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Abstract: In recent years, photoacoustic (PA) imaging has rapidly grown as a non-invasive screening
technique for breast cancer detection using three-dimensional (3D) hemispherical arrays due to their
large field of view. However, the development of breast imaging systems is hindered by a lack of
patients and ground truth samples, as well as under-sampling problems caused by high costs. Most
research related to solving these problems in the PA field were based on 2D transducer arrays or
simple regular shape phantoms for 3D transducer arrays or images from other modalities. Therefore,
we demonstrate an effective method for removing under-sampling artifacts based on deep neural
network (DNN) to reconstruct high-quality PA images using numerical digital breast simulations.
We constructed 3D digital breast phantoms based on human anatomical structures and physical
properties, which were then subjected to 3D Monte-Carlo and K-wave acoustic simulations to mimic
acoustic propagation for hemispherical transducer arrays. Finally, we applied a 3D delay-and-sum
reconstruction algorithm and a Res-UNet network to achieve higher resolution on sparsely-sampled
data. Our results indicate that when using a 757 nm laser with uniform intensity distribution
illuminated on a numerical digital breast, the imaging depth can reach 3 cm with 0.25 mm spatial
resolution. In addition, the proposed DNN can significantly enhance image quality by up to 78.4%,
as measured by MS-SSIM, and reduce background artifacts by up to 19.0%, as measured by PSNR,
even at an under-sampling ratio of 10%. The post-processing time for these improvements is only
0.6 s. This paper suggests a new 3D real time DNN method addressing the sparse sampling problem
based on numerical digital breast simulations, this approach can also be applied to clinical data and
accelerate the development of 3D photoacoustic hemispherical transducer arrays for early breast
cancer diagnosis.

Keywords: photoacoustic imaging; breast imaging; deep learning; under-sampling; image reconstruction

1. Introduction

Breast cancer is a prevalent global health issue with over 2.3 million new cases di-
agnosed in 2020, leading to 685,000 deaths [1,2]. Early detection is crucial for reducing
mortality rates, but current screening methods have limitations. For instance, mammogra-
phy poses risks to human health and has a high false positive rate in dense breasts [3,4].
Ultrasound is a low-cost option but is less effective in deeper breast tissue [5,6]. MRI has
excellent resolution and sensitivity, but its high cost and time-consuming nature make it
unsuitable for early diagnosis [7–9]. As a result, photoacoustic (PA) imaging has garnered
significant attention in breast cancer screening and diagnosis due to its ability to overcome
many limitations associated with other methods [10–12].
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PA imaging is a non-invasive imaging technique that uses a pulsed laser to illumi-
nate biological tissue, such as vasculature, lipid and fat, where the scattered photons are
absorbed by chromophores in the tissue, leading to rapid thermal expansion and the gener-
ation of ultrasonic waves [13]. Ultrasonic transducers then detect these sound waves and
reconstruct images based on light absorption contrast. Compared with traditional optical
imaging methods, PA imaging allows for deeper tissue imaging up to multiple centimeters
due to weak acoustic scattering [14].

Recent efforts in PA imaging have focused on enhancing its high-speed imaging
capability in both 2D and 3D [15,16]. Achieving higher temporal resolution has involved
the use of sparse sampling, which may lead to image quality degradation and various
reconstruction artifacts [17–20]. During image reconstruction, regularization terms, such
as total variation (TV), can be added to mitigate reconstruction artifacts. However, such a
technique is not suitable for the recovery of thin vessels, and more sophisticated regulation
techniques are needed to recover anisotropic structures [19].

Deep learning methods have revolutionized the reconstruction and processing of
biomedical images [21–23]. The utilization of U-Net-based convolutional neural networks
(CNNs) becomes popular in addressing various biomedical imaging issues due to CNNs’
capability to integrate multiple-level features and to be adapted to various imaging modal-
ities [24]. In the field of PA imaging, U-Net was successfully applied to the removal of
artifacts caused by limited sampling data [25,26], vessel segmentation [27], and recon-
struction of initial pressure images [28]. To be more specific, U-Net-based CNNs show
outstanding performances to restore image details by removing artifacts generated when
the spatial sampling is below the Nyquist criterion. Antholzer et al. [25] used U-Net
to process PA reconstructed images collected from 30 sparsely distributed transducers,
and the results show a faster imaging speed and richer image details compared with fil-
tered back projection (FBP). Guan et al. proposed an improved network based on U-Net,
named FD-UNet, to post-process reconstructed mouse brain vasculature images using
time reversal [26]. Deng et al. applied SE-UNet with an attention mechanism to remove
noise and artifacts stemming from under-sampling [29]. Choi et al. applied an improved
version of U-Net named 3D-pUnet to address the limited view artifacts caused by clustered-
sampling [30]. However, none of the existing methods were directly applied to 3D PA
images for human breast vasculature. Utilizing post-processed 2D images that are sliced to
reconstruct a 3D image can lead to feature discontinuity.

In this study, we aim to apply U-Net-based postprocessing directly to 3D PA images to
remove under-sampling artifacts. In order to do so, we relied on simulated breast imaging
data. Researchers have conducted numerical studies to simulate the process of 3D PA
imaging in human breasts, using a combination of simple objects to represent background
soft tissue [31]. Additionally, tumor models derived from mice studies were explored
to simulate 3D breast tumor structures, including skin, vessels, fat, and fibroglandular
tissue [32]. To further improve the accuracy of breast structure representation, contrast-
enhanced MRI breast scanning data were segmented and used as the PA source [33]. A
recently developed software called VICTRE 1.0 breast phantom can serve as a realistic
3D model for breast structure [34]. The models generated by the software have very
similar structure and parameters to real breast tissues. Here, we proposed a pipeline that
demonstrates the crucial role of utilizing Res-UNet-based networks to effectively improve
image quality in the case of spatial under sampling, based on 3D PA images generated
from numerical simulations. The whole scheme is depicted in Figure 1a, which consists of
digital breast generation, light transportation simulation, acoustic propagation simulation,
image reconstruction and Res-UNet-based post-processing.
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Figure 1. (a) Pipeline utilizing Res-UNet model to solve under-sampling problem based on PA nu-
merical breast phantom; (b) (i) Overview of numerical breast phantom; (ii) Extracted blood vessel 
structure; (iii) Numerical breast phantom components in sagittal plane. 

2. Materials and Methods 
2.1. Volumetric Image Acquisition and Preprocessing 

Figure 1(bi) shows the overview of the VICTRE 1.0 breast model. In order to better 
represent the breast’s position in a clinical setting, we adjust the parameters of the breast 
model to simulate a prone position, and the laser illuminates the coronal plane vertically. 
A hemispherical-array-based PA imaging system is simulated in this study, and we set 
the breast density to heterogeneously dense (0.339 GVF) [3]. Figure 1(bii) shows the ex-
tracted blood vessel structure. Once the basic breast parameters are fixed, 140 digital 
breast models were generated automatically based on pre-determined statistical values 
with different shapes, including air, fat, skin, glands, muscle, fiber and vein, as shown in 
Figure 1(biii) [35]. Compared to other imaging modalities, PA imaging is advantageous in 
achieving non-invasive imaging of blood vessels and blood oxygenation, due to the high 
absorption of oxygenated and deoxygenated hemoglobin [36]. 

In our study, we used MCmatlab [37] as the simulation platform for light transport 
in various tissue. The simulation zone was defined as a rectangular cuboid with a uniform 
division into cubic voxels, and the distance of each voxel was defined as 0.25 mm. The 
computation volume was set to be 359 × 287 × 153 (voxels). Each voxel was assigned a 
specific medium or tissue type based on its absorption coefficient µa, scattering coefficient 
µs, and the Henyey–Greenstein scattering anisotropy factor g at the given optical wave-
length. The input light beam was simulated by launching photon packets at the tissue’s 
surface, and the 3D optical energy deposition within the concerned volume was calculated 
using a MC model. Near-infrared (NIR) light at a wavelength of 757 nm was used for PA 
signal excitation due to its low attenuation inside breast tissues [38]. The light source was 

Figure 1. (a) Pipeline utilizing Res-UNet model to solve under-sampling problem based on PA
numerical breast phantom; (b) (i) Overview of numerical breast phantom; (ii) Extracted blood vessel
structure; (iii) Numerical breast phantom components in sagittal plane.

2. Materials and Methods
2.1. Volumetric Image Acquisition and Preprocessing

Figure 1b(i) shows the overview of the VICTRE 1.0 breast model. In order to better
represent the breast’s position in a clinical setting, we adjust the parameters of the breast
model to simulate a prone position, and the laser illuminates the coronal plane vertically. A
hemispherical-array-based PA imaging system is simulated in this study, and we set the
breast density to heterogeneously dense (0.339 GVF) [3]. Figure 1b(ii) shows the extracted
blood vessel structure. Once the basic breast parameters are fixed, 140 digital breast models
were generated automatically based on pre-determined statistical values with different
shapes, including air, fat, skin, glands, muscle, fiber and vein, as shown in Figure 1b(iii) [35].
Compared to other imaging modalities, PA imaging is advantageous in achieving non-
invasive imaging of blood vessels and blood oxygenation, due to the high absorption of
oxygenated and deoxygenated hemoglobin [36].

In our study, we used MCmatlab [37] as the simulation platform for light transport in
various tissue. The simulation zone was defined as a rectangular cuboid with a uniform
division into cubic voxels, and the distance of each voxel was defined as 0.25 mm. The
computation volume was set to be 359 × 287 × 153 (voxels). Each voxel was assigned a
specific medium or tissue type based on its absorption coefficient µa, scattering coefficient
µs, and the Henyey–Greenstein scattering anisotropy factor g at the given optical wave-
length. The input light beam was simulated by launching photon packets at the tissue’s
surface, and the 3D optical energy deposition within the concerned volume was calculated
using a MC model. Near-infrared (NIR) light at a wavelength of 757 nm was used for PA
signal excitation due to its low attenuation inside breast tissues [38]. The light source was
placed outside the digital breast to provide a uniform illumination with a radius of 1.2 cm.
The optical parameters for the optical simulation are listed in Table 1 [39,40].
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Table 1. Optical parameters of various materials/tissue types used in the simulation.

Tissue/Material Type µa/cm−1 µs/cm−1 g

Air 1 × 10−12 1 × 10−12 1
Fat 0.62 73 0.98

Skin 0.48 167 0.9
Glands 0.36 112 0.96
Muscle 0.52 73.6 0.93
Fiber 0.13 115 0.13
Vein 4 71.4 0.9

In our acoustic simulation, we used a hemispherical array to take advantage of its
2π solid-angle coverage, which partially alleviates the limited-view problem. First, we
simulated an ultrasound detector array consisting of 5120 transducer elements uniformly
distributed on the hemisphere, having an overall radius of 4.8 cm. Due to the fact that two
adjacent locations on the regular grid provide very similar information, random distribution
of transducer elements will reduce the coherence of measured signals and yield better signal
quality [19]. However, taking into account the limitations of simplicity and manufacture
cost, equidistant sampling is adopted as the basic sampling strategy. The central frequency
of each element is 2.5 MHz, and the—6 dB bandwidth is 70%. The configuration can be
adjusted to simulate under-sampling at various degrees. The diagram of our imaging setup
is presented in Figure 2a. In our simulations, the gap between the transducer array and the
breast was filled with water to reduce acoustic and optical reflections on the skin.
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Figure 2. (a) The diagram of photoacoustic imaging simulation using a hemispherical transducer
array; (b) (i) Cross-sectional view of the light intensity distribution, denoted by φ1; (ii) Cross-sectional
view of light absorption distribution, denoted by φ2; (iii) Average energy deposition at different
depths, denoted by φ3.
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The depth of photoacoustic imaging is limited due to the significant light absorption
and scattering during light propagation in tissue. Figure 2b(i,ii) shows notable attenuation
of the light intensity as the depth of penetration increases. Figure 2b(iii) shows the average
energy deposition at different depths. The penetration depth of current simulation can
reach 3 cm. The red dashed box in Figure 2b(ii) represents the cross-sectional feature of an
arterial vessel.

We used the K-wave MATLAB toolbox [41] for the acoustic propagation simulation.
Based on the 3D MC model, the initial PA pressure was generated first using the optical
simulation described above. For simplicity, we assumed that the breast was acoustically
uniform, and the speed of sound was 1500 m/s with no attenuation. The distance for each
voxel was defined as 0.25 mm as well. The transducer elements used for detecting PA signals
were curved along the radial direction of the hemispherical shell. Each transducer element
occupied one voxel space. To achieve efficient image reconstruction, a 3D delay-and-sum
algorithm with GPU acceleration was used to form a 3D single-wavelength image. The
images reconstructed using all 5120 transducer elements served as the ground truth to train
the deep-learning module. In our experiment, data were collected with under-sampling rates
of 5%, 6%, 7%, 8%, 9% and 10%, corresponding to 256, 310, 360, 410, 460, and 512 elements.
The active elements were selected from the fully sampled data with equidistant sampling.
Subsequently, PA images were reconstructed, and 140 pairs of images comprised of sparsely-
reconstructed PA image and ground truth image for each under-sampling ratio were
grouped into training, validation, and testing sets with a ratio of 0.8:0.1:0.1. To accelerate
computation, we cropped each 3D image into 310 × 310 × 128 voxels around the region of
interest (ROI). We reduced the number of voxels in the coronal plane by two times with
bicubic down sampling to compress irrelevant information. In our study, we used patch-
wise segmented images instead original images as input. The volumetric images were
augmented by random cropping into a size of 96 × 96 × 96 followed by random flipping
around the horizontal and vertical axes to expand the training set. In terms of the validation
and testing sets, we cropped each sample with equal distance in the coronal, sagittal and
transverse planes, into the size of 96 × 96 × 96 overlapping patches. The reason why we
use patch-wise processing is to enlarge dataset scale, enhance generalization and reduce
memory consumption. The corresponding outputs of the network were concatenated in the
initial order. A Gaussian filter was applied before image stitching to mitigate edge effects
in the final output [42].

2.2. Res-UNet Architecture

The Res-UNet architecture was proposed in [43] as an approach to address the low
discriminative ability issue encountered during segmentation tasks involving small fea-
tures. We customized it into a pix2pix architecture for the image-to-image problem. It
incorporates residual blocks into the contracting and symmetric expanding paths of the
U-Net architecture, effectively mitigating the gradient vanishing problem that arises when
the network extends deeper. Additionally, this strategy allows for significant deepening
of the neural network, leading to further improvements in performance [44]. The Res-
UNet architecture not only extracts comprehensive context information from the input
sparsely-reconstructed PA images, but also infers the initial pressure distribution from a
symmetric-expanding path. Additionally, to refine the original U-Net, a skip connection
is included between the input sparse reconstructed PA image and the output initial pres-
sure distribution via element-wise summation, allowing the network to learn quickly and
recover the full spatial resolution.

The Res-UNet architecture defines a basic module as a composite function of three
consecutive operations: a 3 × 3 × 3 convolution (Conv), batch normalization (BN), and
leaky rectified linear unit (LeakyReLu). To enable the Res-UNet to efficiently learn local
and global features over different spatial scales, each contracting unit consists of two basic
modules and a residual block, with the spatial dimensions of feature maps repeatedly
reduced via a 2 × 2 × 2 max pooling operator. The residual block is composed of a
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3 × 3 × 3 convolution and added to the output of each contracting unit. In the expanding
path, each expanding unit comprises a 2 × 2 × 2 transposed convolution operator followed
by two basic modules and a residual block. Another basic module is introduced in the final
layer, followed by a 1 × 1 × 1 convolution to compress channel information.

We designed the loss function as a combination of mean absolute error (MAE) with
multi-scale structural similarity index metric (MS-SSIM). We chose MAE instead of mean
square error (MSE) because MSE yields unsatisfactory outcomes in tasks involving image-
to-image translation [45]. MS-SSIM is a comprehensive metric that quantifies the similarities
between two images across various spatial scales, taking into account contrast, luminance,
and structure. It achieves this by computing similarities using a local pixel neighborhood
and obtaining a global value by averaging the neighborhood values, which is superior to
signal-to-noise-ratio (PSNR) and standard SSIM for 3D image measurement [46]. The loss
function for our 3D Res-UNet is defined as follows:

Loss = 0.3 × L1 + 0.7 × (1 − MS-SSIM) (1)

The DNN utilized in this study was implemented using PyTorch 1.10.1 [47], an open-
source platform for deep learning that is compatible with Python 3.8. The training and
evaluation of the models were conducted on a system consisting of an NVIDIA GeForce
RTX 3090 and an Intel®-Core™ i9-10900X CPU. To initialize all trainable parameters, the
He normal initialization method [48] was employed. The hyper-parameters, including the
coefficients of the loss function, were fine-tuned through a grid search approach. During
the training process, the Adam optimizer [49] was utilized with a learning rate of 0.0025,
weight decay of 0.001, and a batch size of 3. Early stopping was also used, and the training
was performed for 300 epochs.

3. Results

In Figure 3, we present the results of our 3D Res-UNet framework, where 3D dense recon-
structed PA images were reconstructed from the data collected by the 5120-element array, while
sparsely-sampled images reconstructed from 512 transducer elements (10% sparsity ratio)
were used as the input. The reconstruction time for the fully sampled image was 153 s,
while for the sparsely-sampled image it was 117 s, demonstrating the efficiency of our
method. The reason why the reduction of time is not proportional to the reduction of
sampling points is because the process of utilizing a low-pass filter to enhance signal
quality, computed by CPU, took a significant amount of time. We display the reconstructed
PA maximum amplitude projection (MAP) images on the coronal and sagittal planes for
numerical breast phantoms. It is worth noting that the sparsely-sampled images were used
as the input to the network.

Compared to the initial pressure distributions in the digital phantom, the reconstructed
blood vessels exhibit slight distortions, partly because we assumed that the tissue is acous-
tically homogeneous during image reconstruction. Nevertheless, the vasculature features
are clearly visible in reconstructed images, as depicted in Figure 4a. Some smaller features
located deeper within the tissue displayed in Figure 4b are missing in the reconstructed
images. The 3D Res-UNet framework effectively preserved the 3D structural information.
The post-processing time for each sample is 0.6 s. It yielded artefact-reduced reconstruction
results with errors primarily located within areas having dense blood vessels. The diam-
eters of the vessels were faithfully recovered as well. The white boxes in Figure 4a and
the yellow boxes in Figure 4b indicate that the PA images with sparse-sampling showed
discontinuous vessel features, compared to the dense-sampling and DNN-processed im-
ages. The comparison revealed a remarkable suppression of the artifacts by the DNN,
resulting in better resolution of adjacent blood vessels that were obscured in the original
sparse-sampling image. However, a few structures were not properly recovered by the
network, especially for the vessels located far from the illuminated area, due to a lack
of sufficient SNR. To highlight the differences among the images, we show the enlarged
images corresponding to the areas in the bounding boxes in Figure 4c,d.
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Figure 4. Performance of 3D deep learning network. First column: numerical breast phantom (initial
pressure distributions); second column: dense reconstruction results; third column: sparse recon-
struction results (under-sampling ratio 10%); fourth column: DNN results (same under-sampling
ratio as the third column). (a) MAPs in the coronal plane. (b) MAPs in the sagittal plane. (c) Close-up
views of the regions outlined by the white bounding boxes in (a). (d) Close-up views of the regions
outlined by the yellow bounding boxes in (b).
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The quality of the reconstructed PA images is directly determined by the number of
transducers used for data acquisition. To verify the performance of Res-UNet capability, in
addition, we tested our model using PA data with down-sampling ratios ranging from 5%
to 10%. Specifically, the number of transducer elements was set to 256, 310, 360, 410, 460,
and 512; these elements were arranged equidistantly on the hemisphere as well.

Representative reconstruction results and corresponding DNN outputs for 256, 410
and 512 transducers in the coronal and sagittal plane are shown in Figure 5a,b, respectively.
The superficial vascular structures and connectivity become more apparent with an increase
in sparsity ratio, as well as edge smoothness. For a transducer array of 256 elements, the
vascular features exhibit significant recovery, while the background artifact is noticeable
even though the vasculature shows speckle patterns on the MIP from the coronal plane.
The Gaussian-shaped artifact in the sparsely-reconstructed PA images is caused by the
combination of insufficient sampling frequency and limited-view problem. As the under-
sampling ratio increases, the vascular pattern becomes continuous, and the DNN images
become similar to dense images.
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Figure 5. Performance of 3D deep learning network for data with different degrees of sparsity.
(a) MAPs of ROI in coronal plane and (b) MAPs of ROI in sagittal plane on sparse reconstruction
results and corresponding DNN outputs for 256, 410 and 512 transducer arrays. First row: sparse
reconstruction results. Second row: corresponding DNN outputs. (c) 3D MS-SSIM and (d) 3D PSNR
evaluation metrics for transducer array numbers of 256, 310, 360, 410, 460, and 512.
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In addition, the 3D peak signal-to-noise ratio (PSNR) and 3D multiscale structural simi-
larity (MS-SSIM) between the DNN or sparse images and the dense images were calculated
based on the transducer array numbers of 256, 310, 360, 410, 460, and 512, as shown in
Figure 5c,d. Both PSNR and MS-SSIM increase with an increase in the number of transducer
arrays. Despite the fact that the training and testing sets are from different domains and have
different distributions, the lower the under-sampling ratio, the greater the improvement in
the model’s performance on the input. At a transducer array number of 256, a PSNR value
of 59.87 dB and MS-SSIM of 0.693 were achieved, while the corresponding metrics for the
sparse images were 46.1 dB and 0.312, respectively. At a transducer array number of 512,
corresponding to an under-sampling ratio of 10%, a PSNR value of 65.1 dB and MS-SSIM of
0.71 was achieved, while the corresponding metrics for the sparse images were 54.7 dB and
0.398, respectively. The reason why the PSNR and MS-SSIM values are not super high is
due to the low percentage of vasculature present in the 3D image. However, it is important
to note that when the structure has a high sparsity of 10% and more, it cannot be recovered
by DNN.

4. Discussion

Sparse sampling data offers several advantages, including accelerated image recon-
struction, reduced complexity of PA imaging systems, and lower overall costs. However,
there are inherent trade-offs among spatial resolution, penetration depth, and imaging
speed, which often result in sub-optimal reconstruction outcomes and limit the widespread
adoption of this technique in clinical applications. As a result, we developed a relatively
fast and efficient image post-processing approach based on a DNN model to remove under-
sampling artifacts in PA breast imaging. Our training, validation and testing datasets
were obtained through 3D PA simulation using digital breast phantoms that conform to
human anatomical structures and physical properties. The simulation process also took
into consideration the illumination and ultrasound detection configurations, aiming to
ensure similarity to practical applications. Simulation results show that the illumination
depth can reach up to 3 cm, which is consistent with the clinical results.

Despite the fact that little distortion appears due to the assumption that the medium
is acoustically homogeneous during reconstruction, it does not affect the performance of
DNN. The heterogeneous speed of sound distribution can be further explored in the future.
The satisfactory network performance with sparsely-sampled data is partly attributed to
the good quality of the training images. The method can effectively enhance structural
visibility and reduce the speckle-like artifacts as well as the image background artifacts
with a post-processing time of 0.6 s for each image. Our results show that the application
of DNN can significantly improve image quality by 78.4% measured by MS-SSIM (>0.71)
and reduce background artifacts by up to 19.0% measured by PSNR (>65.1 dB) at the
under-sampling ratio of 10% (512 transducer array).

However, many physical configurations of the hemispherical array need to be ad-
dressed, and applying the above DNN to clinical applications still presents significant
challenges. The reconstruction results and subsequent model performances are highly influ-
enced by the time series signal we collected. Lan et al. further validates the benefits of using
random masking strategy based on a ring shaped array to achieve higher reconstruction
performance in an extreme sparse scenario [50]. The specific transducer array arrangement
needs further exploration. In addition, even though the digital breast phantom we adopted
has realistic physical properties and distribution, differences between clinical data and
simulated data are unavoidable. For example, the quality of clinical data highly relies on
various factors such as illumination conditions, the position of the target, and all kinds
of noises. Furthermore, the published tissue physical attributes were primarily measured
from exercised samples, which may vary greatly from in vivo tissues, and from person to
person. These differences are often referred to as domain gap. Additionally, many poten-
tially undefined features may appear in clinical data. These factors can lead to failure of the
model even if validated with in silico data. Simple fine-tuning technique is not adequate
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by the lack of real paired “fully sampled data” (ground truth). Ben et al. delved deeper
into the reasons why networks trained on simulated data using conventional methods are
unlikely to exhibit generalized performance on real tissue [51]. Domain adaptation is a
sub case of transfer learning developed in the field of computer vision [52–54], aiming to
leverage the related source domain to learn unseen features in the target domain. To be
more specific, unsupervised learning techniques can be deployed for the above domain
adaptation task without the need of paired images. Ciara, etc. [55] applied a GAN-based
structure to reduce the domain gap between synthetic PA images and real PA images,
which shows that feature spaces from different domains can be closely aligned. Although
the model trained on simulated data can effectively reduce the generation of artifacts, the
output still exhibits a relatively large variance when compared to the ground truth images.
However, utilizing the Res-UNet model trained on simulated data remains potentially
effective in addressing the under-sampling problem in real clinical data. Another approach
to tackle the problem is meta-learning, which designs new algorithms that adjust to learn
new features constantly while retaining prior knowledge [56]. The goal is to construct a
model capable of continued learning from newly available features even after its deploy-
ment. The integration of the above-mentioned methods will facilitate the adoption of DNN
in the field of 3D PA imaging.

Apart from domain adaption problem, which may cause the degradation of DNN
performance on in vivo data, the reconstructed 3D PA images dataset we generated to train
in the study were insufficient, additionally when compared to traditional computer vision
tasks. Due to the limited number of in-house datasets, the feature patterns that DNN learns
may not be adequate for good generalization on another type of digital breast phantoms.
Furthermore, these models still have limitations in accurately representing the diverse
structure and function of blood vessels. Nevertheless, it is our firm belief that such problem
will be solved eventually with the collective efforts of everyone in PA community. In the
aid of other modules, extra information from other dimensions can be added to enlarge the
source domain and enhance DNN capability.

5. Conclusions

In this paper, we presented a real time method to remove under-sampling artifacts
in 3D PACT breast imaging based on a Res-UNet model. We found that the use of 3D
convolutions can efficiently extract spatial information and restore target features in PA
images. We used numerical breast phantoms with shapes and physical parameters similar to
realistic breasts to generate PA signals. The proposed method can facilitate the development
of more efficient data acquisition method and reduce equipment cost, while accelerating
the image reconstruction process. More research needs to be conducted by transferring
the trained model on digital breast phantoms to real clinical data. It is worth mentioning
that previous studies have demonstrated that integrating neural networks into iterative
reconstruction algorithms can yield better results compared to using a U-Net-based network
alone; using more advanced network architectures in conjunction with iterative approaches
can offer potential image quality enhancement on under-sampling data.
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