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Abstract: Sound classification has been widely used in many fields. Unlike traditional signal-
processing methods, using deep learning technology for sound classification is one of the most
feasible and effective methods. However, limited by the quality of the training dataset, such as cost
and resource constraints, data imbalance, and data annotation issues, the classification performance
is affected. Therefore, we propose a sound classification mechanism based on convolutional neural
networks and use the sound feature extraction method of Mel-Frequency Cepstral Coefficients
(MFCCs) to convert sound signals into spectrograms. Spectrograms are suitable as input for CNN
models. To provide the function of data augmentation, we can increase the number of spectrograms
by setting the number of triangular bandpass filters. The experimental results show that there
are 50 semantic categories in the ESC-50 dataset, the types are complex, and the amount of data
is insufficient, resulting in a classification accuracy of only 63%. When using the proposed data
augmentation method (K = 5), the accuracy is effectively increased to 97%. Furthermore, in the
UrbanSound8K dataset, the amount of data is sufficient, so the classification accuracy can reach 90%,
and the classification accuracy can be slightly increased to 92% via data augmentation. However,
when only 50% of the training dataset is used, along with data augmentation, the establishment of
the training model can be accelerated, and the classification accuracy can reach 91%.

Keywords: sound classification; signal processing; CNN

1. Introduction

Sound refers to the physical vibration or disturbance that travels through a medium,
such as air or water, and can be perceived by the human ear or other auditory systems. It is
a broader concept that encompasses all audible vibrations, including those occurring in
nature, produced by musical instruments, or generated by man-made sources. Sound is
a natural phenomenon that exists regardless of whether it is captured or recorded. On the
other hand, audio is the electrical or digital representation of sound that has been captured
or recorded. It specifically refers to the electronic representation or signal that represents
sound waves and can be stored, transmitted, or reproduced. Audio can be analog or digital,
and can be stored in various formats, such as WAV, MP3, or FLAC. It is typically used to
refer to the processed or recorded sound that can be played back or manipulated using
audio equipment or software.

Sound is a complex, feature-rich signal, and sound classification is receiving strong
interest in a growing number of application areas, from speech recognition [1,2], music
analysis and recommendation [3,4], environmental sound monitoring [5,6], and anomaly
detection and security [7,8].

• Speech recognition [1,2]: Sound classification plays a crucial role in speech recognition
systems. By accurately classifying and identifying speech sounds, these systems can
convert spoken words or phrases into written text. This technology is utilized in
voice assistants, transcription services, call center automation, and language learning
applications. Accurate sound classification enables more precise and efficient speech
recognition, leading to better user experiences and increased productivity.
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• Music analysis and recommendation [3,4]: Sound classification allows for the analysis
and categorization of music based on various features, such as genre, tempo, mood,
and instrumentation. This classification enables personalized music recommendations,
playlist generation, music organization, and automatic tagging. Music-streaming
platforms and digital music libraries rely on accurate sound classification to provide
personalized recommendations to users, enhancing their music listening experiences.

• Environmental sound monitoring [5,6]: Sound classification can be used to monitor
and classify environmental sounds. This is useful in applications such as wildlife
monitoring, noise pollution assessment, acoustic event detection, and surveillance
systems. By automatically classifying sounds such as animal calls, vehicle sounds,
alarms, or gunshots, sound classification aids in detecting anomalies, identifying
specific events, and alerting authorities or users to potential threats or disturbances.

• Anomaly detection and security [7,8]: Sound classification can be used to identify
abnormal or anomalous sounds in various contexts, including industrial settings,
security systems, and healthcare environments. By training models to recognize
normal sound patterns, deviations or unexpected sounds can be classified as anomalies.
This technology helps to detect equipment failures, security breaches, and medical
emergencies, allowing for timely interventions and preventive measures.

However, sound classification methods relying on signal-processing techniques in-
volve various steps to extract relevant features and classify sound signals. Initially, the raw,
unprocessed sound signal, which is electronically captured and recorded and stored in
a digital format, is called an audio signal. Then, audio signals are preprocessed by eliminat-
ing noise, normalizing amplitudes, and segmenting into smaller frames. Feature extraction
is performed by analyzing the frequency content of these frames using techniques such as
the Fourier transform or the short-time Fourier transform (STFT). The resulting frequency
domain representations can be further processed to obtain features such as spectral energy,
spectral centroid, or spectral roll-off. Additional temporal features such as the zero-crossing
rate and time-domain statistical measures (e.g., mean, variance) can also be computed.
Finally, these extracted features are used to train a classifier, often based on statistical
models such as hidden Markov models (HMMs) or Gaussian mixture models (GMMs).
Signal-processing-based methods rely on careful feature engineering and domain expertise
but may face limitations in handling complex patterns or generalizing to unseen data,
compared to more advanced techniques such as deep learning.

The existing sound classification methods face several challenges and limitations,
including:

• Cost and resource constraints: Collecting and labeling sound data can be a time-
consuming and resource-intensive process, which requires expertise, equipment, and
human effort to capture, process, and accurately annotate sound signals. The cost
and logistics associated with data collection and annotation can be significant, espe-
cially when aiming for large-scale and diverse datasets. Limited financial resources
and access to specialized equipment or personnel can pose challenges in acquiring
an adequate amount of labeled sound data.

• Data imbalance: Imbalanced class distributions within sound datasets can represent
another obstacle. Certain sound classes may have an abundance of available data,
while others are underrepresented. This data imbalance can negatively impact the
model’s performance, as it may struggle to generalize well for minority classes with
limited examples. Acquiring a balanced dataset with sufficient instances for each class
becomes a challenge, leading to potential biases and a reduced classification accuracy
for certain categories.

• Data annotation challenges: Accurate labeling of sound data is a complex task that
often requires human expertise and domain knowledge. Annotating sound signals
with the correct class labels or semantic information can be subjective and prone to
errors. The process may involve multiple annotators, leading to variations in the
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annotations and potential inconsistencies. The scarcity of well-annotated sound data
further hinders the acquisition of enough labeled samples for classification.

To address these challenges, researchers often combine signal-processing techniques
with machine learning approaches, such as using deep learning models, to automatically
learn relevant features from sound data. This combination of methods aims to overcome
the limitations of traditional signal processing and improve the accuracy and adaptability
of sound classification systems. This is due to the ability of deep learning models to
learn complex patterns and extract discriminative features from sound data, resulting in
an improved accuracy and the ability to distinguish similar sound classes. They exhibit
robustness to variability by effectively handling diverse acoustic environments and speaker
and instrument variations, and they can generalize well to unseen data. Furthermore, deep
learning models can efficiently scale to process large-scale sound datasets in real time or near
real time, enabling rapid analysis. They can leverage unlabeled data through unsupervised
or semi-supervised learning techniques, effectively capturing valuable information and
improving the classification performance, even in scenarios with limited labeled data
availability. Advancements in interpretability techniques also make it possible to gain
insights into the decision-making process of deep learning models, addressing concerns
related to the transparency and explainability. Overall, deep learning methods hold great
promise in overcoming the limitations of existing sound classification approaches, paving
the way for more accurate and robust sound analysis.

Therefore, this paper proposes the use of a CNN model [9] for sound classification. The
sound signals in the dataset are preprocessed using the Mel-Frequency Cepstral Coefficients
(MFCCs) method, and appropriate parameter adjustments are made for data augmentation.
Data preprocessing is utilized to develop a CNN classification model, addressing issues
such as cost and resource constraints, data imbalance, and data annotation problems. The
rest of this paper is organized as follows: In Section 2, we analyze related work proposed
by other authors in detail, sort out the advantages and disadvantages of their proposed
methods, and further clarify our research goals. In Section 3, we clearly explain our
proposed sound classification model and data augmentation method using MFCCs. In
Section 4, we present experimental results simulated under different sound datasets with
high classification accuracy and data augmentation practicability, and in the last section,
we conclude the paper based on our proposed methods and summarize their performance
breakthroughs, while also presenting a brief overview of our future research.

2. Related Works

Sound represents the vibration density of an object in the air that changes over time. If
this signal is to be stored and analyzed, it must first be digitized [10]. Sound includes three
elements: volume, pitch, and timbre. Volume refers to the loudness of the sound, which
is affected by the amplitude of the sound wave. The higher the amplitude, the higher the
volume of the sound waveform, measured in decibels (dB). Pitch refers to the highness
or lowness of a sound and is influenced by the frequency of the vibration of the sound
wave. The higher the fundamental frequency of the sound, the higher the pitch, measured
in hertz (Hz). Timbre refers to the quality or content of a sound and is represented by
the variation of each waveform within a fundamental period. Different timbres represent
different sound contents, such as different letters having different pronunciations, all due
to variations in timbre.

Traditional sound classification methods that rely on signal-processing techniques
involve various steps to extract relevant features and classify sound signals. Initially, sound
signals are preprocessed by eliminating noise, normalizing amplitudes, and segmenting
into smaller frames. In the process of feature extraction, the frames of audio signals are an-
alyzed to examine their frequency content using techniques like the Fourier transform [11]
or the short-time Fourier transform (STFT) [12]. These analyses produce frequency domain
representations that can be further processed to obtain features, including spectral energy,
spectral centroid, and spectral roll-off. Additional temporal features like the zero-crossing
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rate and time-domain statistical measures can also be computed. Subsequently, the ex-
tracted features are utilized to train a classifier, typically employing statistical models such
as hidden Markov models (HMMs) [13] or Gaussian mixture models (GMMs) [14]. Tradi-
tional signal-processing-based methods rely on careful feature engineering and domain
expertise but may face limitations in handling complex patterns or generalizing to unseen
data, compared to more advanced techniques such as deep learning.

Therefore, in the volume application of traditional sound classification, the sound
signal can be evaluated according to the location of the source of the sound and the
amplitude [15]. However, since the transmission of the volume will decrease with the
increase in the transmission distance, the distance between the sound-emitting point and
the sound-collecting point may result in different volumes of signals of the same sound
type. In the pitch application of traditional sound classification [16], factors such as pitch,
long-term average spectrum, formant, and noise components are considered to develop
the classification of singing voices to distinguish soprano, alto, tenor, and bass. In [17],
a feature extraction method was proposed for the classification of environmental sound
events based on time–frequency representation.

In the field of sound processing, Mel-Frequency Cepstrum (MFC) [18] is a linear
transformation of the logarithmic energy spectrum based on the nonlinear Mel scale of
sound frequency. Mel-Frequency Cepstral Coefficients (MFCCs) are the coefficients that
make up the MFC. They are derived from the cepstrum of an audio clip. The difference
between the cepstrum and the MFC is that the frequency band division of the MFC is equally
spaced on the Mel scale, which is more approximate to humans than the linearly spaced
frequency bands used in the normal log cepstrum auditory system. The processing of
MFCCs includes frame blocking, pre-emphasis, a Hamming window, signal transformation,
a Mel filter, and discrete cosine transform (DCT). These steps will be described in detail
in Section 3.1.

With the rapid development of artificial intelligence technology, deep learning has
become one of the important technologies to solve problems in various fields. Deep learn-
ing [19] has emerged as a powerful technique for sound classification, demonstrating
remarkable performance in various applications. Deep learning models, such as convo-
lutional neural networks (CNNs) [20] and recurrent neural networks (RNNs) [21], can
automatically extract relevant features directly from raw sound waveforms, enabling more
effective representation learning. These models can capture low-level acoustic features, such
as spectral patterns and temporal dynamics, as well as higher-level semantic information,
allowing them to discern intricate sound characteristics and classify sound signals with high
accuracy. By training deep learning models on large-scale annotated sound datasets, they
can generalize well to unseen sound samples and exhibit robust performance across various
sound classification tasks, including speech recognition, music analysis, environmental
sound monitoring, and more. The flexibility and adaptability of deep learning make it
a promising approach toward advancing sound classification capabilities and unlocking
new possibilities in sound-related applications.

All kinds of deep learning have their own characteristics and suitable application
fields. Among them, CNN has a good effect on image classification, and its model includes
a convolutional layer, a pooling layer, and a flat layer. The convolutional layer is used
to preserve the spatial structure in the picture and extract features from such a structure,
the pooling layer is used to reduce the parameters of the neural network and reduce the
computational cost while maintaining the feature invariance, and the fully connected layer
is the output layer, using the SoftMax function to output classification results. In [22],
a new deep convolutional neural network is proposed for sound classification, which
uses a concatenated spectrogram as input features to increase the richness of features. It
is generated by concatenating the Log-Mel and the Log-Gammatone spectrograms. The
proposed method was tested in the datasets ESC-50 [23] and UrbanSound8K [24], and the
classification accuracies were 83.8% and 80.3%, respectively. In [25], an ACDNet based
on adaptive combined dilated convolutions is used, and a general pipeline is proposed
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that can automatically convert large, deep convolutional networks through compression
and quantization to networks for resource-impoverished edge devices. The classification
accuracy of the method on the ESC-50 dataset is 87.1%, and the classification accuracy on
the UrbanSound8K dataset is 84.45%.

However, due to cost and resource constraints, data imbalance, and data annotation
problems, the training dataset may not be sufficient, resulting in a poor classification
performance of deep learning models. Therefore, the use of data augmentation methods
will be one of the ways to improve the classification performance. Data augmentation
methods in the sound field include traditional sound signal-processing methods, such
as time stretching, pitch shifting, clipping, suppression, adding noise, adding reverbera-
tion, etc. [26,27]. Data augmentation using traditional sound signal-processing methods can
lead to inefficiencies. Therefore, we need simple, intuitive, and effective data augmentation
methods to train acoustic models to learn to extract information from sound data. In [28],
FilterAugment was proposed as a data augmentation method to regularize acoustic models
in various acoustic environments. FilterAugment simulates an acoustic filter by applying
different weights on frequency bands, enabling the model to extract relevant information
from a wider frequency region. FilterAugment improves the performance of sound event
detection models by 6.50%. In [29], SpecAugment was proposed for time warping, time
masking, and frequency masking. Instead of applying data augmentation to the wave-
form, these processes can be directly applied to the logarithmic spectrogram. This method
achieves a 6.8% word error rate (WER) in other tests without a language model and a 5.8%
WER with shallow fusion with a language model. In [30], classifiers are combined that
utilize standard signal augmentation (SGN), short signal augmentation (SSA), super signal
augmentation (SSiA), time-scale modification (TSM), short spectrogram augmentation
(SSpA), and super spectro augmentation (SuSA) data augmentation techniques to retrain
five pre-trained convolutional neural networks (CNN). The experimental results show that
this achieved a classification accuracy of 88.65% in the ESC-50 dataset.

3. Sound Classification Mechanism

In this section, a CNN-based sound classification mechanism is proposed, and a data
augmentation method is used to reduce the amount of training data required for the classifi-
cation model and improve the performance of the classification model. The proposed sound
classification mechanism includes three parts: data preprocessing, data augmentation, and
the CNN classification model.

3.1. Data Preprocessing

In order to enable the sound signal to become the input of the CNN classification
model after being properly processed, a preprocessing procedure was performed. The
preprocessing procedures include frame division, pre-emphasis, Hamming window, signal
transformation, Mel filter, and discrete cosine transform (DCT), and each procedure is
described as follows:

• Frame blocking: The sound signal is continuously changing. To simplify the con-
tinuously changing signal, it is assumed that the sound signal does not change in
a short time scale. Therefore, the sound signal is aggregated into a unit with multiple
sampling points (N), which is called an “audio frame”. An audio frame is 20~40 ms.
If the length of the audio frame is shorter, there will not be enough sampling points
in each audio frame to perform reliable spectrum calculation, but if the length is too
long, the signal of each audio frame will change too much. In addition, to avoid
excessive changes between two adjacent audio frames, we will allow an overlapping
area between two adjacent audio frames, and this overlapping area contains about
half or one-third of the sampling points (M) in the audio frame.

• Pre-emphasis: To highlight the high-frequency formant, the sound signal will first
pass through a high-pass filter.
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S(n) = s(n)− α× s(n− 1), ∀n ∈ N (1)

where s(n) is the original sound signal, s(n − 1) is the signal after a high-pass filter, and α is
the pre-emphasis coefficient, usually between 0.9 and 1.

• Hamming window: Suppose that the audio-framed signal is S(n). To increase the
continuity between the sound frames, the divided audio frames are multiplied by
a Hamming window to avoid signal discontinuity in the subsequent Fourier transform.
The Hamming window is shown in Formula (2), and the result of multiplying the
sound frame by the Hamming window is shown in Formula (3):

W(n, α) =

{
(1− α)–α× cos

( 2πn
N−1

)
, 0 ≤ n ≤ N − 1

0, Otherwise
(2)

S
′
(n) = S(n)×W(n, α) (3)

where W(n,α) is the Hamming window, and n is the nth sampling point. The Hamming
window size produced by different α values is different. N is the number of sampling
points, and α is generally set to 0.46.

• Signal transformation: The change in the sound signal in the time domain will continue
to change over time, so the sound signal cannot be effectively discussed in the time
domain. In the frequency domain, short-term speech signals appear periodic. Gen-
erally, the speech signal is converted from the time domain to the frequency domain
by a discrete Fourier transform (DFT), and the characteristics of the sound signal are
observed in the frequency domain, or the characteristic parameters in the frequency
domain are extracted. The formula for the discrete Fourier transform is as follows:

F(k) = ∑N−1
n=0 S

′
(n)× e−j× 2πnk

N , 0 ≤ k < N (4)

In order to reduce the number of calculations and speed up the calculation, the fast
Fourier transform (FFT) will be used instead of the DFT. The formula for the discrete
Fourier transform is as follows:

F(k) = Feven(k) + Fodd(k)·Wk
2M, k = 1, 2, . . . , M− 1 (5)

Where


Feven(k) = ∑M−1

n=0 S
′
(2n)·Wnk

M
Fodd(k) = ∑M−1

n=0 S
′
(2n + 1)·Wnk

M
WN = e−j 2π

N

(6)

• Mel filter: A set of triangular bandpass filters is selected, usually including P triangular
bandpass filters. P is usually set at a value between 20 and 40. The center frequency
and bandwidth of each triangular bandpass filter are determined according to the Mel
scale, which is a non-linear frequency scale based on the pitch perceived by the human
ear. The frequency domain response of a triangular bandpass filter is computed. The
response function of each filter is a triangle, which takes the maximum value at the
center frequency and then gradually decreases to the left and right sides until the
frequency is 0. The response function of each filter is convolved with the spectrogram
to obtain the output of each filter in the frequency domain. This output represents the
logarithmic energy (Ek) of the audio in this frequency band, which is equivalent to
dividing the original signal into several bandpass signals of different frequencies. The
Mel frequency represents the general human ear’s sensitivity to frequency, and it can
also be seen that the human ear’s perception of frequency, f, logarithmically changes.
The conversion relationship between the Mel frequency and the general frequency, f, is
as in Formula (7):



Sensors 2023, 23, 6972 7 of 18

Mel( f ) = 2595× log
(

1 +
f

700

)
(7)

• Discrete cosine transform (DCT): The above logarithmic energies, Ek, are brought into
the discrete cosine transform to find the L-order Mel-scale Cepstrum parameter, where
L is usually 12.

Cm =

N

∑
k=1

Ek × cos
(

m× (k− 0.5)× π

N

)
, m = 1, 2, . . . , L (8)

where Ek is the value of the inner product of the triangular filter and the spectral energy
calculated in the previous step, and N is the number of triangular filters.

An example of a spectrogram that can be obtained after preprocessing the sound signal
is shown in Figure 1.
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3.2. Data Augmentation

The classification efficiency is limited by the amount of training data required for the
solid classification model. Additionally, the collection and processing of training data are
not very easy. Therefore, the use of data augmentation methods will help to improve the
performance of sound classification. Consider the Mel filter, which is designed based on
the characteristics of the frequency response of the human auditory system to sound. Since
the perception of the human ear is on a logarithmic scale, the logarithmic transformation
can better simulate the human ear’s perception of sound. Using a set of Mel filters, the
speech signal can be divided into several different frequency bands, and the strength of
each frequency band can be represented by a logarithmic value. These logarithmic values
are often used as acoustic features for classification and modeling in tasks such as speech
recognition. Using different numbers of triangular bandpass filters for the same sound
signal will produce a similar but not identical logarithmic energy. Therefore, if K sets of
triangular bandpass filters with different numbers are set, the same sound can produce K
times similar sound characteristics, in order to achieve the purpose of data augmentation.
In this study, the set of triangular bandpass filters and the number of triangular bandpass
filters are listed in Table 1. When K = 1, only one set of 40 triangular bandpass filters is
used to process the signal with a Mel filter. This is the original Mel filter approach, and the
data are not augmented. When K = 2, two sets of triangular bandpass filters with numbers
of 30 and 40 are used, respectively, to process the signal with the Mel filter, and the data
are augmented to obtain twice the amount of signal data. Similarly, when K = 5, use 5 sets
of triangular bandpass filters with numbers 20, 25, 30, 35, and 40, respectively, to process
the signal with the Mel filter, and the data are augmented to obtain 5 times the amount of
signal data.
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Table 1. The sets and the numbers of triangular bandpass filters.

Sets of Triangular Bandpass Filters Number of Triangular Bandpass Filters

K = 1 40
K = 2 30, 40
K = 3 20, 30, 40
K = 4 20, 30, 35, 40
K = 5 20, 25, 30, 35, 40

3.3. Sound Classification Model

The sound classification model is a learning model using CNN, as shown in Figure 2.
The input layer uses an image 40 × 173 pixels in size as the input layer, and a total of
3 hidden layers (including the convolutional layer and the pooling layer) are used, and
the number of convolution kernels for each convolutional layer is 64, 128, and 256. The
pooling layer uses the maximum pooling operation, and the activation function used is
the Rectified Linear Unit (ReLU), in order to prevent overfitting problems during model
training convergence. We added Dropout to each hidden layer to reduce overfitting, and
finally classified the data through the output layer.
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Figure 2. The sound classification model using CNN.

The operation steps of the proposed sound classification model are as follows:
Step (1): The image after the preprocessing of the data is set to a 40 × 173-pixel image

as the input data of the input layer.
Step (2): This is the first convolution layer. The convolution kernel of this layer is set

to 2 × 2, the feature map is set to 64, and the activation function is ReLU. The convolutional
layer-processing method is similar to the image-processing method. Using the sliding-
window calculation, by giving different weight combinations to the “convolution kernel”, it
is possible to detect the edges and corners of the shape, and it also has the effect of removing
noise and sharpening, as well as extracting these features as the basis for identification.

Step (3): This step is a pooling layer using maximum pooling. The size of the pooling
layer is set to 2 × 2. The pooling layer is a method of compressing images and retaining
important information. The sampling method is the same as for sliding windows, but
maximum pooling is generally used. If the sliding-window size is set to 2 and the “stride” is
also set to 2, the amount of data will be reduced to a quarter of the original, but because the
maximum value is taken, it still retains the greatest possibility of local range comparison.
That is, the pooled information is more focused on whether there are matching features in
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the picture, rather than “where” these features exist in the picture. Therefore, if the image
is shifted, it can still be recognized.

Step (4): This is the second convolutional layer, which performs convolution opera-
tions on the data again to find various features in the image that are more detailed. The
convolution kernel of this layer is set to 2 × 2, the feature map is set to 128, and the
activation function is ReLU.

Step (5): This step is a pooling layer using maximum pooling. The size of the pooling
layer is set to 2 × 2.

Step (6): This is the third convolutional layer, which performs convolution operations
on the data again to find more detailed features in the image. The convolution kernel of
this layer is set to 2 × 2, the feature map is set to 256, and the activation function is ReLU.

Step (7): This step is a pooling layer using maximum pooling. The size of the pooling
layer is set to 2 × 2.

Step (8): This step consists of two flattening layers, and each node is formed into a fully
connected layer to form a classifier. This means that the feature data obtained through the
convolution operation will be converted into the corresponding output classification results.

Step (9): The sound classification category is output.

4. Experimental Results

The settings of each procedure for data preprocessing are described as follows:

• In the frame-blocking procedure: Since the sound signal is extracted at a sampling
frequency of 44.1 kHz for 5 s of monophonic audio, the standard audio frame is set to
25 ms, and the overlapping area between audio frames is set to 15 ms. Therefore, there
are N = 1130 sampling points in one audio frame, and M = 662 of them are the same as
the adjacent audio frame.

• In the pre-emphasis procedure: According to Formula (1), the audio is enhanced.
• In the Hamming window procedure: According to Formulas (2) and (3), the 1103 sam-

pling points in the audio frame are calculated.
• In the signal transformation procedure: The audio in the time domain is converted into

the energy distribution in the frequency domain according to Formulas (5) and (6).
• In the Mel filter procedure: The energy spectrum is multiplied by a set of K triangular

bandpass filters to obtain the logarithmic energy (Ek) output by each filter, according
to Formula (7).

• In the DCT procedure: The discrete cosine transform will be calculated according to
Formula (8).

The hyperparameter settings of the sound classification model using CNN proposed
in this paper are shown in Table 2. Each epoch represents the result of the entire model
training “once”. This model was trained for 500 epochs, but during the training process,
we added Early Stopping technology [31]. We first used a part of the training set as our
validation set. At the end of each epoch, the accuracy of the validation set was calculated. If
it is found that the performance on the verification set is getting worse and the verification
performance exceeds our pre-set value (accuracy > 0.5 and epoch > 50), it may be that
overfitting has occurred, and the training process will be terminated. The model uses
categorical_crossentropy as the cross-validation method of the final classification result, the
optimizer used is Adam, and the learning rate of the model is set to 0.001.

Table 2. The hyperparameters of the sound classification model.

Hyperparameters Values

Epoch 500
Batch_Size 100

Loss_Function categorical_crossentropy
Optimizer Adam

Learning Rate 0.001
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The confusion matrix is a method used to verify the classification effect [32], which is
used to evaluate the performance of the classification model. True positive (TP) indicates
that the result of the forecast data is the same as the actual data, and true negative (TN)
indicates that the result of the forecast data is not the same as the actual data. False
positive (FP) indicates that while the forecast data result is the same as the actual data,
the true result is not the same as the actual data, and false negative (FN) means that
while the result of forecast data is not the same as the actual data, the true result is
the same as the actual data. Based on the results of the confusion matrix, the accuracy,
precision, recall, and F1 score will be discussed separately to evaluate the proposed
model’s classification performance.

The accuracy of sound classification is defined as shown in Equation (9), representing
the ratio of correct classification cases to all classification cases in the classification model:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

The precision of the sound classification is defined as Equation (10); among all the
predicted results, the proportion of correct results is predicted:

Precision =
TP

TP + FP
(10)

The recall rate for sound classification is defined as Equation (11), representing the
proportion of predictions among all actual results:

Recall =
TP

TP + FN
(11)

The F1 score of sound classification is defined as Equation (12), where P stands for
precision and R stands for recall, which is a comprehensive index of the two evaluation
methods, where the value range is between 0 and 1, and the closer to 1 the value is, the
better the classification result is:

F1Score =
2PR

P + R
(12)

The experimental results use different numbers of triangular bandpass filter sets
for data preprocessing and data augmentation for two public datasets, ESC-50 [29] and
UrbanSound8K [30], to show the excellent performance of the proposed method in
sound classification.

4.1. Experimental Results Based on the ESC-50 Dataset

The ESC-50 [29] dataset consists of 5 s-long recordings organized into 50 semantical
classes (with 40 examples per class) arranged into 5 major categories, as shown in Table 3.
The dataset can be divided into three parts: the training set, the validation set, and the
testing set. We assigned 81% of the data to the training set, which was utilized to train the
model and adjust its parameters based on the training data. Additionally, 9% of the data
were allocated to the validation set, allowing for fine-tuning of the model’s hyperparameters
and evaluating its performance during training. The validation set plays a crucial role in
selecting the best-performing model based on its performance on unseen data. Finally,
the remaining 10% of the data were set aside for the testing set, remaining completely
separate from the model development process. This subset was reserved for evaluating
the final performance of the trained model and providing an unbiased evaluation of its
generalization capabilities on unseen data.
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Table 3. The major categories and semantical classes of the ESC-50 dataset.

No.
Major Categories

Animals Natural Soundscapes
and Water Sounds

Human, Non-Speech
Sounds

Interior/Domestic
Sounds

Exterior/Urban
Noises

1 Dog Rain Crying baby Door knock Helicopter
2 Rooster Sea waves Sneezing Mouse click Chainsaw
3 Pig Crackling fire Clapping Keyboard typing Siren
4 Cow Crickets Breathing Door, wood creaks Car horn
5 Frog Chirping birds Coughing Can opening Engine
6 Cat Water drops Footsteps Washing machine Train
7 Hen Wind Laughing Vacuum cleaner Church bells
8 Insects (flying) Pouring water Brushing teeth Clock alarm Airplane
9 Sheep Toilet flush Snoring Clock tick Fireworks
10 Crow Thunderstorm Drinking, sipping Glass breaking Hand saw

Due to the insufficient amount of data in the ESC-50 dataset, the results of the sound
classification model for the five major categories using only the original dataset (i.e., K = 1)
are shown in Figure 3a. During the 200th training epoch, the Early Stopping mechanism
was triggered to avoid overfitting problems and problems where training cannot converge.
The results show that although the accuracy of the training is close to 90%, the accuracy of
the validation is only about 62%. Furthermore, the results of the sound classification model
for the five major categories after doubling the original data (i.e., K = 2) using the proposed
data augmentation method are shown in Figure 3b. During the 420th training epoch, the
Early Stopping mechanism was triggered to avoid overfitting problems and problems
where training cannot converge. The results show that the accuracy of both the training
set and the validation set is 90%. The confusion matrix and evaluation indicators for each
category of sound classification using the original dataset and data augmentation are shown
in Tables 4 and 5, respectively. The results show that the data augmentation method can
effectively improve the performance by 30% compared with the original dataset, meaning
that the average accuracy, average precision, and average recall of classification can reach
90%, and the F1 score can reach 89%.
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Table 4. Confusion matrix using the ESC-50 dataset and the data augmentation mechanism.

Actual Original Dataset (K = 1) Augmentation (K = 2)
Predict 1 2 3 4 5 1 2 3 4 5

1 23 5 2 3 2 75 6 3 0 5
2 7 26 3 1 5 0 65 3 2 4
3 3 5 26 3 3 3 2 81 1 1
4 2 4 8 23 6 0 2 4 69 7
5 0 6 6 2 25 0 0 0 0 67

Table 5. Evaluation indicators for each category of sound classification using the ESC-50 dataset and
the data augmentation mechanism.

Category
Original Dataset (K = 1) Augmentation (K = 2)

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score
1 0.66 0.66 0.67 0.68 0.84 0.96 0.84 0.90
2 0.62 0.56 0.62 0.59 0.88 0.87 0.88 0.87
3 0.65 0.58 0.63 0.60 0.92 0.89 0.92 0.91
4 0.53 0.72 0.52 0.61 0.84 0.96 0.84 0.90
5 0.64 0.61 0.63 0.60 1.00 0.80 1.00 0.89

Average 0.62 0.63 0.62 0.62 0.90 0.90 0.90 0.89

Since the ESC-50 dataset has 5 major categories, it can be subdivided into 50 semantic
classes. The method of data augmentation by K times, where K = 1, 2, . . ., 5, was used
to demonstrate the accuracy, precision, recall, and F1 score performance of the sound
classification model, as shown in Figures 4–7. In Figure 4, when K = 1 (data not augmented),
the overall average accuracy is only 63%. The accuracy of class numbers 7, 10, 11, 17, 18, 22,
30, 31, 37, 38, 41, 47, and 48 is less than 50%. Among them, the accuracy of class numbers 10,
11, 31, and 41 is zero, showing that they cannot be classified at all. When K = 2, the data are
doubled, and the overall average accuracy is increased to 80%. Only the accuracy of class
number 9 is low, at 40%. As K increases to 3, 4, and 5, the overall average accuracy increases
to 87%, 94%, and 97%, respectively, showing that the accuracy of each class is excellent.
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Figure 4. Sound classification accuracy with data augmentation in the ESC-50 dataset.
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Figure 5. Sound classification precision with data augmentation in the ESC-50 dataset.
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Figure 6. Sound classification recall with data augmentation in the ESC-50 dataset.
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In Figure 5, when K = 1 (data not augmented), the overall average precision is 54%.
The precision of class numbers 3, 4, 5, 8, 10, 11, 19, 24, 33, 34, 36, 39, 43, 44, 46, and 49 all
have less than 50%. When K = 2, the data are doubled, and the overall average precision
increases to 83%. As K increases to 3, 4, and 5, the overall average precision increases to
90%, 95%, and 97%, respectively, showing that the precision of each class is excellent.

Similarly, in Figure 6, when K = 1 (data not augmented), the overall average recall is
59%. There are a certain number of classes (class numbers 7, 10, 11, 17, 18, 24, 30, 33, 34, 36,
47, and 48) with low recall, indicating that the classification performance is bad. However,
as K increases to 2, 3, 4, and 5, the overall average recall increases to 80%, 88%, 95%, and
96%, respectively, showing that the recall of each class is excellent.

In Figure 7, when K = 1 (data not augmented), the overall mean F1 score is 53%. There
are a certain number of classes (class numbers 3, 7, 8, 10, 11, 17, 18, 19, 24, 26, 30, 33, 34, 36,
39, 44, 47, and 48) with a low F1 score, indicating that the classification performance is bad.
However, as K increases to 2, 3, 4, and 5, the overall average F1 score increases to 78%, 87%,
95%, and 96%, respectively, showing that the F1 score in each class is excellent.

4.2. Experimental Results Based on the UrbanSound8K Dataset

The UrbanSound8K [30] dataset contains 8732 labeled sound excerpts of urban sounds
from 10 classes: air_conditioner, car_horn, children_playing, dog_bark, drilling, enginge_idling,
gun_shot, jackhammer, siren, and street_music. The length of each sound excerpt is 5 s.
The amount of data in the 10 classes in the UrbanSound8K dataset is shown in Table 6. Due
to the sufficient amount of data in the UrbanSound8K dataset, the results of the 10-class
sound classification model using only the original dataset (K = 1) are shown in Figure 8a. In
the 500 epochs of training, the Early Stopping mechanism was triggered to stop training at
the 173rd epoch, and the accuracy of the training and the validation sets was very similar
and reached 90%. In addition, the results of the sound classification model for the 10 classes
after doubling the original data (K = 2) using the proposed data augmentation method are
shown in Figure 8b. During the 308th training epoch, the Early Stopping mechanism was
triggered to stop training. The results show that the data augmentation method can only
slightly increase the classification accuracy by 2%, compared with the original dataset when
the original dataset has sufficient data. The evaluation indicators for each class of sound
classification using the original dataset and data augmentation are shown in Table 7. The
average accuracy, average precision, average recall, and average F1 score of classification
can reach 92%.

Half of the data for each category were extracted from the UrbanSound8K dataset
(that is, the number of data was 4366), and the data augmentation mechanism (K = 2) was
used to generate a new training set with a data size of 8732. The sound classification results
using this new training set are shown in Figure 9. During the 272nd training epoch, the
Early Stopping mechanism was triggered to stop training. The accuracy of the training
and validation sets was very similar and reached 91%. The evaluation indicators for each
class of sound classification using the new dataset are shown in Table 8. The average
classification accuracy and F1 score were 91%, the average precision was 92%, and the
average recall was 90%. The experimental results show that, in the case of sufficient data,
an excellent sound classification model can be established by using only half of the training
data and through the proposed data augmentation mechanism.

Table 6. The amount of data in 10 classes in the UrbanSound8K dataset.

No. Classes Number of Data No. Classes Number of Data
1 air_conditioner 1000 6 enginge_idling 1000
2 car_horn 429 7 gun_shot 374
3 children_playing 1000 8 jackhammer 1000
4 dog_bark 1000 9 siren 929
5 Drilling 1000 10 street_music 1000
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Table 8. The evaluation indicators for each category of sound classification using the UrbanSound8K
dataset and the data augmentation mechanism.

Category
New Dataset (Halve the Dataset and Double the Data Using Data Augmentation)

Accuracy Precision Recall F1 Score

1 0.97 0.93 0.97 0.95
2 0.74 0.97 0.74 0.84
3 0.84 0.85 0.88 0.86
4 0.90 0.93 0.87 0.90
5 0.89 0.92 0.89 0.90
6 0.94 0.93 0.93 0.93
7 1.00 1.00 1.00 1.00
8 0.95 0.96 0.92 0.94
9 0.91 0.93 0.91 0.92
10 0.93 0.80 0.93 0.86

Average 0.91 0.92 0.90 0.91

A comparison of the proposed sound classification with the state-of-the-art is shown
in Table 9. Based on the ESC-50 dataset, when the proposed method does not use data
augmentation (K = 1), the classification accuracy is only 63%, which is much lower than the
classification accuracy rates of the other three methods of 88.65%, 83.8%, and 87.1%. This
is because the ESC-50 dataset has many classes and the amount of data for each class is
insufficient, which makes the classification efficiency of the proposed method using only
this dataset low. When the proposed method uses data enhancement (K = 4 or 5), the
accuracy can be greatly improved and exceeds 94%. Based on the UrbanSound8K dataset,
when the proposed method does not use data augmentation (K = 1), the classification
accuracy has already reached 90%, which is better than the classification accuracy of the
other two methods, which are 80.3% and 84.45%. This is because the amount of data in
each class of the UrbanSound8K dataset is sufficient, making the classification performance
of the proposed method excellent. If data augmentation (K = 2) is used, the accuracy of the
proposed method can be slightly increased to 92%.

Table 9. Comparison of the proposed sound classification with the state-of-the-art.

Dataset [30] [22] [25]
Proposed Method

K = 1 K = 2 K = 3 K = 4 K = 5

ESC-50 88.65% 83.8% 87.1% 63% 80% 87% 94% 97%
UrbanSound8K -- 80.3% 84.45% 90% 92% -- -- --

5. Conclusions

In this paper, we proposed a sound classification mechanism based on convolutional
neural networks and used the MFCC sound feature extraction method to convert sound
signals into spectrograms. These spectrograms were then used as input data for the CNN
model, after learning the feature extraction of the model to distinguish the category of
sounds, and the number of different triangular bandpass filters in MFCCs was used for
extraction as a method of data augmentation.

In the ESC-50 dataset, there were a total of 50 semantic categories, the types were
complex, and the amount of data was insufficient, resulting in a sound classification
accuracy of only 63% for the main category. With the proposed data augmentation method,
when K is 5, the accuracy was effectively increased to 97%. It can be seen that due to
cost and resource constraints, it is impossible to obtain a sufficient number of datasets,
and the proposed data augmentation method can be used to provide sufficient data to
establish a good classification mechanism. It is worth mentioning that the proposed data
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augmentation method will convert the same sound data into multiple similar but different
spectrograms, so that the augmented data can be directly applied to solve the challenge of
data imbalance and data labeling.

In the UrbanSound8K dataset, the classification accuracy reached 90%, and it was
slightly increased to 92% through data augmentation. This shows that, if the amount
of data in the dataset is sufficient, the effect of data augmentation on improving the
classification accuracy is limited. However, when only 50% of the dataset was used, along
with data augmentation, the establishment of the training model was accelerated, and the
classification accuracy reached 91%.

In our future work, the performance of the sound classification model will be affected
by environmental noise, interference, sound overlap, and other related problems generated
during the actual sound reception. Therefore, the proposed data augmentation method
can be improved or modified in the future, so that the proposed sound classification can be
implemented in practical applications.
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