform(((1.0 - m) > 0).astype(np.uint8), cv2.DIST_L2)
dist = outer + inner

dist[dist > radius] = 0
bdry = (dist > 0).astype(np.uint8)
return bdry

def mask2sbd(mask, ignore_indices=[], radius=2):
"""Convert Segmentation Mask to Semantic Boundaries.

Args:
mask (np.ndarray): segmentation mask
ignore_indicies (List[int]): list of indices to ignore
radius (int): boundary thickness

Returns:
bdrys (np.ndarray): 3D array containing boundaries

"""
assert mask.ndim == 3
num_labels, h, w = mask.shape

make ignore mask
ignore_mask = np.zeros((h, w), dtype=np.uint8)
for i in ignore_indices:

ignore_mask += mask[i]

bdrys = np.zeros_like(mask)
for label in range(num_labels):

m = mask[label]

if label in ignore_indices:
continue

if there are no class labels in the mask
if not np.count_nonzero(m):

continue

bdrys[label] = mask2bdry(m, ignore_mask, radius)

return bdrys

The mask2bdry function is responsible for generating boundaries from binary masks.
We chose to use OpenCV’s DistanceTransform instead of scipy’s distance_transform_edt function
because we observed that the former provides the same boundaries with a faster speed,
around 40× faster for our setup. The mask2sbd function utilizes mask2bdry to generate semantic
boundaries from semantic segmentation masks. For instance-sensitive boundaries, another
mask2bdry can be added to the for-loop for instance segmentation masks, and then a category-
specific boundary can be obtained by using a bitwise OR operation of the two boundaries.

The OTFGT module is parallelizable since each for-loop is independent. However, we
did not add multi-processing to the module since PyTorch already uses multi-processing
for the dataloader, and adding extra multi-processing could lead to unnecessary overhead
and slow down the dataloader.

Regarding the widely used offline preprocessing script introduced in [36], it is written
in MATLAB and is not compatible with online preprocessing used in Python libraries like
PyTorch. The MATLAB code uses a two-step method, first generating the entire binary
boundaries and then extracting the semantic boundaries based on the candidate edges. The
code uses a circular neighborhood approach, which requires looping every pixel.

To make a fair comparison, we translated the MATLAB code to Python and modified
it to be compatible with online preprocessing. Our preprocessing pipeline for a single
1024× 2048 image takes around 160 ms, while the algorithm used in [36] takes around
1070 ms. This demonstrates the superiority of the OTFGT, making it more suitable for
online preprocessing in libraries like PyTorch.

Finally, we believe that the OTFGT module can still be further optimized by using
lower-level languages like C and wrapping the function with Cython, potentially leading
to even better performance.

Sensors 2023, 23, 6980 35 of 42

Appendix B. ROM and RUM

In Tables A1 and A2, we present the region-based over-segmentation measure (ROM)
and region-based under-segmentation measure (RUM) for the Cityscapes validation
split, respectively.

For all models, over-segmentation for categories such as “pole”, “vegetation”, “build-
ing”, and “sidewalk”’ improves significantly, with around −0.04 in ROM. This indicates
that the segmentation quality around the boundaries of these categories has been notably
enhanced by the SBCB framework. There are no specific categories where the metric
degrades across all models in terms of over-segmentation. This suggests that the SBCB
framework’s improvements in boundary-aware features do not lead to a degradation in
the overall segmentation quality for any particular category.

On the other hand, for the RUM metric, there seems to be a more visible trend of
trade-offs. While there are drastic improvements for the “car”’ category across all the
models, the rest of the models do not exhibit a consistent trend. This suggests that the
SBCB framework’s effectiveness in reducing under-segmentation varies depending on the
specific category.

Sensors 2023, 23, 6980 36 of 42

Table A1. Per-category ROM for the Cityscapes validation split.

Method SBCB ROM Road Swalk Build. Wall Fence Pole Tlight Sign Veg Terrain Sky Person Rider Car Truck Bus Train Motor Bike

PSPNet 0.078 0.054 0.197 0.218 0.054 0.066 0.315 0.004 0.017 0.176 0.063 0.079 0.038 0.031 0.037 0.018 0.019 0.013 0.014 0.075
X 0.061 0.035 0.125 0.145 0.04 0.056 0.29 0.01 0.014 0.165 0.058 0.061 0.029 0.03 0.013 0.017 0.009 0.006 0.007 0.042

DeepLabV3 0.072 0.066 0.133 0.194 0.045 0.066 0.344 0.004 0.014 0.173 0.061 0.07 0.049 0.025 0.034 0.011 0.012 0.007 0.006 0.059
X 0.06 0.07 0.112 0.155 0.034 0.041 0.303 0.005 0.018 0.128 0.051 0.062 0.033 0.023 0.015 0.012 0.006 0.007 0.008 0.05

DeepLabV3+ 0.08 0.074 0.158 0.206 0.065 0.066 0.367 0.01 0.023 0.195 0.073 0.061 0.045 0.031 0.05 0.009 0.007 0.005 0.008 0.071
X 0.065 0.073 0.132 0.161 0.048 0.053 0.309 0.005 0.019 0.159 0.066 0.054 0.037 0.03 0.01 0.011 0.01 0.006 0.011 0.05

Table A2. Per-category RUM for the Cityscapes validation split.

Method SBCB RUM Road Swalk Build. Wall Fence Pole Tlight Sign Veg Terrain Sky Person Rider Car Truck Bus Train Motor Bike

PSPNet 0.102 0.095 0.136 0.45 0.009 0.019 0.19 0.042 0.095 0.334 0.022 0.102 0.093 0.069 0.151 0.002 0.006 0.009 0.011 0.108
X 0.098 0.079 0.123 0.399 0.01 0.015 0.188 0.056 0.1 0.343 0.026 0.121 0.096 0.078 0.094 0.001 0.004 0 0.012 0.108

DeepLabV3 0.104 0.079 0.157 0.436 0.016 0.031 0.179 0.047 0.096 0.328 0.023 0.126 0.093 0.063 0.162 0.003 0.005 0.002 0.01 0.113
X 0.1 0.1 0.147 0.429 0.011 0.026 0.192 0.05 0.104 0.3 0.03 0.116 0.107 0.074 0.078 0.002 0.004 0.001 0.009 0.117

DeepLabV3+ 0.094 0.05 0.142 0.396 0.013 0.025 0.156 0.048 0.089 0.302 0.027 0.093 0.098 0.062 0.143 0.001 0.006 0.002 0.01 0.115
X 0.086 0.087 0.147 0.358 0.013 0.02 0.156 0.045 0.072 0.262 0.029 0.104 0.101 0.078 0.061 0.001 0.002 0 0.01 0.094

Sensors 2023, 23, 6980 37 of 42

Appendix C. Qualitative Visualizations

We show qualitative visualizations for the results in Tables 19 and 21 in
Figures A1 and A2, respectively.

Figure A1. Visualization of the segmentation masks and segmentation errors for the models in
Table 19. The columns, starting from the left, represent the input image, prediction without SBCB,
prediction with SBCB, ground truth, segmentation errors without SBCB, and segmentation errors
with SBCB. We visualize two samples (two rows) per backbone. From the top row, the backbones are
ResNet-50, DenseNet-169, ResNeSt-101, HR18, HR48, MobileNetV2, and MobileNetV3. Best seen in
color and zoomed in. Cityscapes color palette is used.

Sensors 2023, 23, 6980 38 of 42

Figure A2. Visualization of the segmentation masks and segmentation errors for the models in
Table 21. The columns, starting from the left, represent the input image, backbone feature without
SBCB, backbone feature with SBCB, prediction without SBCB, prediction with SBCB, and ground truth.
We visualize two samples (two rows) per segmentation head. From the top row, the segmentation
heads are FCN, ANN, GCNet, DNLNet, CCNet, UperNet, and OCR. Best seen in color and zoomed in.

Appendix D. BiSeNet + SBCB

In Figure A3a, we show a detailed architecture diagram showing which features of the
BiSeNet backbone are used in the SBD head. In both BiSeNet V1 and V2, the architecture is
composed of a Context Path and a Spatial Path. We used the three stages of the Spatial Path
for the earlier Side Layers of the SBD head. We used the last feature of the Aggregation
Layer for the last Side Layer.

Sensors 2023, 23, 6980 39 of 42

Backbone

FCN

Seg. Head

BiSeNet

SBD head

FuseSide Layer

Side Layer

Side Layer

Side Layer

Aux

Prediction

Image

Stage 2

Aggregation

Backbone

Stage 1

STDC Backbone

SBD head

FuseSide Layer

Side Layer

Side Layer

Side Layer

Aux

Prediction

Stage 1

Stage 3

Stage 4

Stage 5

Spatial
Path

Context
Path

Stage 1

Stage 2

Stage 3

FCN

Seg. Head

Stage 2

Stage 3

Stage 4

Stage 5

ARM

ARM

FFM

Side Layer

(a) BiSeNet (b) STDC

Figure A3. We show how we applied the SBCB framework for BiSeNet and STDC in (a) and
(b), respectively.

Appendix E. STDC + SBCB

In Figure A3b, we show a detailed architecture diagram showing how we applied
the SBCB framework to the STDC architecture. The architecture is more reminiscent of a
ResNet-like hierarchical backbone, but the original STDC applies a Detail Head, which
uses the features of the third stage. We removed the Detail Head and instead added an
SBD head by using the first four stages for the Binary-Side Layer and the final output of the
FFM as the input to the Semantic-Side Layer.

References
1. Cheng, B.; Girshick, R.B.; Doll’ar, P.; Berg, A.C.; Kirillov, A. Boundary IoU: Improving Object-Centric Image Segmentation

Evaluation. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual,
19–25 June 2021; pp. 15329–15337.

2. Takikawa, T.; Acuna, D.; Jampani, V.; Fidler, S. Gated-SCNN: Gated Shape CNNs for Semantic Segmentation. In Proceedings of
the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 5228–5237.

3. Li, X.; Li, X.; Zhang, L.; Cheng, G.; Shi, J.; Lin, Z.; Tan, S.; Tong, Y. Improving Semantic Segmentation via Decoupled Body
and Edge Supervision. In Proceedings of the 2020 IEEE/CVF European Conference on Computer Vision (ECCV), Virtual,
23–28 August 2020; pp. 435–452.

4. Zhen, M.; Wang, J.; Zhou, L.; Li, S.; Shen, T.; Shang, J.; Fang, T.; Long, Q. Joint Semantic Segmentation and Boundary Detection
Using Iterative Pyramid Contexts. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Virtual, 13–19 June 2020; pp. 13663–13672.

5. Yu, Z.; Huang, R.; Byeon, W.; Liu, S.; Liu, G.; Breuel, T.; Anandkumar, A.; Kautz, J. Coupled Segmentation and Edge Learning via
Dynamic Graph Propagation. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Virtual,
6–14 December 2021.

6. Yuan, Y.; Xie, J.; Chen, X.; Wang, J. SegFix: Model-Agnostic Boundary Refinement for Segmentation. In Proceedings of the 2020
IEEE/CVF European Conference on Computer Vision (ECCV), Virtual, 23–28 August 2020; pp. 489–506.

7. Bertasius, G.; Shi, J.; Torresani, L. High-for-Low and Low-for-High: Efficient Boundary Detection from Deep Object Features and
Its Applications to High-Level Vision. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV),
Santiago, Chile, 11–18 December 2015; pp. 504–512.

8. Ramamonjisoa, M.; Du, Y.; Lepetit, V. Predicting Sharp and Accurate Occlusion Boundaries in Monocular Depth Estimation
Using Displacement Fields. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 14636–14645.

9. Ramalingam, S.; Bouaziz, S.; Sturm, P.F.; Brand, M. SKYLINE2GPS: Localization in urban canyons using omni-skylines. In Proceed-
ings of the 010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, 18–22 October 2010;
pp. 3816–3823.

Sensors 2023, 23, 6980 40 of 42

10. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

11. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017,
arXiv:1706.05587.

12. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239.

13. Fu, J.; Liu, J.; Tian, H.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. In Proceedings of the 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3141–3149.

14. Zhu, Z.; Xu, M.; Bai, S.; Huang, T.; Bai, X. Asymmetric Non-Local Neural Networks for Semantic Segmentation. In Proceedings of
the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 593–602.

15. Pang, Y.; Li, Y.; Shen, J.; Shao, L. Towards Bridging Semantic Gap to Improve Semantic Segmentation. In Proceedings of the
2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 4229–4238.

16. Huang, Z.; Wang, X.; Huang, L.; Huang, C.; Wei, Y.; Shi, H.; Liu, W. CCNet: Criss-Cross Attention for Semantic Segmenta-
tion. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea,
27 October–2 November 2019; pp. 603–612.

17. Cao, Y.; Xu, J.; Lin, S.; Wei, F.; Hu, H. Global Context Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 45, 6881–6895.
[CrossRef] [PubMed]

18. Yin, M.; Yao, Z.; Cao, Y.; Li, X.; Zhang, Z.; Lin, S.; Hu, H. Disentangled Non-Local Neural Networks. In Proceedings of the 2020
IEEE/CVF European Conference on Computer Vision (ECCV), Virtual, 23–28 August 2020; pp. 191–207.

19. Fu, J.; Liu, J.; Jiang, J.; Li, Y.; Bao, Y.; Lu, H. Scene Segmentation with Dual Relation-Aware Attention Network. IEEE Trans. Neural
Netw. Learn. Syst. 2021, 32, 2547–2560. [CrossRef] [PubMed]

20. Wang, X.; Girshick, R.B.; Gupta, A.K.; He, K. Non-local Neural Networks. In Proceedings of the 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803.

21. Vaswani, A.; Shazeer, N.M.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need.
In Proceedings of the 21st International Conference in Neural Information Processing Systems (NeurIPS), Long Beach, CA, USA,
4–9 December 2017.

22. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.

23. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada,
11–17 October 2021; pp. 9992–10002.

24. Strudel, R.; Pinel, R.G.; Laptev, I.; Schmid, C. Segmenter: Transformer for Semantic Segmentation. In Proceedings of the 2021
IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 7242–7252.

25. Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Álvarez, J.M.; Luo, P. SegFormer: Simple and Efficient Design for Semantic
Segmentation with Transformers. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Virtual,
6–14 December 2021.

26. Kirillov, A.; He, K.; Girshick, R.B.; Rother, C.; Dollár, P. Panoptic Segmentation. In Proceedings of the 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 9396–9405.

27. Cheng, B.; Schwing, A.G.; Kirillov, A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In Proceedings of
the Neural Information Processing Systems, Virtual, 6–14 December 2021.

28. Jain, J.; Li, J.; Chiu, M.C.; Hassani, A.; Orlov, N.; Shi, H. OneFormer: One Transformer to Rule Universal Image Segmentation.
arXiv 2022, arXiv:2211.06220.

29. Li, F.; Zhang, H.; Xu, H.S.; Liu, S.; Zhang, L.; Ni, L.M.; Shum, H.Y. Mask DINO: Towards A Unified Transformer-based Framework
for Object Detection and Segmentation. arXiv 2022, arXiv:2206.02777.

30. Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment
Anything. arXiv 2023, arXiv:2304.02643.

31. Zou, X.; Yang, J.; Zhang, H.; Li, F.; Li, L.; Gao, J.; Lee, Y.J. Segment Everything Everywhere All at Once. arXiv 2023,
arXiv:2304.06718.

32. Li, F.; Zhang, H.; Sun, P.; Zou, X.; Liu, S.; Yang, J.; Li, C.; Zhang, L.; Gao, J. Semantic-SAM: Segment and Recognize Anything at
Any Granularity. arXiv 2023, arXiv:2307.04767.

33. Xie, S.; Tu, Z. Holistically-Nested Edge Detection. Int. J. Comput. Vis. 2015, 125, 3–18. [CrossRef]
34. Liu, Y.; Cheng, M.M.; Hu, X.; Wang, K.; Bai, X. Richer Convolutional Features for Edge Detection. In Proceedings of the 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5872–5881.
35. Pu, M.; Huang, Y.; Liu, Y.; Guan, Q.; Ling, H. EDTER: Edge Detection with Transformer. In Proceedings of the 2022 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 1392–1402.
36. Yu, Z.; Feng, C.; Liu, M.Y.; Ramalingam, S. CASENet: Deep Category-Aware Semantic Edge Detection. In Proceedings of the 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1761–1770.

http://doi.org/10.1109/TPAMI.2020.3047209
http://www.ncbi.nlm.nih.gov/pubmed/33360983
http://dx.doi.org/10.1109/TNNLS.2020.3006524
http://www.ncbi.nlm.nih.gov/pubmed/32745005
http://dx.doi.org/10.1007/s11263-017-1004-z

Sensors 2023, 23, 6980 41 of 42

37. Hu, Y.; Chen, Y.; Li, X.; Feng, J. Dynamic Feature Fusion for Semantic Edge Detection. In Proceedings of the IJCAI, Macao, China,
10–16 August 2019.

38. Liu, Y.; Cheng, M.M.; Bian, J.; Zhang, L.; Jiang, P.T.; Cao, Y. Semantic Edge Detection with Diverse Deep Supervision. Int. J.
Comput. Vis. 2022, 130, 179–198. [CrossRef]

39. Shen, D.; Ji, Y.; Li, P.; Wang, Y.; Lin, D. RANet: Region Attention Network for Semantic Segmentation. In Proceedings of the
Neural Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2020.

40. Hu, H.; Cui, J.; Zha, H. Boundary-aware Graph Convolution for Semantic Segmentation. In Proceedings of the 2020 25th
International Conference on Pattern Recognition (ICPR), Taichung, Taiwan, 18–21 July 2021; pp. 1828–1835.

41. Zhou, Q.; Qiang, Y.; Mo, Y.; Wu, X.; Latecki, L.J. BANet: Boundary-Assistant Encoder-Decoder Network for Semantic Segmenta-
tion. IEEE Trans. Intell. Transp. Syst. 2022, 23, 25259–25270. [CrossRef]

42. Tao, A.; Sapra, K.; Catanzaro, B. Hierarchical Multi-Scale Attention for Semantic Segmentation. arXiv 2020, arXiv:2005.10821.
43. Chen, X.; Han, Z.; Liu, X.; Li, Z.; Fang, T.; Huo, H.; Li, Q.; Zhu, M.; Liu, M.; Yuan, H. Semantic boundary enhancement and position

attention network with long-range dependency for semantic segmentation. Appl. Soft Comput. 2021, 109, 107511. [CrossRef]
44. Chen, Y.; Dapogny, A.; Cord, M. SEMEDA: Enhancing Segmentation Precision with Semantic Edge Aware Loss. Pattern Recognit.

2020, 108, 107557. [CrossRef]
45. Borse, S.; Wang, Y.; Zhang, Y.; Porikli, F.M. InverseForm: A Loss Function for Structured Boundary-Aware Segmentation. In

Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA,
20–25 June 2021; pp. 5897–5907.

46. Wang, C.; Zhang, Y.; Cui, M.; Liu, J.; Ren, P.; Yang, Y.; Xie, X.; Hua, X.; Bao, H.; Xu, W. Active Boundary Loss for Semantic
Segmentation. In Proceedings of the AAAI, Virtual, 22 February–1 March 2022.

47. Zhou, P.; Price, B.L.; Cohen, S.D.; Wilensky, G.; Davis, L.S. Deepstrip: High-Resolution Boundary Refinement. In Proceedings of
the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 13–19 June 2020; pp. 10555–10564.

48. Misra, I.; Shrivastava, A.; Gupta, A.K.; Hebert, M. Cross-Stitch Networks for Multi-task Learning. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 3994–4003.

49. Kokkinos, I. UberNet: Training a Universal Convolutional Neural Network for Low-, Mid-, and High-Level Vision Using Diverse
Datasets and Limited Memory. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 July 2017; pp. 5454–5463.

50. Xiao, T.; Liu, Y.; Zhou, B.; Jiang, Y.; Sun, J. Unified Perceptual Parsing for Scene Understanding. In Proceedings of the 2018
IEEE/CVF European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Springer: Berlin/Heidel-
berg, Germany, 2018.

51. Xu, D.; Ouyang, W.; Wang, X.; Sebe, N. PAD-Net: Multi-tasks Guided Prediction-and-Distillation Network for Simultaneous
Depth Estimation and Scene Parsing. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 675–684.

52. Xu, J.; Xiong, Z.; Bhattacharyya, S. PIDNet: A Real-time Semantic Segmentation Network Inspired by PID Controllers. In
Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 24–31
January 2023.

53. Tan, H.H.; Wu, S.; Pi, J. Semantic Diffusion Network for Semantic Segmentation. In Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS), New Orleans, LA, USA, 10–16 December 2023.

54. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

55. Odena, A.; Dumoulin, V.; Olah, C. Deconvolution and Checkerboard Artifacts. Distill 2016. . [CrossRef]
56. Felzenszwalb, P.F.; Huttenlocher, D.P. Distance Transforms of Sampled Functions. Theory Comput. 2012, 8, 415–428. [CrossRef]
57. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes

Dataset for Semantic Urban Scene Understanding. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 3213–3223.

58. Yu, Z.; Liu, W.; Zou, Y.; Feng, C.; Ramalingam, S.; Kumar, B.V.K.V.; Kautz, J. Simultaneous Edge Alignment and Learning. In
Proceedings of the 2018 IEEE/CVF European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 400–417.

59. Yu, F.; Chen, H.; Wang, X.; Xian, W.; Chen, Y.; Liu, F.; Madhavan, V.; Darrell, T. BDD100K: A Diverse Driving Dataset
for Heterogeneous Multitask Learning. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 2633–2642.

60. Ros, G.; Sellart, L.; Materzynska, J.; Vázquez, D.; López, A.M. The SYNTHIA Dataset: A Large Collection of Synthetic Images
for Semantic Segmentation of Urban Scenes. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 3234–3243.

61. Zhou, B.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.; Torralba, A. Scene Parsing through ADE20K Dataset. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5122–5130.

62. Zhang, Y.; Mehta, S.; Caspi, A. Rethinking Semantic Segmentation Evaluation for Explainability and Model Selection. arXiv 2021,
arXiv:2101.08418.

http://dx.doi.org/10.1007/s11263-021-01539-8
http://dx.doi.org/10.1109/TITS.2022.3194213
http://dx.doi.org/10.1016/j.asoc.2021.107511
http://dx.doi.org/10.1016/j.patcog.2020.107557
http://dx.doi.org/10.23915/distill.00003
http://dx.doi.org/10.4086/toc.2012.v008a019

Sensors 2023, 23, 6980 42 of 42

63. Contributors, M. MMSegmentation: OpenMMLab Semantic Segmentation Toolbox and Benchmark. 2020. Available online:
https://github.com/open-mmlab/mmsegmentation (accessed on 13 July 2023).

64. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic
Image Segmentation. In Proceedings of the 2018 IEEE/CVF European Conference on Computer Vision (ECCV), Munich, Germany,
8–14 September 2018.

65. Zhao, H.; Zhang, Y.; Liu, S.; Shi, J.; Loy, C.C.; Lin, D.; Jia, J. PSANet: Point-wise Spatial Attention Network for Scene Parsing. In
Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018.

66. Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation.
In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018.

67. Yu, C.; Gao, C.; Wang, J.; Yu, G.; Shen, C.; Sang, N. BiSeNet V2: Bilateral Network with Guided Aggregation for Real-Time
Semantic Segmentation. Int. J. Comput. Vis. 2020, 129, 3051–3068. [CrossRef]

68. Fan, M.; Lai, S.; Huang, J.; Wei, X.; Chai, Z.; Luo, J.; Wei, X. Rethinking BiSeNet For Real-time Semantic Segmentation. In
Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA,
20–25 June 2021; pp. 9711–9720.

69. Liu, Z.; Mao, H.; Wu, C.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. In Proceedings of the 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 11966–11976.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/open-mmlab/mmsegmentation
http://dx.doi.org/10.1007/s11263-021-01515-2

	Introduction
	Related Work
	Semantic Segmentation
	Edge and Semantic Boundary Detection
	Boundary-Aware Semantic Segmentation
	Positioning of Our Approach

	Approach
	Semantic Boundary Detection Heads
	SBCB Framework
	On-the-Fly Ground-Truth Generation
	Loss Functions

	Experimental Setup
	Datasets
	Evaluation Metrics
	Implementation Details

	Ablation Studies
	Which SBCB Head to Use?
	Which Sides to Supervise?
	Does It Improve All Categories?
	Comparisons of Different Auxiliary Signals
	Comparisons with SegFix
	Comparisons with GSCNN
	Backbone Trick
	Does SBCB Also Improve SBD Metrics?
	Does SBCB Improve Segmentation around Boundaries?
	Does SBCB Improve Over- and Under-Segmentation?

	Experiments
	Different Backbones
	Different Heads
	Cityscapes Benchmark
	Experiments on ADE20k
	BiSeNet
	STDC
	ConvNeXt and SegFormer

	Feature Fusion
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	References

