
Citation: Hu, C.; Sun, Z.; Li, C.;

Zhang, Y.; Xing, C. Survey of Time

Series Data Generation in IoT. Sensors

2023, 23, 6976. https://doi.org/

10.3390/s23156976

Received: 3 July 2023

Revised: 24 July 2023

Accepted: 26 July 2023

Published: 5 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Systematic Review

Survey of Time Series Data Generation in IoT
Chaochen Hu 1,2 , Zihan Sun 1,2 , Chao Li 1,2,* , Yong Zhang 1,2,* and Chunxiao Xing 1,2

1 Beijing National Research Center for Information Science and Technology, Tsinghua University,
Beijing 100084, China; hcc20@mails.tsinghua.edu.cn (C.H.); sunzh22@mails.tsinghua.edu.cn (Z.S.);
xingcx@tsinghua.edu.cn (C.X.)

2 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
* Correspondence: li-chao@tsinghua.edu.cn (C.L.); zhangyong05@tsinghua.edu.cn (Y.Z.);

Tel.: +86-10-62788788 (C.L. & Y.Z.)

Abstract: Nowadays, with the rapid growth of the internet of things (IoT), massive amounts of time
series data are being generated. Time series data play an important role in scientific and technological
research for conducting experiments and studies to obtain solid and convincing results. However,
due to privacy restrictions, limited access to time series data is always an obstacle. Moreover, the
limited available open source data are often not suitable because of a small quantity and insufficient
dimensionality and complexity. Therefore, time series data generation has become an imperative
and promising solution. In this paper, we provide an overview of classical and state-of-the-art time
series data generation methods in IoT. We classify the time series data generation methods into
four major categories: rule-based methods, simulation-model-based methods, traditional machine-
learning-based methods, and deep-learning-based methods. For each category, we first illustrate
its characteristics and then describe the principles and mechanisms of the methods. Finally, we
summarize the challenges and future directions of time series data generation in IoT. The systematic
classification and evaluation will be a valuable reference for researchers in the time series data
generation field.

Keywords: time series; data generation; categorization; IoT

1. Introduction

A time series is a form of data that records events or quantities occurring over time,
usually indexed by timestamps. They can be sampled periodically or irregularly and
cover various fields such as sensor readings, financial market quotes, weather forecasts, etc.
Mathematically, a time series comprises a series of ordered data points, where each data
point represents a value or state at a certain point in time. A time series can be expressed
as a sequence, denoted as (t1, x1), (t2, x2), . . . , (tn, xn), where ti represents the timestamp,
which can be discrete or continuous, of the ith data point and xi represents the value of
the ith data point. A time series usually contains certain time correlations and regular
characteristics of the sequence itself, such as periodicity, trend, seasonality, etc. These
characteristics can be mined and analyzed through time series analysis, signal processing,
machine learning and other methods.

Time series data generation refers to the use of specific methods and technologies
to generate time series data that conform to specific rules or patterns, which can effec-
tively solve these problems. As shown in Figure 1, a time series data generation method
TSG = (S, T, G) contains a model selector S, a model trainer T, and a generator G. The
selector S takes prior knowledge P as input and selects a generative model M. The trainer
T takes real time series data T , metadata M, and the selected model M as input, and
obtains a trained model with parameters Mθ = T(T ,M, M). The generator G, finally,
generates new time series data O using the trained model Mθ and control information C.
The graphics made up of dashed lines represent optional components.

Sensors 2023, 23, 6976. https://doi.org/10.3390/s23156976 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23156976
https://doi.org/10.3390/s23156976
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0379-5262
https://orcid.org/0009-0007-3911-9163
https://orcid.org/0000-0002-6844-6127
https://orcid.org/0000-0001-8803-2055
https://orcid.org/0000-0001-9390-3097
https://doi.org/10.3390/s23156976
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23156976?type=check_update&version=1

Sensors 2023, 23, 6976 2 of 19

Figure 1. A formal model of time series data generation methods.

With the development of IoT technology [1] more and more sensors are being deployed
in various fields, ranging from industrial manufacturing and transportation to medical
care. This development results in the constant generation of a large amount of time series
data. These time series data can come from various fields, including architecture [2,3],
meteorology [4], finance [5], transportation [6], medical treatment [7], biomedical signals [8],
environmental pollution [9], earthquake geology [10], etc. They reflect various phenomena
and events that change over time. At the same time, the complexity of time series data
is also increasing. The massive volume and complexity bring greater challenges to data
analysis. To address this, various technologies are employed to manage [11], store [12],
process, and analyze [13] time series data aiming to extract useful information from the data.

Time series data plays an important role in scientific and technological research.
Through the analysis of time series data, it is possible to reveal the underlying patterns and
laws in the data, discover the correlation and periodicity between events, and then deeply
understand the nature and mechanism of the event itself, providing strong support for
research in related disciplines. Specifically, a deep understanding of time trends [14], period-
icity [15,16], correlation [17,18], etc., can be gained and valuable information can be further
extracted, such as anomaly detection [19–21], classification [22–24], clustering [25,26], etc.
These studies require a large amount of time series data for experiments to test the effec-
tiveness and practicality of different algorithms and techniques, optimize the parameters
and structure of algorithms, evaluate the performance and accuracy of different techniques,
and train machine learning models.

However, there are two challenges in acquiring massive time series data. First, pub-
licly obtainable time series data is limited because it may contain sensitive or confident
information. For example, data from sensors may leak information such as location and
temperature [27,28]. Second, due to the diversity of data sources, the instability of data
collection, noise, etc., the quality of time series data is often relatively low, so it needs
to be cleaned and verified. Low quality may bring various problems. For the problem
of an unbalanced data distribution, some data sets may have unbalanced distribution
problems, which will lead to a decrease in the performance of the training model. For the
data diversity problem, datasets in some domains may lack diversity to cover all scenarios
and situations.

Time series data generation can solve the two challenges above. First, by generating
synthetic data, privacy is preserved and data sharing and analysis is allowed. At the same
time, it is possible to expand the size of the dataset. Second, the data quality issues can be
reduced or eliminated, resulting in more accurate and high-quality data. At the same time,
the coverage of the data sets can be expanded, making the data more balanced and diverse,
and improving the performance of the model. As a result, time series analysts, time series
researchers, and time series processing system and database testing engineers will benefit
from time series generation.

Sensors 2023, 23, 6976 3 of 19

Researchers in many fields have proposed a variety of time series data generation meth-
ods in their respective fields such as biology [8], database benchmark [29,30], electricity [31],
energy [32–39], environment [40–42], finance [5,43], medicine [7], music [44], networks [45],
remote sensing [46–49] and sensors [50]. Despite the abundance of research on time series
generation, a comprehensive survey that systematically classifies and evaluates the previ-
ous work is lacking. Researchers may find it hard to select appropriate generation methods
for different scenarios. This survey aims to bridge this gap.

The sources of articles that are taken into consideration are top journals such as
those published by IEEE, Springer, Elsevier, etc., and proceedings of top conferences such
as AAAI, ICDM, NeurIPS, VLDB, etc. The keywords used for the search strategy are
“time series generation”, “temporal data generation”, “time series prediction”, “sequence
generation”, “series GAN”, and “series VAE”. We selected the articles related to time series
generation and took their common references into consideration. The commonly cited
articles and the new articles with sufficient novelty are selected for our survey.

Based on the underlying algorithms and models used by the existing time series data
generation methods, this paper divides these methods into four categories: rule-based
methods [51–53], simulation-model-based methods [37,45], traditional machine-learning-
based methods [29,32,39] and deep-learning-based methods [7,30,44,54–63]. Rule-based
methods use a set of rules or constraints to specify the properties and structure of the data to
be generated. A simulation-model-based method refers to the establishment of simulation
models to simulate various situations in real systems or events, thereby generating time
series data. Traditional machine-learning-based methods typically utilize classic machine
learning algorithms to generate time series data. These algorithms leverage existing time
series data as the training datasets, learn the characteristics and patterns of the time series
data, train the generative models, and use these models to generate new time series data.
Deep-learning-based methods rely on deep neural network models to generate time series
data. They typically use models such as generative adversarial networks (GANs) [64] or
variational autoencoders (VAEs) [65] to generate data with specific temporal dependencies.

The key contributions of this paper are summarized as follows:

1. The time series data generation methods are classified into four categories based on
their underlying algorithms and models.

2. The characteristics, mechanisms and application scenarios of each category are illustrated.
3. The challenges and future directions of time series data generation are summarized.

This paper first introduces the four categories of time series data generation methods
with an analysis of their pros and cons in Section 2, then introduces the methods of each
category in detail from Sections 3–6. After that, this paper summarizes the challenges and
future directions of time series data generation in Section 7. Finally, the conclusions are
presented in Section 8.

2. Four Categories of Time Series Data Generation Methods

Based on the underlying algorithms and models used by time series data generation
methods, they can be divided into the following four categories. These methods have
several features, of which the need for real data and domain-specific knowledge describe the
difficulty of training/constructing the underlying models; the authenticity and complexity
of generation results describe the quality of generated time series data; the controllability
of results is an important feature describing how much the users can take control of the
methods to obtain the desired results. These features of the four categories of methods are
summarized in Table 1.

Rule-based methods: These use a set of rules or constraints to specify the properties
and structures of the data to be generated. These rules can be based on properties of the
data such as data type, data range, data density, etc. In addition, rules can also be based
on relationships between data, such as correlations and dependencies, and so on. These
rules are used to specify the required data attributes, ensuring that the generated data
will conform to these rules and restrictions. These methods do not need to rely on large

Sensors 2023, 23, 6976 4 of 19

amounts of historical data or training models; the generated data may be relatively simple
and unrealistic.

Simulation-model-based methods: These approaches use computer simulation tech-
niques to generate time series data based on the modeling of actual scenarios or systems.
For example, a fluid dynamics model or a mechanical model may be used to generate cor-
responding time series data. These methods can generate more realistic data, simulate the
behavior of complex systems, and produce different data by changing model parameters,
but they require a large amount of domain knowledge and model parameters. Additionally,
the amount of calculations is relatively large.

Traditional machine-learning-based methods: These methods are based on traditional
machine learning algorithms, which utilize existing time series data to train the models,
and then generate new time series data using the models. For example, time series data
can be generated using algorithms such as linear regression, support vector machines,
or random forests. These methods take into account the influence of historical data, but
require parameter adjustment and model training.

Deep-learning-based methods: These methods are based on deep learning algorithms
and use deep learning models such as recurrent neural networks (RNNs) or convolutional
neural networks (CNNs) to generate time series data. For example, models such as GANs or
VAEs can be used to generate time series data. These methods can generate more complex
data and take into account the impact of longer time spans, but require a large amount of
training data and computing resources.

Table 1. Comparison of time series data generation methods.

Method References The Need for
Real Data

The Need for
Domain-
Specific

Knowledge

Controllability
of Results

Authenticity of
Results

Simulating
Complex IoT

System
Behavior

Rule-based
methods [51–53] × × Strong Weak Weak

Simulation-
model-based

methods
[37,45] X X Strong Depends on the

model
Depends on the

model

Traditional
machine-

learning-based
methods

[29,32,39] X × Weak Depends on the
model Strong

Deep-learning-
based

methods
[7,30,44,54–63] X × Weak Strong Strong

As can be seen from the features shown in Table 1, rule-based methods can be used for
scenarios in which the distribution of the generated data does not depend on the real data;
simulation-model-based methods can be used for scenarios in which the distribution of
the generated data is the same as a known stochastic process in the real world; traditional
machine-learning-based and deep-learning-based methods can be used for scenarios in
which the distribution of the generated data is unknown beforehand and can be learned
from the real data.

3. Rule-Based Methods

This section describes rule-based methods. Section 3.1 introduces three common time
series models. Section 3.2 introduces three rule-based methods to generate data. The first
two methods are proposed for the data generation of traditional relational databases, while
the third solution uses the MAR model, which provides users with a wealth of adjustable
parameters.

Sensors 2023, 23, 6976 5 of 19

The characteristics of rule-based methods are as follows:

1. Simplicity and speed: Rule-based methods are simple, only need to define rules and
parameters, and use random number generation. Therefore, the generation speed is
fast, which can meet some scenarios with high real-time requirements.

2. Strong controllability: The properties of generating time series data can be easily
controlled and adjusted using rule-based methods. By modifying the rules and
parameters, data that meet specific needs can be easily generated.

3. Low reliance on historical data: Rule-based methods do not require a large amount
of historical data to generate new data. This makes them useful in situations where
historical data are scarce.

4. Lack of authenticity: Since the generated data are based on fixed rules and parameters,
without considering the actual system behavior, they may be different from the actual
data and lack authenticity.

5. Inability to simulate complex system behavior: These methods are generally unable to
simulate complex system behavior, because the actual system behavior is often very
complex and cannot be well described and simulated by simple rules and parameters.

3.1. Common Time Series Models
3.1.1. Autoregressive (AR) Model [66]

An AR model of order p, denoted as AR(p), can be defined as:

xt =
p

∑
i=1

φixt−i + εt (1)

where φ1, ..., φp are the parameters of the model, and εt is a white noise, whose samples
are regarded as a sequence of serially uncorrelated random variables with zero mean and
finite variance, thus providing the randomness.

3.1.2. Moving-Average (MA) Model [67]

An MA model of order q, denoted as MA(q), can be defined as:

xt = µ +
q

∑
i=1

θiεt−i + εt (2)

where µ is the mean of the series, the θ1, ..., θq are the parameters, and εt, εt−1, ..., εt−q are
white noise error terms.

3.1.3. Autoregressive Moving-Average (ARMA) Model [68]

An ARMA model with p autoregressive terms and q moving-average terms is denoted
as ARMA(p, q). This model contains the AR(p) andMA(q) models:

xt = εt +
p

∑
i=1

φixt−i +
q

∑
i=1

θiεt−i (3)

3.1.4. Autoregressive Integrated Moving-Average (ARIMA) Model [69]

An ARIMA model is a generalization of an ARMA model. An ARIMA model of AR
order p, MA order q, and a degree of differencing d, denoted as ARIMA(p, d, q), can be
defined as:

(1−
p

∑
i=1

φiLi)(1− L)dxt = (1 +
1

∑
j=1

θjLj)εt (4)

where L is the lag operator, Lixt = xt−i.

Sensors 2023, 23, 6976 6 of 19

3.2. Rule-Based Methods
3.2.1. FDG [51]

Obtaining comprehensive real data can be difficult, and without a flexible data gener-
ation framework capable of modeling various rich data distributions, real data may not
be available at all, or it may not be comprehensive enough to thoroughly evaluate the
system under consideration. This work proposes a flexible database generation framework,
introduces a data generation language (DGL), uses iterators as basic units to form data
tuple generation streams, and applies it to generate databases with complex composite
distributions and inter-table dependencies.

3.2.2. SRDG [52]

SRDG is a general-purpose relational data generation tool designed for database
testing. It supports the definition of relationships within and between tables, and users can
specify some simple data characteristics. The data generation algorithm is based on a graph
model, in which tables are represented as nodes and foreign-key constraints as edges. The
generation algorithm is a depth-first traversal which begins at non-referenced nodes and
then examines all out-bound edges, generating data according to the types of the edges.

3.2.3. GRATIS [53]

Generating time series (GRATIS) is a time series data generator that utilizes the mixture
autoregressive (MAR) model [70]. The generator is designed for testing various time series
analysis methods and provides diverse parameters to efficiently generate new time series
data with controllable features. A K-component MAR model, which is actually a finite
mixture of K Gaussian AR models, can be defined as:

F(xt|F−t) =
K

∑
k=1

αkΦ
(xt − φk0 − φk1xt−1 − ...− φkpk

xt−pk

σk

)
(5)

where F(xt|F−t) is the conditional cumulative distribution of xt given the past information
F−t ⊆ {xt−1, ..., xt−pk}, Φ(·) is the cumulative distribution function of the standard normal
distribution, xt − φk0 − φk1xt−1 − ...− φkpk

xt−pk is the autoregressive term in each mixing
component, σk > 0 is the standard error, ∑K

k=1 αk = 1, and αk > 0 for k = 1, 2, ..., K.
To generate diverse time series data instances, it uses distributions instead of fixed

values for the parameters in the underlying models. It also adopts a genetic algorithm to
tune the MAR model parameters to generate time series data with target features extracted
from real time series data.

4. Simulation-Model-Based Methods

This section introduces two methods for time series data generation by constructing
simulation models. These two methods select specific simulation models for the workload
of the cloud data center and wind speed.

The characteristics of simulation-model-based methods are as follows:

1. Ability to simulate actual system behavior: Compared with the rule-based methods,
simulation-model-based methods can simulate the behavior of actual systems more
accurately, because the simulation models can analyze and model the actual system
behavior and simulate the dynamic evolution of the system.

2. Interpretability of generated data: Through the analysis and adjustment of the simula-
tion model, the reasons and rules of the generated data can be well explained, making
the generated data more reliable and interpretable.

3. Reliance on model accuracy: The accuracy of the generated data is closely related
to the accuracy of the model. If the accuracy of the model is not high, errors and
deviations may also exist in the generated data.

Sensors 2023, 23, 6976 7 of 19

4. Slow data generation speed: Compared with the rule-based random generation
methods, simulation-model-based methods require model building, so the generation
speed is relatively slow and cannot meet the high real-time requirements of the scene.

5. Limited data quantity: Due to the need of model building, a certain amount of
historical data are required for training and adjustment of the model. Therefore, when
the amount of data is insufficient, the accuracy and reliability of the generated data
will be affected.

Kultok et al. [45] proposed a model-based method to create synthetic workload
trajectories for cloud data centers. It randomly samples from existing time series data,
selects some alternative distributions, and calculates the parameters of these distributions
using the maximum likelihood method. After that, the Anderson–Darling test is used to
select a suitable distribution from the alternative distributions, and the initial data set is
randomly sampled from the selected distribution. Then, it runs an iterative process to
rearrange the initial data set. In each iteration, the current series is shuffled, and if it has a
smaller mean square error (MSE) than the real time series data, the outcome is selected as
the current series. The process continues until the current series reaches an MSE that is less
than a threshold.

Bokde et al. [37] proposed two generation methods for synthesizing wind speed time
series data. Both of the methods first sample the initial data from a Weibull distribution.
The Weibull distribution [71] is parameterized by x, k and its probability density function is

f (x; λ, k) =

{
k
λ

(x
λ

)k−1e−(x/λ)k
x ≥ 0

0 x < 0
(6)

The methods then rearrange them to make their autocorrelation properties close to the
real data, which is the difference between these two methods. The first method arranges
the data so that the order of the generated series data is the same as the order of the existing
data. In contrast, the second method calculates the parameters of the Weibull distribution
based on the existing data, samples the distribution to obtain a batch of data, and selects
values whose distances to the real data are less than a threshold in order. The process is
repeated until a time series of a given length is generated.

5. Traditional Machine-Learning-Based Methods

This section introduces traditional machine-learning-based methods. Section 5.1
introduces the traditional Markov model. Then, Section 5.2 presents three time series data
generation methods based on variants of the Markov model.

The characteristics of the methods of generating time series data based on traditional
machine learning are as follows:

1. Ability to process data with more complex patterns: Traditional machine-learning-
based methods can process data with more complex patterns, enabling them to better
capture the complex relationships between data and generate more realistic data.

2. Fast data generation: The methods have fast data generation speeds, so they can
produce large amounts of data in a short period of time.

3. Rely on model accuracy: The accuracy of the generated data is closely related to the
accuracy of the model. If the accuracy of the model is not high, errors and deviations
may exist in the generated data.

4. Sufficient historical data required: Due to the need to train the model, a certain
amount of historical data are necessary for the training and adjustment of the model.
Therefore, when the amount of data is insufficient, the accuracy and reliability of the
generated data will be affected.

Sensors 2023, 23, 6976 8 of 19

5.1. Markov Model
5.1.1. Discrete-Time Markov Chain [72]

A discrete-time Markov chain is a stochastic process that can be parameterized by
empirically estimating transition probabilities between discrete and finite states. The state
at time step i is a random variable Xi and the probability of moving to the next state
depends only on the present state but not on the previous states:

Pr(Xi+1 = xi+1|X1 = x1, ..., Xi = xi) = Pr(Xi+1 = xi+1|Xi = xi) (7)

This probability is called the transition probability from state xi to xi+1. All of the
possibilities between the states form a transition matrix.

5.1.2. Hidden Markov Model (HMM) [73]

A hidden Markov model is a statistical Markov model that consists of a hidden state
X and an observable state Y. Formally, let Xi and Yi be discrete-time stochastic processes
and i ≥ 1. Xn is a Markov process whose behavior is not directly observable. The state of Y
at step i is determined only by the state of X at step i:

P(Yi = yi|X1 = x1, ..., Xi = xi) = P(Yi = yi|Xi = xi) (8)

This probability is called the emission probability.

5.2. Traditional Machine-Learning-Based Methods

IoTAbench [29] is a benchmark toolkit designed for IoT big data scenarios. It contains
a Markov chain-based synthetic data generator for smart meter data. The generator can
learn the statistical properties from real time series data. To capture the dependence on
several contextual features such as time of day, weather, etc., and incorporate them into the
model, the generator augments the Markov chain model by adding additional inputs. It
uses maximum likelihood estimation to estimate the transitional probability matrix from
the empirical data. It also employs Laplace smoothing, which increases the count for each
transition by one, to address the sparse problem of the transitional probability matrix.

Shamshad et al. [32] proposed a method which uses a probability transition matrix
of first-order and second-order Markov chains to synthesize new data from existing wind
speed data. Each state in the Markov chain represents a wind speed range.

Li et al. [39] proposed a method which uses the Gaussian mixture model hidden
Markov model to generate medium- and long-term wind power generation data. The
method uses the expectation-maximum (EM) [74] algorithm to estimate the parameters
of the model, and then randomly samples from the initial state probability distribution to
generate an initial hidden state. It generates a random number according to the uniform
distribution on the (0, 1) interval, and finds a hidden state that conforms to the state
probability transition matrix according to the random numbers as the hidden state at next
time step. To generate time series data from the hidden states, it converts the hidden states
into the arguments of the Gaussian mixture model and samples the time series data from
the model.

6. Deep-Learning-Based Methods

This section describes deep-learning-based methods. Section 6.1 introduces GANs,
and lists several methods that use GANs to generate time series data. Most of these methods
use the combination of a GAN and an RNN. Some of the methods also support conditional
input. The features of GAN-based methods are summarized in Table 2. Afterwards,
Section 6.2 introduces VAEs and time series data generation methods based on them.

The methods of generating time series data based on deep learning have the follow-
ing features:

Sensors 2023, 23, 6976 9 of 19

1. Learning higher-level features: The deep generative models can learn higher-level
features and can automatically capture nonlinear and complex relationships in the
data, thereby generating more realistic and complex data.

2. Generating more diverse data: The methods can not only generate data with similar
characteristics, but also generate more diverse data, which allows patterns of data to
be shown from various angles. This enables a better data generalization ability.

3. Generating more realistic data: The deep generative models can learn the high-order
statistical features of data, thereby generating more realistic data, and the differences
between the data generated by the model and the real data are becoming smaller
and smaller.

4. Difficulty in training: Compared with traditional machine learning models, the train-
ing processes of deep generative models are more complicated and require more
computing resources and time.

5. High data volume: Deep generation models require large amounts of data for training.
If the amount of training data is insufficient, the generalization ability of the model
and the accuracy of the generated data will be affected.

Table 2. Comparison of GAN-based methods.

Method Reference Support
Condition/Metadata Has Embedding Other Features

C-RNN-GAN [44] × ×

RCGAN [7] X ×
”Train on synthetic

data, test on real data“
strategy

SeqGAN [54] × × Modeling the generator
as a RL policy

T-CGAN [55] X(timestamp only) × Support for input data
with missing value

TimeGAN [56] X X
Combination of
supervised and

unsupervised loss

DoppelGANger [57] X ×

Separating the
generation and

discrimination of
metadata from time

series data

COT-GAN [58] × ×
Utilization of causal

optimal transport
theory

TS-Benchmark [30] X ×
Generating pieces of
time series data and

splicing them together

RTSGAN [59] X X

Fixed length vector in
the latent space;

support for input data
with missing value

6.1. GAN-Based Methods

Generative Adversarial Network [64]:
A generative adversarial network (GAN) is a deep learning model designed by Ian

J. Goodfellow et al. Given a training set, this technique learns to generate new data with
the same statistics as the training set. It consists of two adversarial parts: a generative
model G that captures the data distribution and a discriminative model D that estimates

Sensors 2023, 23, 6976 10 of 19

the probability that a sample came from the training data rather than G. D is trained to
maximize the probability of assigning the correct label, while G is trained to minimize the
probability of being discriminated. The adversarial parts play a two-player minimax game
with value function V(G, D):

min
G

max
D

V(D, G) = Ex∼pdata(x)[logD(x)] +Ez∼pz(z)[log(1− D(G(z)))] (9)

where x is the real data subject to distribution pdata(x) and z is an input noise variable of G
subject to distribution pz(z).

6.1.1. C-RNN-GAN [44]

Continuous RNN-GAN (C-RNN-GAN) is a recurrent neural network architecture that
is trained with adversarial training to model the whole joint probability of a sequence, and
to be able to generate sequences of data. The recurrent network used in the discriminator is
long short-term memory (LSTM) [75]. The model is evaluated by learning the generating
distribution behind classical music so the signal at every data point is modeled with four
real-valued scalars: tone length, frequency, intensity, and time spent since the previous tone.

6.1.2. RCGAN [7]

The recurrent conditional generative network (RCGAN) utilizes a GAN where the
generator and discriminator are substituted by recurrent neural networks. The generator
of RCGAN accepts a random seed and auxiliary condition input at each step, and the
discriminator accepts the output of the generator and the auxiliary condition as input.
LSTM was chosen as the implementation of RNN. The maximum mean discrepancy (MMD)
was used to evaluate the authenticity of the data generated by the algorithm. This work
also proposes a “train on synthetic data, test on real data” (TSTR) approach to evaluate
generative algorithms. The process involves training a classifier using the data generated
by the algorithm and testing the performance of the classifier on real data to represent the
performance of the generated algorithm.

6.1.3. SeqGAN [54]

SeqGAN models the data generator as a stochastic policy in reinforcement learning
(RL) [76] and bypasses the generator differentiation problem by directly performing gra-
dient policy updates. The RL reward signal that comes from the GAN discriminator is
evaluated on a complete sequence and passed back to the intermediate-state action steps
using a Monte Carlo search [77]. SeqGAN first pre-trains the generator Gθ , parameterized
by θ using maximum likelihood estimation, and uses its output to pre-train the discrimi-
nator Dφ, parameterized by φ via minimizing the cross-entropy. It then starts adversarial
training iteratively. In each iteration, Gθ first generates a sequence Y1:T = (y1, ..., yT) and
computes an action value Q(a = yt, s = Y1:t−1) for each yt using the following equation:

QGθ
Dφ

(a = yt, s = Y1:t−1) =

{ 1
N ∑N

n=1 Dφ(Yn
1:T), Yn

1:T ∈ MCGβ(Y1:t; N) for t < T
Dφ(Y1:t) for t = T

(10)

where MCGβ(Y1:t; N) is a Monte Carlo search with a roll-out policy Gβ to sample the un-
known last T− t tokens. After computing the action value, it updates generator parameters
with the following gradient:

∇θ J(θ) '
T

∑
t=1

Eyt∼Gθ(yt |Y1:t−1)
[∇θ logGθ(yt|Y1:t−1) ·Q(yt, Y1:t−1)] (11)

Then, it uses the current Gθ to generate negative examples, combines them with given
positive examples S, and trains Dφ. SeqGAN repeats the iterations until it converges.
It adopts LSTM and CNN as the implementation for the generator and discriminator,
respectively.

Sensors 2023, 23, 6976 11 of 19

6.1.4. T-CGAN [55]

The time conditional generative adversarial network (T-CGAN) is based on conditional
generative adversarial networks (CGANs) [78], where the generator is implemented by a
deconvolutional neural network and the discriminator is implemented by a convolutional
neural network (CNN) [79]. Both the generator and the discriminator are conditioned on
the sampling timestamps. This method is primarily used to augment data for time series
with irregular sampling. The objective function of this model is:

min
G

max
D

V(D, G) = Ex∼pdata(x)[logD(x|t)] +Ez∼pz(z)[log(1− D(G(z|t)))] (12)

where t =< t1, . . . , tn > is a sorted vector of timestamps sampled at random from a space T.
The generator consists of four deconvolution layers with ReLU activation functions

and batch normalization at each layer except for the last one. The discriminator is composed
of two layers of convolution, each followed by a max-pooling layer and at the end there is
a fully connected layer.

6.1.5. TimeGAN [56]

The time series generative adversarial network (TimeGAN) is the first to combine
the flexibility of the unsupervised GAN framework with the control afforded by super-
vised training in autoregressive models. It adopts the original unsupervised adversarial
loss as well as a stepwise supervised loss using the real data as supervision, thereby
explicitly encouraging the model to capture the stepwise conditional distributions in
the data. Moreover, it utilizes an embedding network to provide a reversible mapping
between features and latent representations, thereby reducing the high-dimensionality
of the adversarial learning space. It divides the features of time series data into static
features S ∈ S and temporal features X ∈ X . TimeGAN consists of four network com-
ponents: embedding functions eS : S → HS , eX : HS × HX × X → HX , recovery
functions rS : HS → S ,rX : HX → HS ×HX ×X , sequence generators gS : ZS → HS ,
gX : HS × HX × ZX → HX , and sequence discriminators. The embedding network
provides the latent space, the adversarial network operates within this space, and the
latent dynamics of both real and synthetic data are synchronized through a supervised loss.
Therefore, the object function contains three parts.

Reconstruction loss:

LR = Es,x1:T∼p
[
‖ s− s̃ ‖2 +∑

t
‖ xt − x̃t ‖2

]
(13)

where s̃ = rS (eS (s)), x̃t = rX (eX (xt)). This loss is the difference between the actual data
and the data encoded and recovered from the embedding space.

Unsupervised loss:

LU = Es,x1:T∼p
[

log yS + ∑
t

log yt
]
+Es,x1:T∼ p̂

[
log(1− ŷS) + ∑

t
log(1− ŷt)

]
(14)

This is the loss in the traditional GAN model.
Supervised loss:

LS = Es,x1:T∼p
[
∑

t
‖ ht − gX (hS , ht−1, zt) ‖2

]
(15)

where hS = eS (s) and ht = eX (hS , ht−1, xt). This loss is the difference between the actual
next-step latent vector and synthetic next-step latent vector.

Let θe, θr, θg, and θd, respectively, denote the parameters of the embedding, recovery,
generator, and discriminator networks. The encoder and decoder are trained on both the

Sensors 2023, 23, 6976 12 of 19

reconstruction and supervised losses: min
θe ,θr

(λLS + LR). The generator and discriminator

are trained on supervised and unsupervised losses: min
θg

(ηLS + max
θd

)LU .

6.1.6. DoppelGANger [57]

DoppelGANger aims to generate time series data with high fidelity by capturing
the complex correlations between measurements and metadata, maintaining long-term
correlations and preventing mode collapse. To capture the correlations between metadata
and measurements, DoppelGANger first generates metadata using an MLP generator,
then it generates measurements using an RNN that takes the metadata as input. It also
adopts an auxiliary discriminator which discriminates only on metadata to prevent the
discriminator from handling a sample of high dimension. The losses from the two dis-
criminators are combined by a weighting parameter α: min

G
max
D1,D2

L1(G, D1) + αL2(G, D2),

where Li, i ∈ {1, 2} is the Wasserstein loss of the original and the auxiliary discriminator,
respectively. To maintain long-term correlations, it adopts LSTM and generates a batch
of data with consecutive timestamps at each pass. To address the mode collapse problem
for the measurements, it normalizes each time series signal individually, and stores the
min/max as “fake“ metadata.

This work also identifies the fundamental challenges with both classical notions of
privacy and recent advances to improve the privacy properties of GANs, and suggests a
potential roadmap for addressing these challenges.

6.1.7. COT-GAN [58]

Causal optimal transport generative adversarial network (COT-GAN) builds on opti-
mal transport (OT) [80] theory, and constrains the transport plans to respect causality: the
probability mass moved to the target sequence at time t can only depend on the source
sequence up to time t. It uses Sinkhorn divergence with the causal constraint in OT theory
to calculate the distance between synthetic and real time series data and makes it an item
of the adversarial objective function. This work proposes a mixed Sinkhorn divergence
which processes two batches at once to solve the convergence problem in the previous
algorithm at the level of mini-batches. The discriminator consists of two separate neural
networks parameterized using ϕ: hϕ1 := (hj

ϕ1)
J
j=1, Mϕ2 := (Mj

ϕ2)
J
j=1. The adversarial

objective function of COT-GAN is:

Ŵmix,L
cK

ϕ ,ε
(x̂, x̂

′
, ŷθ , ŷ

′
θ)− λpMϕ2(x̂) (16)

where x̂ and x̂
′

are empirical measures corresponding to two samples of the dataset, and
ŷθ and ŷ

′
θ are the ones corresponding to two samples from the generator. λ is a positive

constant and pMϕ2(x̂) is the martingale penalization for Mϕ2 .
Item cK

ϕ is a cost function whose output at time t depends on the input only up to
time t:

cK
ϕ(x, y) := c(x, y) +

J

∑
j=1

T−1

∑
t=1

hj
ϕ1,t(y)∆t+1Mj

ϕ2(x) (17)

Item Ŵmix,L
cK

ϕ ,ε
(x̂, x̂

′
, ŷθ , ŷ

′
θ) is the mixed Sinkhorn divergence:

Ŵmix,L
cK

ϕ ,ε
(x̂, x̂

′
, ŷθ , ŷ

′
θ) =Wc,ε(x̂, ŷθ) +Wc,ε(x̂

′
, ŷ
′
θ)−Wc,ε(x̂, x̂

′
)−Wc,ε(ŷθ , ŷ

′
θ) (18)

whereWc,ε(x, y) is the Wasserstein distance.

Sensors 2023, 23, 6976 13 of 19

6.1.8. TS-Benchmark [30]

TS-Benchmark is a benchmark of time series database. It contains a deep convolutional
generative adversarial network (DCGAN)-based data generation model to generate large
volumes of time series data from some real time series data. It first creates seed fragments
from real time series data, and then generates synthetic fragments from real seeds using
DCGAN. The generated fragments are connected to each other to generate a longer time
series. The connectivity of a sequence a to another sequence b is defined as

s(a, b) =
1√

∑l
i=1(ati − bhi)2

(19)

where at denotes the tail of sequence a, whose length is l, and bh denotes the head of
sequence b, whose length is l too. A directed graph can be built by creating edges from a
segment to others whose connectivity with the segment is greater than a threshold. The
weight of a directed edge from segment a to segment b is

w(a, b) =
s(a, b)− s̄

∑b′∈Na
s(a, b′)− s̄

(20)

where Na = {b|s(a, b) > s̄} and s̄ is the previously mentioned threshold. Given an initial
seed sequence a, a subsequent sequence b is generated by a random walk with probability
w(a, b) on the directed graph. To connect these two sequences smoothly, at and bh of the
two adjacent sequences are spliced using a fitting function ci = (1− σi)ai + σibi, where
i = [− l

2 , ..., l
2) is the index of overlaps between sequences and σ is the sigmoid function

σi =
1

1+2−i .

6.1.9. RTSGAN [59]

The real-world time series generative adversarial network (RTSGAN) consists of an
encoder–decoder module and a GAN. It first learns an encoder–decoder module which
provides a mapping between a time series data instance and a fixed-dimension latent vector.
Subsequently, it learns a generation module to generate vectors in the same latent space.
The encoder, which takes dynamic and global features transformed into [0, 1] as its input, is
composed of an N-layer gated recurrent unit (GRU), a pooling layer, and a fully connected
layer using LeakyReLU as the activation function. The decoder first reconstructs the global
features via a fully connected layer, and then reconstructs the dynamic features via a
GRU. The overall loss function of the encoder–decoder module is a linear combination of
reconstruction loss for global features and dynamics features. The generation module uses
an improved version of WGAN in which the generator aims to minimize the 1-Wasserstein
distance between the real data distribution and synthetic data distribution with the help of
an iteratively trained 1-Lipschitz discriminator.

Furthermore, this work proposes RTSGAN-M to address the value missing problem in
time series data. RTSGAN-M adopts an observation embedding to enrich the information
at each time step, and a decide-and-generate decoder which first determines the time and
missing patterns of the next step and then generates the corresponding feature values based
on both local and global dependencies.

6.2. VAE-Based Methods
6.2.1. Variational Autoencoder

Autoencoder is an unsupervised algorithm used for feature extraction or data di-
mensionality reduction. It consists of an encoder and a decoder. The input features x
are abstracted into intermediate variables y by the encoder, and then mapped back to
the original data space x̄ by the decoder, aiming to reconstruct the original data as accu-
rately as possible. The purpose of an autoencoder is to extract abstract features y, and its
learning process minimizes the loss function L(x, x̄). The mean squared error function

Sensors 2023, 23, 6976 14 of 19

can be used: L(x, x̄) =
n
∑

i=1
||xi − x̄i||2 =

n
∑

i=1
||xi − d(e(xi))||2. Where i represents the ith

sample, and xi ∈ Rn. Autoencoder can go from raw data x to abstract features y, which
can achieve tasks such as data dimensionality reduction, denoising, compression, and
feature extraction.

The autoencoder can reconstruct the intermediate variable y to x̄. The variational
autoencoder attempts to infer and learn the distribution of intermediate variable y, and
generates data by sampling from y. It is a generative model. The variational autoencoder
assumes that the posterior probability qφ(y|x) follows a multi-dimensional mixture normal
distribution, using two networks to estimate the mean and variance of hidden state z(i)

corresponding to each sample. By regularizing the loss function with a regularization term,
it ensures that qφ(y|x) conforms to a standard normal distribution, ensuring the generative
ability of the model.

6.2.2. FSTS [60]

FSTS (few-shot learning for time series data generation) is a method for generating
time series data based on autoencoders. Firstly, a small amount of data is used to pre-train
the autoencoder. The encoder maps input data into the hidden space, xh = E(xin), and
then the decoder restores it back to the original space, xout = D(xh), by minimizing mean
square error between input and output data during training. Through pre-training, the
autoencoder models the hidden space well enough for generating sufficient amounts of
hidden space data from which large volumes of generated samples can be obtained using
decoder restoration mechanisms. Although this method applies an autoencoder technique
in data generation with good results achieved, it takes no specific design targeted at time
series data and also fails to address problems related to regularity within the latent space.

6.2.3. VRNN [61]

Variational RNN (VRNN) combines the methods of VAE and RNN by using latent-
space random variables to represent time sequences, which explores for the first time the
combination of VAE and RNN for generating sequence data. The process of generating data
begins with calculating the prior probability based on the previous hidden state as historical
information, then generating data by sampling from the prior probability, updating the
hidden state, and calculating the posterior probability. The objective function of VRNN is
basically consistent with that of the original VAE.

Eq(z≤T |x≤T)

[
T

∑
t=1

(−KL(q(zt | x≤t, z<t)‖p(zt | x<t, z<t)) + log p(xt | z≤t, x<t))

]
. (21)

6.2.4. SRNN [62]

SRNN builds upon the basis of VRNN and combines RNN and SSM, which are
commonly used methods in time series modeling. RNN is known for its strong non-linear
fitting ability, but its hidden state is deterministic. On the other hand, SSM’s random state
transition is more suitable for uncertainty modeling, but the inference process is usually
simple. By integrating RNN and SSM, SRNN ensures that the random state does not affect
the deterministic state during the generation process. During the inference process, SRNN
incorporates a reverse RNN to capture future information.

Fi(θ, φ) = Eqφ

[
log pθ(x1:T |z1:T , d̃1:T)

]
− KL

(
qφ(z1:T |d̃1:T , x1:T , z0)

∥∥ pθ(z1:T |d̃1:T , z0)
)

(22)

6.2.5. DSAE [63]

Compared to traditional autoencoders, the DSAE model introduces hidden variables
that are invariant and variant over time, which can better handle temporal information in se-
quence data. Specifically, the DSAE model divides the hidden space into two parts: variant
and invariant over time. The variable that varies with time represents the trend of data on

Sensors 2023, 23, 6976 15 of 19

the time axis, while the invariant variable represents features that remain unchanged on the
time axis. This hierarchical architecture can distinguish between latent time-related features
and those independent of time, helping to capture both static and dynamic characteristics
of sequence data and further improving the model’s generative ability.

7. Challenges and Future Directions

Time series data generation methods still face the following challenges:

1. High dimensionality of time series: Time series data usually have high dimensionality,
which increases the difficulty of training the time series data generation model. Gen-
erative models need to have sufficient memory capacity while avoiding overfitting to
handle noise and discontinuities in the generation processes.

2. Long-term dependencies: Time series data usually have long-term dependencies, that
is, previous data points may have an impact on the generation of subsequent data
points. Many traditional generative models do not handle such long-term dependen-
cies well, and for some time series data, such dependencies can be very important.

3. Insufficient data samples: In some fields, such as healthcare and finance, the data
may be very limited and rarely labeled. Therefore, how to efficiently train generative
models to generate high-quality time series data remains a challenging problem.

Different categories of methods face different challenges according to their proper-
ties. Learning-based methods mostly face all of the challenges, while other methods face
challenges 1 and 2.

Future development directions of time series data generation methods may include
the following aspects:

1. More efficient model design: At present, many time series data generation models
have been proposed, but most of them require long training times and large amounts
of computing resources. Future directions may include designing more efficient
models to reduce the training time and computational cost.

2. Better long-term dependency modeling: Time series data usually exhibit long-term
dependencies, where previous data points may have an impact on the generation
of subsequent data points. Future directions may include designing better genera-
tive models that can efficiently handle long-term dependencies and maintain data
continuity and smoothness during generation.

3. Time series data generation applications based on deep learning and advanced tech-
nologies: With the development of deep learning and other advanced technologies,
future development directions may include the development of more time series data
generation applications, such as speech synthesis, music generation, video generation,
machine translation, natural language generation, etc. These applications can be
combined with other technologies, such as automation, augmented reality, and virtual
reality, etc., to create more intelligent, natural, and real time series data generation
applications.

8. Conclusions

This paper introduces four categories of time series data generation methods in IoT,
including rule-based methods, simulation-model-based methods, traditional machine-
learning-based methods, and deep-learning-based methods. Among them, the rule-based
methods are simple, fast, and highly controllable, but the generated results lack authenticity
and cannot simulate complex system behavior so they can be used for scenarios in which the
distribution of the generated data does not need to correspond to real data. The simulation-
model-based methods can simulate the actual system behavior and are interpretable, but
the data generation is limited by the specific situation in a particular field so they can be
used for scenarios in which the distribution of the generated data is the same as a known
stochastic process in the real world. The traditional machine-learning-based methods can
handle more complex patterns of data and generate data faster, but the quality of data
depends on the accuracy of the model and the quality of historical data. The deep-learning-

Sensors 2023, 23, 6976 16 of 19

based methods can learn higher-level features and generate more diverse and real data, but
they require more computing resources, a larger volume of data, and longer processing
time. These two categories of methods can be used for scenarios in which the distribution
of the generated data is unknown beforehand and can be learned from real data.

Nowadays, time series data generation methods still face challenges in generating high-
dimensional and long time series data. In addition, time series data generation methods
need to solve problems such as insufficient data samples. Therefore, future research in
time series data generation should focus on improving model efficiency, enhancing long-
term dependency modeling, and following up the development of new deep learning
technologies. We believe that the systematic classification and evaluation presented in this
survey will be a valuable reference for researchers in the time series data generation field.

There are still several limitations of this survey. First, the classification is rough and
lacks detailed classification, such as application-based classification. The scope of this
survey does not include methods for time series data generation in a broad sense, such
as text generation. The potential usages of big models such as GPT for time series data
generation are also not discussed. These limitations will be the guidance for future studies.

Author Contributions: Conceptualization, C.H., C.L. and Y.Z.; investigation, C.H. and Z.S.; writing—
original draft preparation, Z.S. and C.H.; writing—review and editing, Z.S., Y.Z. and C.L.; visualiza-
tion, Z.S.; supervision, C.X.; project administration, Y.Z.; funding acquisition, Y.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by National Social Science Fund of China (22&ZD141).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, S.; Xu, L.D.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259.
2. Mobaraki, B.; Pascual, F.J.C.; Garcia, A.M.; Mascaraque, M.Á.M.; Vázquez, B.F.; Alonso, C. Studying the impacts of test condition

and nonoptimal positioning of the sensors on the accuracy of the in-situ U-value measurement. Heliyon 2023, 9, 17282. [CrossRef]
3. Mobaraki, B.; Castilla Pascual, F.J.; Lozano-Galant, F.; Lozano-Galant, J.A.; Porras Soriano, R. In situ U-value measurement of

building envelopes through continuous low-cost monitoring. Case Stud. Therm. Eng. 2023, 43, 102778. [CrossRef]
4. Coxon, G.; Addor, N.; Bloomfield, J.P.; Freer, J.; Fry, M.; Hannaford, J.; Howden, N.J.; Lane, R.; Lewis, M.; Robinson, E.L.; et al.

CAMELS-GB: Hydrometeorological time series and landscape attributes for 671 catchments in Great Britain. Earth Syst. Sci. Data
2020, 12, 2459–2483.

5. Sezer, O.B.; Gudelek, M.U.; Ozbayoglu, A.M. Financial time series forecasting with deep learning: A systematic literature review:
2005–2019. Appl. Soft Comput. 2020, 90, 106181.

6. Feyrer, J. Trade and income—Exploiting time series in geography. Am. Econ. J. Appl. Econ. 2019, 11, 1–35. [CrossRef]
7. Esteban, C.; Hyland, S.L.; Rätsch, G. Real-valued (medical) time series generation with recurrent conditional gans. arXiv 2017,

arXiv:1706.02633.
8. Haradal, S.; Hayashi, H.; Uchida, S. Biosignal data augmentation based on generative adversarial networks. In Proceedings of

the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI,
USA, 18–21 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 368–371.

9. Li, H.; Xu, X.L.; Dai, D.W.; Huang, Z.Y.; Ma, Z.; Guan, Y.J. Air pollution and temperature are associated with increased COVID-19
incidence: A time series study. Int. J. Infect. Dis. 2020, 97, 278–282. [CrossRef]

10. Liu, F.; Elliott, J.; Craig, T.; Hooper, A.; Wright, T. Improving the resolving power of InSAR for earthquakes using time series: A
case study in Iran. Geophys. Res. Lett. 2021, 48, e2021GL093043. [CrossRef]

11. Jensen, S.K.; Pedersen, T.B.; Thomsen, C. Time series management systems: A survey. IEEE Trans. Knowl. Data Eng. 2017,
29, 2581–2600. [CrossRef]

12. Wang, C.; Huang, X.; Qiao, J.; Jiang, T.; Rui, L.; Zhang, J.; Kang, R.; Feinauer, J.; McGrail, K.A.; Wang, P.; et al. Apache iotdb:
Time-series database for internet of things. Proc. Vldb Endow. 2020, 13, 2901–2904. [CrossRef]

13. Ghaderpour, E.; Pagiatakis, S.D.; Hassan, Q.K. A survey on change detection and time series analysis with applications. Appl. Sci.
2021, 11, 6141. [CrossRef]

http://doi.org/10.1016/j.heliyon.2023.e17282
http://dx.doi.org/10.1016/j.csite.2023.102778
http://dx.doi.org/10.1257/app.20170616
http://dx.doi.org/10.1016/j.ijid.2020.05.076
http://dx.doi.org/10.1029/2021GL093043
http://dx.doi.org/10.1109/TKDE.2017.2740932
http://dx.doi.org/10.14778/3415478.3415504
http://dx.doi.org/10.3390/app11136141

Sensors 2023, 23, 6976 17 of 19

14. Mudelsee, M. Trend analysis of climate time series: A review of methods. Earth-Sci. Rev. 2019, 190, 310–322.
15. Feng, C.; Liu, Y.; Zhao, H. Periodic measures and Wasserstein distance for analysing periodicity of time series datasets. Commun.

Nonlinear Sci. Numer. Simul. 2023, 120, 107166. [CrossRef]
16. Puech, T.; Boussard, M.; D’Amato, A.; Millerand, G. A fully automated periodicity detection in time series. In Proceedings of

the Advanced Analytics and Learning on Temporal Data: 4th ECML PKDD Workshop, AALTD 2019, Würzburg, Germany, 20
September 2019; Revised Selected Papers 4; Springer: Berlin/Heidelberg, Germany, 2020; pp. 43–54.

17. Zhou, S.; Wang, X.; Zhou, W.; Zhang, C. Recognition of the scale-free interval for calculating the correlation dimension using
machine learning from chaotic time series. Phys. Stat. Mech. Its Appl. 2022, 588, 126563. [CrossRef]

18. Edelmann, D.; Fokianos, K.; Pitsillou, M. An updated literature review of distance correlation and its applications to time series.
Int. Stat. Rev. 2019, 87, 237–262. [CrossRef]

19. Park, M.H.; Chakraborty, S.; Vuong, Q.D.; Noh, D.H.; Lee, J.W.; Lee, J.U.; Choi, J.H.; Lee, W.J. Anomaly Detection Based on Time
Series Data of Hydraulic Accumulator. Sensors 2022, 22, 9428. [CrossRef]

20. Kim, B.; Alawami, M.A.; Kim, E.; Oh, S.; Park, J.; Kim, H. A Comparative Study of Time Series Anomaly Detection Models for
Industrial Control Systems. Sensors 2023, 23, 1310. [CrossRef]

21. Wang, C.; Xing, S.; Gao, R.; Yan, L.; Xiong, N.; Wang, R. Disentangled Dynamic Deviation Transformer Networks for Multivariate
Time Series Anomaly Detection. Sensors 2023, 23, 1104. [CrossRef]

22. Karim, F.; Majumdar, S.; Darabi, H.; Chen, S. LSTM fully convolutional networks for time series classification. IEEE Access 2017,
6, 1662–1669. [CrossRef]

23. Wang, Z.; Yan, W.; Oates, T. Time series classification from scratch with deep neural networks: A strong baseline. In Proceedings
of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; IEEE: Piscataway,
NJ, USA, 2017; pp. 1578–1585.

24. Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification: A review. Data
Min. Knowl. Discov. 2019, 33, 917–963. [CrossRef]

25. Bandara, K.; Bergmeir, C.; Smyl, S. Forecasting across time series databases using recurrent neural networks on groups of similar
series: A clustering approach. Expert Syst. Appl. 2020, 140, 112896. [CrossRef]

26. Maharaj, E.A.; D’Urso, P.; Caiado, J. Time Series Clustering and Classification; CRC Press: Boca Raton, FL, USA, 2019.
27. Lin, H.; Bergmann, N.W. IoT privacy and security challenges for smart home environments. Information 2016, 7, 44. [CrossRef]
28. Tawalbeh, L.; Muheidat, F.; Tawalbeh, M.; Quwaider, M. IoT Privacy and security: Challenges and solutions. Appl. Sci. 2020,

10, 4102. [CrossRef]
29. Arlitt, M.; Marwah, M.; Bellala, G.; Shah, A.; Healey, J.; Vandiver, B. Iotabench: An internet of things analytics benchmark.

In Proceedings of the 6th ACM/SPEC International Conference on Performance Engineering, Austin TX, USA, 28 January–4
February 2015; pp. 133–144.

30. Hao, Y.; Qin, X.; Chen, Y.; Li, Y.; Sun, X.; Tao, Y.; Zhang, X.; Du, X. Ts-benchmark: A benchmark for time series databases. In
Proceedings of the 2021 IEEE 37th International Conference on Data Engineering (ICDE), Chania, Greece, 19–22 April 2021; IEEE:
Piscataway, NJ, USA, 2021; pp. 588–599.

31. Zhang, C.; Kuppannagari, S.R.; Kannan, R.; Prasanna, V.K. Generative adversarial network for synthetic time series data
generation in smart grids. In Proceedings of the 2018 IEEE International Conference on Communications, Control, and
Computing Technologies for Smart Grids (SmartGridComm), Aalborg, Denmark, 29–31 October 2018; IEEE: Piscataway, NJ, USA,
2018; pp. 1–6.

32. Shamshad, A.; Bawadi, M.; Hussin, W.W.; Majid, T.A.; Sanusi, S. First and second order Markov chain models for synthetic
generation of wind speed time series. Energy 2005, 30, 693–708. [CrossRef]

33. Chen, P.; Pedersen, T.; Bak-Jensen, B.; Chen, Z. ARIMA-based time series model of stochastic wind power generation. IEEE Trans.
Power Syst. 2009, 25, 667–676. [CrossRef]

34. Shi, J.; Guo, J.; Zheng, S. Evaluation of hybrid forecasting approaches for wind speed and power generation time series. Renew.
Sustain. Energy Rev. 2012, 16, 3471–3480. [CrossRef]

35. Kardakos, E.G.; Alexiadis, M.C.; Vagropoulos, S.I.; Simoglou, C.K.; Biskas, P.N.; Bakirtzis, A.G. Application of time series and
artificial neural network models in short-term forecasting of PV power generation. In Proceedings of the 2013 48th International
Universities’ Power Engineering Conference (UPEC), Dublin, Ireland, 2–5 September 2013; IEEE: Piscataway, NJ, USA, 2013;
pp. 1–6.

36. Bright, J.; Smith, C.; Taylor, P.; Crook, R. Stochastic generation of synthetic minutely irradiance time series derived from mean
hourly weather observation data. Sol. Energy 2015, 115, 229–242. [CrossRef]

37. Bokde, N.D.; Feijoo, A.; Al-Ansari, N.; Yaseen, Z.M. A comparison between reconstruction methods for generation of synthetic
time series applied to wind speed simulation. IEEE Access 2019, 7, 135386–135398. [CrossRef]

38. Talbot, P.W.; Rabiti, C.; Alfonsi, A.; Krome, C.; Kunz, M.R.; Epiney, A.; Wang, C.; Mandelli, D. Correlated synthetic time series
generation for energy system simulations using Fourier and ARMA signal processing. Int. J. Energy Res. 2020, 44, 8144–8155.
[CrossRef]

39. Li, Y.; Hu, B.; Niu, T.; Gao, S.; Yan, J.; Xie, K.; Ren, Z. GMM-HMM-based medium-and long-term multi-wind farm correlated
power output time series generation method. IEEE Access 2021, 9, 90255–90267. [CrossRef]

http://dx.doi.org/10.1016/j.cnsns.2023.107166
http://dx.doi.org/10.1016/j.physa.2021.126563
http://dx.doi.org/10.1111/insr.12294
http://dx.doi.org/10.3390/s22239428
http://dx.doi.org/10.3390/s23031310
http://dx.doi.org/10.3390/s23031104
http://dx.doi.org/10.1109/ACCESS.2017.2779939
http://dx.doi.org/10.1007/s10618-019-00619-1
http://dx.doi.org/10.1016/j.eswa.2019.112896
http://dx.doi.org/10.3390/info7030044
http://dx.doi.org/10.3390/app10124102
http://dx.doi.org/10.1016/j.energy.2004.05.026
http://dx.doi.org/10.1109/TPWRS.2009.2033277
http://dx.doi.org/10.1016/j.rser.2012.02.044
http://dx.doi.org/10.1016/j.solener.2015.02.032
http://dx.doi.org/10.1109/ACCESS.2019.2941826
http://dx.doi.org/10.1002/er.5115
http://dx.doi.org/10.1109/ACCESS.2021.3091460

Sensors 2023, 23, 6976 18 of 19

40. Bogárdi, J.J.; Duckstein, L.; Rumambo, O.H. Practical generation of synthetic rainfall event time series in a semi-arid climatic
zone. J. Hydrol. 1988, 103, 357–373. [CrossRef]

41. Smakhtin, V.Y. Generation of natural daily flow time-series in regulated rivers using a non-linear spatial interpolation technique.
Regul. Rivers Res. Manag. Int. J. Devoted River Res. Manag. 1999, 15, 311–323. [CrossRef]

42. Efstratiadis, A.; Dialynas, Y.G.; Kozanis, S.; Koutsoyiannis, D. A multivariate stochastic model for the generation of synthetic
time series at multiple time scales reproducing long-term persistence. Environ. Model. Softw. 2014, 62, 139–152. [CrossRef]

43. Wiese, M.; Knobloch, R.; Korn, R.; Kretschmer, P. Quant GANs: Deep generation of financial time series. Quant. Financ. 2020,
20, 1419–1440. [CrossRef]

44. Mogren, O. C-RNN-GAN: Continuous recurrent neural networks with adversarial training. arXiv 2016, arXiv:1611.09904.
45. Koltuk, F.; Schmidt, E.G. A novel method for the synthetic generation of non-iid workloads for cloud data centers. In Proceedings

of the 2020 IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 7–10 July 2020; IEEE: Piscataway, NJ,
USA, 2020; pp. 1–6.

46. Manunta, M.; De Luca, C.; Zinno, I.; Casu, F.; Manzo, M.; Bonano, M.; Fusco, A.; Pepe, A.; Onorato, G.; Berardino, P.; et al. The
parallel SBAS approach for Sentinel-1 interferometric wide swath deformation time-series generation: Algorithm description and
products quality assessment. IEEE Trans. Geosci. Remote. Sens. 2019, 57, 6259–6281. [CrossRef]

47. Chuvieco, E.; Englefield, P.; Trishchenko, A.P.; Luo, Y. Generation of long time series of burn area maps of the boreal forest from
NOAA–AVHRR composite data. Remote. Sens. Environ. 2008, 112, 2381–2396. [CrossRef]

48. Hilker, T.; Wulder, M.A.; Coops, N.C.; Seitz, N.; White, J.C.; Gao, F.; Masek, J.G.; Stenhouse, G. Generation of dense time series
synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model.
Remote. Sens. Environ. 2009, 113, 1988–1999. [CrossRef]

49. Bonano, M.; Manunta, M.; Marsella, M.; Lanari, R. Long-term ERS/ENVISAT deformation time-series generation at full spatial
resolution via the extended SBAS technique. Int. J. Remote. Sens. 2012, 33, 4756–4783. [CrossRef]

50. Alzantot, M.; Chakraborty, S.; Srivastava, M. Sensegen: A deep learning architecture for synthetic sensor data generation. In
Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops), Kona, HI, USA, 13–17 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 188–193.

51. Bruno, N.; Chaudhuri, S. Flexible database generators. In Proceedings of the 31st International Conference on Very Large Data
Bases, Trondheim, Norway, 30 August–2 September 2005; pp. 1097–1107.

52. Houkjær, K.; Torp, K.; Wind, R. Simple and realistic data generation. In Proceedings of the 32nd International Conference on
Very Large Data Bases, Seoul, Republic of Korea, 12–15 September 2006; pp. 1243–1246.

53. Kang, Y.; Hyndman, R.J.; Li, F. GRATIS: GeneRAting TIme Series with diverse and controllable characteristics. Stat. Anal. Data
Mining ASA Data Sci. J. 2020, 13, 354–376. [CrossRef]

54. Yu, L.; Zhang, W.; Wang, J.; Yu, Y. Seqgan: Sequence generative adversarial nets with policy gradient. In Proceedings of the
AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31.

55. Ramponi, G.; Protopapas, P.; Brambilla, M.; Janssen, R. T-cgan: Conditional generative adversarial network for data augmentation
in noisy time series with irregular sampling. arXiv 2018, arXiv:1811.08295.

56. Yoon, J.; Jarrett, D.; Van der Schaar, M. Time-series generative adversarial networks. Adv. Neural Inf. Process. Syst. 2019, 32.
57. Lin, Z.; Jain, A.; Wang, C.; Fanti, G.; Sekar, V. Using gans for sharing networked time series data: Challenges, initial promise, and

open questions. In Proceedings of the ACM Internet Measurement Conference, Virtual Event, 27–29 October 2020; pp. 464–483.
58. Xu, T.; Wenliang, L.K.; Munn, M.; Acciaio, B. Cot-gan: Generating sequential data via causal optimal transport. Adv. Neural Inf.

Process. Syst. 2020, 33, 8798–8809.
59. Pei, H.; Ren, K.; Yang, Y.; Liu, C.; Qin, T.; Li, D. Towards generating real-world time series data. In Proceedings of the 2021 IEEE

International Conference on Data Mining (ICDM), Auckland, New Zealand, 7–10 December 2021; IEEE: Piscataway, NJ, USA,
2021; pp. 469–478.

60. Zheng, Y.; Zhang, Z.; Cui, R. Few-Shot Learning for Time Series Data Generation Based on Distribution Calibration. In
Proceedings of the Web Information Systems and Applications: 18th International Conference, WISA 2021, Kaifeng, China, 24–26
September 2021; Proceedings 18. Springer: Berlin/Heidelberg, Germany, 2021; pp. 198–206.

61. Chung, J.; Kastner, K.; Dinh, L.; Goel, K.; Courville, A.C.; Bengio, Y. A recurrent latent variable model for sequential data. Adv.
Neural Inf. Process. Syst. 2015, 28. Available online: https://github.com/jych/nips2015_vrnn (accessed on 1 July 2023).

62. Fraccaro, M.; Sønderby, S.K.; Paquet, U.; Winther, O. Sequential neural models with stochastic layers. Adv. Neural Inf. Process.
Syst. 2016, 29. [CrossRef]

63. Li, Y.; Mandt, S. Disentangled sequential autoencoder. arXiv 2018, arXiv:1803.02991.
64. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

networks. Commun. Acm 2020, 63, 139–144. [CrossRef]
65. Doersch, C. Tutorial on variational autoencoders. arXiv 2016, arXiv:1606.05908.
66. Lewis, R.; Reinsel, G.C. Prediction of multivariate time series by autoregressive model fitting. J. Multivar. Anal. 1985, 16, 393–411.

[CrossRef]
67. Durbin, J. Efficient estimation of parameters in moving-average models. Biometrika 1959, 46, 306–316. [CrossRef]
68. Kashyap, R.L. Optimal choice of AR and MA parts in autoregressive moving average models. IEEE Trans. Pattern Anal. Mach.

Intell. 1982, PAMI-4, 99–104. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/0022-1694(88)90144-8
http://dx.doi.org/10.1002/(SICI)1099-1646(199907/08)15:4<311::AID-RRR544>3.0.CO;2-W
http://dx.doi.org/10.1016/j.envsoft.2014.08.017
http://dx.doi.org/10.1080/14697688.2020.1730426
http://dx.doi.org/10.1109/TGRS.2019.2904912
http://dx.doi.org/10.1016/j.rse.2007.11.007
http://dx.doi.org/10.1016/j.rse.2009.05.011
http://dx.doi.org/10.1080/01431161.2011.638340
http://dx.doi.org/10.1002/sam.11461
https://github.com/jych/nips2015_vrnn
http://dx.doi.org/10.5555/3157096.3157343
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.1016/0047-259X(85)90027-2
http://dx.doi.org/10.1093/biomet/46.3-4.306
http://dx.doi.org/10.1109/TPAMI.1982.4767213
http://www.ncbi.nlm.nih.gov/pubmed/21869012

Sensors 2023, 23, 6976 19 of 19

69. Nelson, B.K. Time series analysis using autoregressive integrated moving average (ARIMA) models. Acad. Emerg. Med. 1998,
5, 739–744. [CrossRef]

70. Wong, C.S.; Li, W.K. On a mixture autoregressive model. J. R. Stat. Soc. Ser. (Stat. Methodol.) 2000, 62, 95–115. [CrossRef]
71. Rinne, H. The Weibull Distribution: A Handbook; CRC Press: Boca Raton, FL, USA, 2008.
72. Norris, J.R. Markov Chains; Number 2; Cambridge University Press: Cambridge, UK, 1998.
73. Rabiner, L.; Juang, B. An introduction to hidden Markov models. IEEE Assp Mag. 1986, 3, 4–16. [CrossRef]
74. Xuan, G.; Zhang, W.; Chai, P. EM algorithms of Gaussian mixture model and hidden Markov model. In Proceedings of the 2001

International Conference on Image Processing (Cat. No. 01CH37205), Thessaloniki, Greece, 7–10 October 2001; IEEE: Piscataway,
NJ, USA, 2001; Volume 1, pp. 145–148.

75. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
76. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
77. Browne, C.B.; Powley, E.; Whitehouse, D.; Lucas, S.M.; Cowling, P.I.; Rohlfshagen, P.; Tavener, S.; Perez, D.; Samothrakis, S.;

Colton, S. A survey of monte carlo tree search methods. IEEE Trans. Comput. Intell. Games 2012, 4, 1–43. [CrossRef]
78. Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784.
79. O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458.
80. Villani, C. Optimal Transport: Old and New; Springer: Berlin/Heidelberg, Germany, 2009; Volume 338.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1111/j.1553-2712.1998.tb02493.x
http://dx.doi.org/10.1111/1467-9868.00222
http://dx.doi.org/10.1109/MASSP.1986.1165342
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1613/jair.301
http://dx.doi.org/10.1109/TCIAIG.2012.2186810

	Introduction
	Four Categories of Time Series Data Generation Methods
	Rule-Based Methods
	Common Time Series Models
	Autoregressive (AR) Model lewis1985prediction
	Moving-Average (MA) Model durbin1959efficient
	Autoregressive Moving-Average (ARMA) Model kashyap1982optimal
	Autoregressive Integrated Moving-Average (ARIMA) Model nelson1998time

	Rule-Based Methods
	FDG bruno2005flexible
	SRDG houkjaer2006simple
	GRATIS kang2020gratis

	Simulation-Model-Based Methods
	Traditional Machine-Learning-Based Methods
	Markov Model
	Discrete-Time Markov Chain norris1998markov
	Hidden Markov Model (HMM) rabiner1986introduction

	Traditional Machine-Learning-Based Methods

	Deep-Learning-Based Methods
	GAN-Based Methods
	C-RNN-GAN mogren2016c
	RCGAN esteban2017real
	SeqGAN yu2017seqgan
	T-CGAN ramponi2018t
	TimeGAN yoon2019time
	DoppelGANger lin2020using
	COT-GAN xu2020cot
	TS-Benchmark hao2021ts
	RTSGAN pei2021towards

	VAE-Based Methods
	Variational Autoencoder
	FSTS zheng2021few
	VRNN chung2015recurrent
	SRNN fraccaro2016sequential
	DSAE li2018disentangled

	Challenges and Future Directions
	Conclusions
	References

