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Abstract: This paper presents GAVT, a highly accurate audiovisual 3D tracking system based on
particle filters and a probabilistic framework, employing a single camera and a microphone array.
Our first contribution is a complex visual appearance model that accurately locates the speaker’s
mouth. It transforms a Viola & Jones face detector classifier kernel into a likelihood estimator,
leveraging knowledge from multiple classifiers trained for different face poses. Additionally, we
propose a mechanism to handle occlusions based on the new likelihood’s dispersion. The audio
localization proposal utilizes a probabilistic steered response power, representing cross-correlation
functions as Gaussian mixture models. Moreover, to prevent tracker interference, we introduce
a novel mechanism for associating Gaussians with speakers. The evaluation is carried out using
the AV16.3 and CAV3D databases for Single- and Multiple-Object Tracking tasks (SOT and MOT,
respectively). GAVT significantly improves the localization performance over audio-only and video-
only modalities, with up to 50.3% average relative improvement in 3D when compared with the
video-only modality. When compared to the state of the art, our audiovisual system achieves up
to 69.7% average relative improvement for the SOT and MOT tasks in the AV16.3 dataset (2D
comparison), and up to 18.1% average relative improvement in the MOT task for the CAV3D dataset
(3D comparison).

Keywords: smart spaces; audiovisual tracking; speaker localization; particle filter; multi-pose face
observation model; probabilistic SRP-PHAT

1. Introduction

Smart spaces are environments equipped with a set of monitoring sensors, communi-
cation, and computing systems. The primary objective of smart spaces is understanding
people’s behavior within them and their interactions, to improve human–machine in-
terfaces. In this context, one of the required core low-level information is the presence,
position, orientation (pose), and voice activity of users within the space, as these features
play a significant role in high-level behavior and interaction understanding between the
users and the environment.

Many of the approaches proposed in the literature for people localization within
a monitored scene use information from a single type of sensor (video cameras [1–3],
microphone arrays [4–6], infrared beacons [7–9], and others). Among them, the most used
ones are video cameras and microphone arrays. In applications such as “smart” video
conferencing, human–machine interfacing [10], automatic scene analysis [11], automatic
camera tracking [12], and far-field speech recognition [13] it would be possible to locate and
monitor speakers or audio sources within the space using the audio or video information.
Additionally, providing accurate speaker positions could facilitate other tasks such as
speech recognition [14].

Smart spaces are usually closed environments where the reverberation phenomenon
is present, complicating the localization task [15] by audio means. Microphones are usually
located in fixed positions on walls or ceilings. Therefore, the distance between the speech
sources and the available microphones will lower the signal-to-noise ratio, making it

Sensors 2023, 23, 6969. https://doi.org/10.3390/s23156969 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23156969
https://doi.org/10.3390/s23156969
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6946-0326
https://orcid.org/0000-0001-7723-2262
https://orcid.org/0000-0002-3303-3963
https://doi.org/10.3390/s23156969
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23156969?type=check_update&version=1


Sensors 2023, 23, 6969 2 of 35

difficult to locate the source [16]. Usually, video cameras are included in this kind of
application to increase tracking accuracy as they provide additional information.

Nevertheless, video camera-only-based tracking systems also have their shortcomings.
The uncertainties inherent to the acquisition system, the lighting conditions (brightness,
shadows, contrast), and noise (sensor or optics characteristics) [17] decrease their accuracy
in people pose extraction in real scenarios. Another problem in the vision-based systems is
the total or partial occlusion of the subjects to be tracked [18] due to the light’s directional
nature. In this context, audio signals are not strictly directional, especially at low frequencies.
Hence, they are the perfect complement to the visual tracking process when targets are
occluded or out of the camera’s field of view (FoV).

From the discussion above, it is clear that audio and video sources provide comple-
mentary information for people tracking in smart spaces. A combination of the best features
from both sensors can thus improve the accuracy and robustness of the pursuit tracking
process. This combined use of audio and video information in the tracking task is referred
to as audiovisual tracking, in which the mouth is the element to track, as this is the area of
maximum radiated acoustic power when speaking.

2. Previous Works

Given the increased availability of easy-to-deploy audio and video sensors and the
improvements in computing facilities, in recent years, there has been a relevant growth in
the number of proposals for multiple speakers tracking (Multiple-Object Tracking, MOT)
in smart spaces, combining audio and video information [17,19–32]. Qian et al. in [17]
conducted an extensive review of state of the art in audiovisual speaker tracking. In their
review, different literature proposals were classified according to various aspects like the
space used to perform the tracking (image plane, ground-level or three-dimensional—3D),
the configuration of the sensor location (co-located or distributed), the number of sensors,
the tracking method, among others. This review highlighted the main research lines and
open problems in the audiovisual speaker tracking field.

Along the review, one of the most relevant research lines focuses on tracking a variable
and an unknown number of speakers [19,27,33], as this is a still not fully solved problem
today. Another line focuses on finding a better visual appearance model to track multiple
speakers in indoor environments [34]. At the same time, other proposals are centered on
audiovisual tracking in compact configurations (co-located camera and microphone array)
for applications such as human-robot interaction [17,20,21,35].

In any case, a clear tendency in the literature proposals is the predominance of proba-
bilistic tracking models such as Bayesian Filters (BFs, i.e., mainly Kalman filters and particle
filters) [17,20,29,31,32,34,36,37]. The reasoning behind the use of BFs is that they provide
a natural and robust framework to combine different sources of information, in this case,
diverse sensing systems.

The reduction of the number of sensors is another important tendency in the literature.
In recent proposals, most of the approaches address the tracking task only with only one
camera, and one microphone array [17,20,27]. Many of these proposed systems track
speakers in the image plane (2D) [32,38]. However, proposals addressing the localization
in the full 3D space can also be found in [17,20,24,27,29,31], thus imposing additional
challenges analyzed below.

Finally, in the MOT context, it is always necessary to handle situations, like targets
occlusions or closely located, where care must be taken in the association between measure-
ments and targets [20]. These situations could be very challenging when audio or visual
observations fail or give low-confidence likelihood, thus presenting an interesting set of
proposals in the literature, as analyzed in the following sections.

Another general aspect is the recent rise of deep learning techniques in audiovisual
speaker tracking. The most commonly used approach is based on an observation model
that keeps the Bayesian scheme. There are many examples of face detectors based on deep
learning [25–29,31], although Siamese networks have also been used to generate measures
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of particle similarity to previous reference images of each target [32,39], and fusion models
based on the attention mechanism [32]. Fewer proposals we found with end-to-end trained
audiovisual solutions as in [24,40] for object tracking in which visual and auditory inputs
are fused by an added fusion layer.

This paper presents a complete contribution to robust audiovisual multiple-speaker
3D tracking in smart spaces. The proposed approach is thoroughly analyzed and compared
using the best available datasets published for this purpose. We also compare our method
against, to the best of our knowledge, the best proposals in the state-of-the-art, emphasizing
our focus on signal recognition and pattern analysis. This distinguishes our work from
recent proposals that primarily rely on deep learning techniques.

2.1. Visual Tracking

An important issue to analyze within the visual part of the tracking is how to locate
the mouth position in the image plane. Within a smart space, speakers could be far from
sensors, at distances up to several meters, where detecting the mouth is challenging, as
its size can be just a few pixels on the image. Given its small size, usually, the face is first
located, as it is easier to detect, and then an estimation of the mouth location within the
face area is made. This strategy is used in several proposals [17] and gives a chance to facial
feature estimation with pattern recognition methods.

Typically, audiovisual speaker tracking literature uses color histogram-based likeli-
hood estimations to locate faces in images [19,26,41]. However, this technique has proved
to be not very accurate [17,32]. More accurate techniques for face location within the image
are based on the use of trained detectors like the classic Viola and Jones (VJ) [42], or more
recent ones based on deep learning [17].

Regarding the estimation of the mouth position within the face area, most face de-
tectors used in audiovisual tracking are independent of the face pose, as in [17,20]. This
approach has limited accuracy for mouth position estimation, as it depends on the face pose
relative to the camera. To partially overcome this issue, in [17,20] the mouth localization is
solved considering the aspect ratio of the face detection bounding box (BB).

Location in a 3D space using a single camera poses an additional challenge in the
visual tracking part, as it requires estimating the target depth based on the scene projection
on the 2D plane. From the 2D mouth position estimation, Qian et al. in [20] proposed a
3D projection assuming the shoulders width in 3D as a known parameter. In [17], as faces
are detected in 2D with the face detection MXNet [43] network, the 3D mouth position is
derived assuming that the face detection BB is related to the distance between the target
and the camera.

A third issue with the mouth localization is its integration into the probabilistic
tracking framework. In some works, like [17], when a face is located in 2D, a BB is projected
to the 3D space, assuming a predefined probability distribution around its 3D points. As a
more realistic proposal, in [44] a likelihood function for the face location is proposed, built
with the internal information extracted from a modified VJ detector.

Most proposals [19,20,33] were evaluated in the AV16.3 database [45] where people’s
faces were always visible on some of the available cameras (people do not turn their backs
to all the cameras simultaneously). In [17], the more complex evaluation dataset CAV3D
was presented, using a co-located audiovisual sensor setup, where faces are not always
visible (sometimes people turn their backs to the camera), including strange poses and
varied dynamic behaviors. This new condition implies that a face detector will not provide
localization information as long as the camera does not see the faces, and thus another
mechanism is required to allow the localization task to provide accurate estimations,
generating another relevant challenge to be solved in the visual tracking task.

Some solutions implement a generative color histogram-based algorithm when the
faces are not detected [17]. However, when complex contexts arise, with part of the target’s
movement happening outside of the camera’s FoV (such as in CAV3D), the audio modality
is the only one available, and no color-based approach can be used.
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2.2. Audio Tracking

In audio localization, the most common approach is to compute the Generalized
Cross-Correlation function (GCC) between pairs of microphones to generate an acoustic
activation map with Steered Response Power (SRP) strategies, usually combined with the
PHAT transform [20,46–54].The audio likelihood model thus obtained is then associated
with the SRP acoustic map. The spatial resolution of these methods strongly depends on
the array geometry, and for small microphone arrays (short distance between microphones,
compared to the search space area), SRP presents a wide active response (low resolution),
mainly in radial distance from the source [17].

Another problem in audio localization is room reverberation, which generates multiple
peaks in GCC. To alleviate this effect, the approach in [55] proposed to model GCC as a
Gaussian mixture. This strategy allows associating only one GCC Gaussian (or peak) with
the source.

For multiple-speaker tracking (MOT), the association between GCC peaks and speak-
ers must be addressed, taking also into account that when more than one speaker is in the
same direction relative to the microphone array position, the GCC peaks related to the
different speakers are mixed. To address this problem, ref. [55] proposes to use an a priori
distribution from a Kalman filter to assign each peak to one of the speakers in each pair of
microphones, where the assignment is made independently for each pair of microphones.

In [29], the authors propose a phase-aware VoiceFilter and a separation before the
localization method. They separate the speech from different speakers by first using
VoiceFilter with phase estimation and then applying a localization algorithm. However, the
method needs clean speech samples for each speaker in the training phase, thus limiting its
applicability. In [32], a novel acoustic map based on a spatial–temporal Global Coherence
Field (stGCF) map is proposed, which utilizes a camera model to establish a mapping
relationship between the audio and video localization spaces.

2.3. Contributions

The main contributions of our proposal (named GAVT) are: (i) providing an audiovisual
localization approach in which the visual strategy is based on exploiting the knowledge of
a trained face detector, modified to generate a likelihood model. This approach will thus
not depend on a standard face detection process; (ii) using a pose-dependent strategy that
improves the 2D mouth location estimation, thanks to the likelihood model extension with
a new in-plane rotation and an image evaluation exploration; (iii) proposing a mechanism
to handle MOT tasks for visual observations dependent on the new likelihood dispersion;
and finally (iv) presenting a novel mechanism to avoid target interference in audio tracking
that selects the more adequate GCC peak for each target, based on the joint distribution of
all pairs of microphones.

The evaluation will be done on the AV16.3 and CAV3D datasets, both in single
and multiple-speaker scenarios, to provide realistic and comparative quantitative and
qualitative results and contributions within all the challenges exposed in this state-of-the-
art revision.

The remainder of this paper is structured as follows: Section 3 describes the notation
used and the definition of the multi-speaker tracking problem. Section 4 describes the gen-
eral scheme of our proposal, while Sections 5 and 6 detail the proposed video and audio ob-
servation models, respectively. The experimental setup and results obtained are described
correspondingly in Sections 7 and 8. Finally, Section 9 presents the paper conclusions.

3. Notation and Problem Statement

Real scalar values are represented by lowercase letters (e.g., α, c). Vectors are rep-
resented by lowercase bold letters (e.g., x). Matrices represented by uppercase bold let-
ters (e.g., M). Uppercase letters are reserved to define vector and set sizes (e.g., vec-
tor y = (y1, . . . , yM)T is of size M). Calligraphic fonts are reserved to represent sets
(e.g., R for real or G for generic sets). The lp norm (p > 0) of a vector is depicted as ‖.‖p,
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e.g., ‖x‖p = (|x1|p + · · ·+ |xN |p)1/p, where |.| is reserved to represent absolute values of
scalars or the module operation for complex values. The l2 norm ‖.‖2 (Euclidean distance)
will be written by default as ‖.‖ for simplicity. The discrete Fourier transform of a discrete
signal x[n] is represented with the complex function X[ω], with X∗[ω] being the complex-
conjugate of X[ω]. Along the paper, we will use the a, v, and av superscripts to refer to
elements belonging to the audio, video, and audiovisual modalities, respectively. Moreover,
the tilde ( ˜ ) in X̃ refers to the projection of X in a different space.

Within the notation context defined above, let us consider an indoor environment
with a set of NM microphones M = {m1, m2, . . . , mNM}, where mν is a known three-
dimensional vector mν = (mνx, mνy, mνz)T denoting the position of the νth microphone
from the reference coordinate origin. For processing purposes, the microphones are grouped
in pairs, as elements in a set Q = {π1, π2, . . . , πNQ}, where π j =

(
mj1 , mj2

)
is composed

of two three-dimensional vectors mj1 and mj2 , (mj1 , mj2 ∈ M, with mj1 6= mj2 ) that describe
the spatial location of the microphones in the pair j. If all microphone pairs are allowed,
then NQ = NM · (NM − 1)/2.

Given this setup, let us assume that there is a set of NS acoustic sources
S = {r1, r2, . . . , rNS }, where ri is a known three-dimensional vector ri = (rix, riy, riz)

T ,
emitting NS acoustic signals xi(t), which are received by each microphone mν obtaining
NM time signal sν(t) according to the propagation model in Equation (1):

sν(t) =
NS

∑
i=1

[hi,ν(t) ∗ xi(t) + ηi,ν(t)], (1)

with hi,ν(t) being the Room Impulse Response (RIR) between the acoustic source position
ri and the νth microphone, ∗ the convolution operator, and ηi,ν(t) a signal that models all
the audio signal adverse effects not included in hi,ν(t) (noise, interference, etc.).

In an anechoic (free-field) condition the signals received by each microphone are just a
delayed and attenuated version of the acoustic source signal, as shown in Equation (2):

sν(t) =
NS

∑
i=1

[αi,ν · x(t− τi,ν(ri))], (2)

where τi,ν(ri) = c−1‖ri − mν‖ is the propagation delay between mν and ri, τi,ν(ri),
αi,ν = 1

4πcτi,ν(ri)
is a distance-related attenuation assuming spherical propagation [56], and c

is the sound propagation velocity in air.
The environment is also equipped with a set of NC cameras C = {c1, c2, . . . , cNC},

giving the corresponding Iθ(t) images, where cθ is a known three-dimensional vector
cθ = (cθx, cθy, cθz)

T , denoting the position of the θth camera from the reference coordinate
origin. The Kθ intrinsic calibration matrix for each camera is also available, with θ =
1 . . . NC .

In the geometrical discussions, we will refer to the 3D space as that in which every
point is defined by its 3D coordinates (x, y, z)T . The visual observation space will be defined
in the 2D plane (image plane) as (u, v, s)T , where (u, v) are the pixel coordinates in the
image plane, and s refers to the size of the explored image plane.

The proposal in this work will be exploiting the formulation of Bayesian Filters
(BFs), which are techniques that estimate the posterior probability density function (PDF)
of a system state whose dynamics are statistically modeled along time, given a set of
observations or measurements [57], also statistically modeled.

In these models, the state (xn) and observation (zn) vectors can be mathematically ob-
tained along time, being n the corresponding time instant. The state vector xn characterizes
the properties of the system to be estimated (e.g., position, velocity, physical dimensions),
and the observation vector zn considers the measurements from the system behavior with
all sensors in the environment.
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In the BF framework, the estimation is made in two steps: prediction and update (also
referred to as correction [57]). In the prediction stage, a prior PDF of the state vector is
computed given its previous value p(xn−1|Zn−1) and using the state model p(xn|xn−1), as
shown in Equation (3). In the update stage, a new posterior PDF is computed p(xn|Zn) (see
Equation (4)) from the prior obtained in the prediction stage, and by including there the
current observation vector information zn, through the observation model p(zn|xn) and its
likelihood p(zn|Zn−1).

p(xn|Zn−1) =
∫

p(xn|xn−1)p(xn−1|Zn−1)dxn−1 (3)

p(xn|Zn) =
p(zn|xn) · p(xn|Zn−1)

p(zn|Zn−1)
, (4)

where Zn = {z1, z2, . . . , zn}.
Particle filters (PFs) are a particular class of BFs that approximate the state distribution

with a set of weighted samples {xi
n, wi

n /i = 1, . . . , NP}, called particles, that characterize
each estimation hypothesis, as shown in Equation (5):

p(xn|Zn) ≈
NP

∑
i=1

wi
n · δ(xn − xi

n), (5)

where NP is the number of particles, and wi
n are the weights characterizing the probability

of every given particle xn or state value hypothesis.
The update stage is then carried out by applying Importance Sampling [57] (IS, and its

derivation Sequential Importance Resampling, SIR), which is a statistical technique to estimate
the properties of a posterior distribution p(xn|Zn), when its samples are generated from
another sampled one, the a prior PDF in this case p(xn|Zn−1).

In this work, PFs are used for tracking the mouth position of multiple speakers in a
smart space using audio and video information, so that the observation vector zn will be
composed of observations from the audio modality za

n and from the video modality zv
n, so

that zn = (za
n, zv

n)
T .

4. Audiovisual Tracking: The GAVT System Proposal

The tracking task will be thus carried out using only one video camera and one
small microphone array in both co-located and distributed scenarios. It is assumed that
the sensors are calibrated, and the audio and video signals are synchronized. It is also
considered that there are a constant (and known) number of speakers (targets) in the space
and that speakers do not stop talking for long periods. The problem complexity is thus
concentrated in the multimodal 3D localization and tracking task in a multiple-speaker
context, within a probabilistic approach without a reidentification process to solve the
possible association problems that may appear in such context. Within this framework, and
following the notation and the problem statement previously described, in this section we
are presenting the global system proposed for addressing the audiovisual tracking task.

4.1. General Architecture

In our proposal, each target speaker or objective o, will be characterized at any time
instant n by a state vector xn,o = (pn,o, ṗn,o)T , where pn,o = (xn,o, yn,o, zn,o)T is the speaker
3D position, and ṗn,o = (ẋn,o, ẏn,o, żn,o)T its velocity.

A separated particle filter is used for tracking each target o, with the SIR algorithm, using
a set of NP particles (NP is assumed to be fixed for all targets and time instants). Each particle
i (i = 1 . . . NP ) at any time instant n will be characterized by a state vector xi

n,o = (pi
n,o, ṗi

n,o)
T,

where pi
n,o = (xi

n,o, yi
n,o, zi

n,o)
T is the particle 3D position, and ṗi

n,o = (ẋi
n,o, ẏi

n,o, żi
n,o)

T its
velocity. Therefore, the set of NP particles will be Pn,o = {x1

n,o, x2
n,o, . . . xNP

n,o }.



Sensors 2023, 23, 6969 7 of 35

Following the standard PF framework, each particle set for a target o from a previous
time instant Pn−1,o = {x1

n−1,o, x2
n−1,o, . . . xNP

n−1,o}, will be propagated according its corre-
sponding state model p(xn,o|xn−1,o), giving the predicted particle set
Pn|n−1,o = {x1

n |n−1,o, x2
n |n−1,o, . . . xNP

n |n−1,o}, on a frame by frame basis. This set represents
the sampled version of the prior distribution p(xn,o|Zn−1,o) for each tracked target o, and
thus completes the prediction stage of the standard BF framework in Equation (3).

Then, during the update stage at time n, audio and video data zav
n = (za

n, zv
n)

T are used
to evaluate, for every target o and predicted particle i, the audiovisual likelihood lav(pi

n,o),
combining the likelihoods calculated from the audio and video modalities, la(pi

n,o) and
lv(pi

n,o), respectively, so that lav(pi
n,o) = f

(
la(pi

n,o), lv(pi
n,o)
)
.

Likelihood calculations are carried out for each predicted particle using the corre-
sponding target observation model p(zn ,o|xn,o).

For every o target, the particles’ weights {w1
n,o, w2

n,o, . . . wNP
n,o } are obtained, conform-

ing the sampled version of the likelihood p(zn ,o|Zn−1,o) at the PF standard framework
correction step in Equation (4).

After the update process, the particle set is resampled with the multinomial resam-
pling method proposed in [58]. This way, particles with low weights are eliminated and
those with high weight are replicated, keeping constant the number of particles NP used
to characterize the state hypothesis of each estimation of the speaker o position at that
time instant.

As a final result, we obtain the new particle set Pn,o = {x1
n,o, x2

n,o, . . . xNP
n,o }, that consti-

tutes the sampled version of the posterior PDF p(xn,o|Zn ,o). This final new particle set will
be the one used as the prior distribution in the next time step.

The general scheme described above is graphically presented in Figure 1.

Figure 1. Particle filter general scheme for multiple speakers audiovisual tracking.

4.2. Prediction

The state model used at each iteration of the PF to propagate the particles is the
Langevin motion model [59], commonly used in the acoustic speaker tracking literature [60],
as shown in Equation (6):

xi
n,o = Axi

n−1,o + Qu, (6)

where A and Q are the transition and noise state matrices, respectively, u ∼ N (0, Σ) is the
noise related to the process or state, for which a normal distribution is assumed, with zero
mean 0 and Σ covariance matrix.
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Matrix A corresponds to a first-order motion behavior, and it is described in Equation (7):

A =



1 0 0 ε∆T 0 0
0 1 0 0 ε∆T 0
0 0 1 0 0 ε∆T

0 0 0 ε 0 0
0 0 0 0 ε 0
0 0 0 0 0 ε


, (7)

Moreover, the coefficients of Q matrix are given by Equation (8):

Q = diag(ζ∆T , ζ∆T , ζ∆T , ζ, ζ, ζ), (8)

where ∆T is the time interval (in seconds) between frames n and n− 1, ε = e−β∆T and
ζ = v̄

√
1− ε2 are the process’ noise model parameters, and diag(·) is a diagonal matrix with

the diagonal values being its arguments. The control parameters used in the proposal are a
steady-state velocity v̄ and its velocity rate of change β, following the formulation in [59].

4.3. Update and Position Estimation

To fuse the audiovisual information generated from the audio and video sources, we
assume independence between these modalities, so that they fulfill Equation (9):

p(zav
n,o|xn,o) = p(za

n,o|xn,o) · p(za
n,o|xn,o) (9)

In practice, this means that the audiovisual likelihoods are obtained by computing the
product of the likelihoods from both modalities, as shown in Equation (10):

p(zav
n,o|xn,o) ∼ lav(pi

n,o) = f (la(pi
n,o), lv(pi

n,o)) = la(pi
n,o) · lv(pi

n,o) (10)

Then, following the sampled background of PFs presented in Equation (5), weights
are updated by their likelihood values as shown in Equation (11):

wi
n,o = lav(pi

n,o) (11)

Finally, the most probable state for each o target (x̂n,o), thus the deterministic instanta-
neous value for p(xn,o|Zn ,o), is estimated evaluating Equation (12) [58].

x̂n,o =
NP

∑
i=1

wi
n,o · xi

n,o (12)

5. Video Observation Model

The visual likelihood lv(p̃i
n,o) of the video observation model in the real 3D coordinate

system, consists of three blocks, as shown in Figure 2, and explained below:

• The first block is an appearance-based observation model based on the VJ likelihood
lV J(p̃i

n,o). Using the probabilistic version of the VJ detector, this appearance-based
algorithm accurately estimates the face and mouth location, taking into account
different face poses, and generating a likelihood lV J(p̃i

n,o) to them, as no tracking-by-
detection is performed.

• The second block is based on a color histogram (color-based likelihood) lcol(p̃i
n,o): The

color histogram model is intended to be used when the first block fails to detect the
face. These cases may appear with poses not correctly handled by the VJ model, for
example, with the head tilted too far forward, or due to a person’s rapid movement,
which blurs facial features and may cause a poor response from the VJ model.
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• The third block is a foreground versus background segmentation (Fg./Bg. Segmen-
tation) that generates a foreground likelihood (Fg. Likelihood) l f g(p̃i

n,o), which is
used to validate the proposals from both previous models and restrict the video ob-
servation hypothesis dispersion, providing a l f g(p̃i

n,o) likelihood, when the other two
components fail.

Thus, the general processing sequence of the video observation model lv(p̃i
n,o), shown

in Figure 2, is as follows:

• The first step is to apply the coordinate transformation from the World Cartesian
coordinates System (WCS) to the Face Observation Space (FOS) one. There, the tilde
in p̃i

n,o refers to the projection of pi
n,o in this FOS. Thus, after projection, the algorithm

determines which observation hypotheses are in the camera’s FoV.
• Then, foreground versus background segmentation (Fg./Bg. Segmentation) is applied.

For each target o, the FOS is explored with VJ, looking for face detection, so in positive
case CV J

o = 1.
• For targets within the FoV that have no observation response from the VJ model

(i.e., CV J
o = 0), the color-based model (light red box in Figure 2) is applied if possible.

If this is the case, Ccol
o = 1.

• If neither the VJ nor the color models can be applied, the foreground likelihood will
be assigned.

• In any case, a mechanism to prevent a specific person’s visual hypothesis from being
confused with observations from another target, an occlusion detector is included (in
the VJ and Color modules). Thus, a procedure to restrict the likelihood analysis from
hypotheses declared as occluded (Occlusions Correction block) is applied.

Figure 2. Video observation model: VJ Likelihood (light blue) Color-based Likelihood (light red) and
Fg. Likelihood (light green) blocks.
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Following the observational model, a global visual likelihood function or video ob-
servation model lv(p̃i

n,o) is finally defined as in Equation (13), where a confidence level is
assigned according to each model component.

p(zv
n,o|xi

n,o) ∼ lv(p̃i
n,o) =


lV J(p̃i

n,o) if CV J
o

lcol(p̃i
n,o) if CV J

o = 0 and Ccol
o = 1

l f g(p̃i
n,o) otherwise

(13)

If the measurement found with the appearance model p(zv
n,o|xi

n,o) is reliable, CV J
o = 1

and the likelihood of related hypotheses are weighted according to the similarity Gaussian
function lV J(p̃i

n,o). If the VJ estimation is not reliable but the color model does show
significant similarity to the reference model (Ccol

o = 1), the related hypotheses are weighted
according to their similarity to this reference model as lcol(p̃i

n,o). Finally, if both models do
not provide confident enough measurements, the hypotheses are weighted according to
the background subtraction model l f g(p̃i

n,o).
In the following subsections, the different blocks of the video observation model are

further described and analyzed.

5.1. From World Coordinate System to Face Observation Space (WCS to FOS)

The person (its mouth) position hypotheses in the WCS {pi
n,o} = {(xi

n,o, yi
n,o, zi

n,o)
T}

are projected to the camera image plane using the pin-hole model. Thus, a collection of 2D
points (ui

n,o, vi
n,o) and distances to the camera di

n,o are obtained, to be validated through the
video observation model.

Therefore, these 2D points represent hypotheses of the speakers’ mouth position in the
image plane (in the FOS), assumed to come from some 2D BB face hypothesis (ui

n,o, vi
n,o),

around the mouth.
It is then interesting to obtain further information about that face hypothesis that

may give robustness to the validation process commented. This information is going to
be the face hypothesis 2D BB size (Si

n,o). To determine it, the face height of a person h3D
r is

assumed to be constant and known in the 3D WCS. Thus, it is projected to the FOS through
the distance di

n,o, as shown in Equation (14):

Si
n,o =

h3D
r · fc

di
n,o

, (14)

where fc is the camera focal length.
Once the speakers position hypothesis {pi

n,o} are projected from the WCS to the FOS,
each particle represents the speaker mouth 2D location as {p̃i

n,o} = {(ui
n,o, vi

n,o, Si
n,o)

T}.
Figure 3 shows a schematic view of the projection mechanism here described.

Figure 3. Projections of each mouth hypothesis {pi
n,o} in the 3D WCS to its corresponding 2D BB in

the FOS {p̃i
n,o}.
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5.2. Appearance-Based Multi-Pose Video Observation Model

For the sake of clarity, the core of the video observation model based on the VJ
likelihood, and its characteristics will be explained first. Then the rest of the processes will
be detailed.

5.2.1. Viola and Jones Likelihood Model

The VJ likelihood evaluation is made using the probabilistic VJ model described in [44].
This model consists of modifying the standard VJ face detector to obtain face likelihood
values. Given an image position p̃i

n,o, the model applies a cascade of face-trained classifiers
returning a likelihood value Ω as in Equation (15):

Ω =
κ

M
∑κ

m=1(Hm − θm)

∑M
m=κ m

(15)

where κ is the number of stages that the image patch passes through the cascade of
classifiers, M is the total number of stages, Hm is the weight output by the stage m, and θm
is its threshold.

The likelihood model is applied with three different templates to evaluate different
possible face poses in yaw rotations. One template handles frontal faces, and the other
two handle left and right profile faces, respectively. Therefore, within the 2D BB, the
mouth position where the proposed visual likelihood model is applied is different for each
template, as shown in Figure 4.

Figure 4. Face templates for the right profile, frontal, and left profile poses.

The approach is flexible enough to allow for other poses to be considered, by, for
example, extending the previous templates with in-plane rotations (roll). In this case, the
image can be rotated with a given angle (α) in the opposite direction to allow reusing the
already trained poses.

In this work, the image and the particles are rotated in both directions (clockwise and
counterclockwise). For each direction, the models for the three face pose classifiers (front,
right, and left profiles) are applied.

Thus, for each position p̃i
n,o in the image, nine response values are obtained, as shown

in Equation (16):

Ω(p̃i
n,o) =



ΩF0(p̃i
n,o)

ΩR0(p̃i
n,o)

ΩL0(p̃i
n,o)

ΩF−α(p̃i
n,o)

ΩR−α(p̃i
n,o)

ΩL−α(p̃i
n,o)

ΩF+α(p̃i
n,o)

ΩR+α(p̃i
n,o)

ΩL+α(p̃i
n,o)


, (16)
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where F, R, and L refer to frontal, right, and left profiles, respectively, and their subindexes
refer to the angle rotation.

Figure 5 shows the templates for in-plane face rotations: three on the left with clockwise
rotation, and three on the right with counterclockwise ones, using α = 15◦.

Figure 5. Face templates with in-plane rotations with α = 15◦ (counterclockwise, the three on the left,
and clockwise the three on the right).

The characteristics of the model response are explored in the FOS. Figure 6 shows the
responses of the nine templates of the VJ likelihood model for three different face poses. The
different templates better respond to faces with poses close to those with similar profiles
and rotations. The likelihood responses have higher values around the mouth position for
each pose, and more than one template can generate a positive response to the face when
the pose is similar.

Figure 6. Face likelihood model response for different poses: right at the top row,
frontal at the middle row, and left at the bottom row. From left to right in each row:
ΩF0 (p̃i

n,o) ΩR0 (p̃i
n,o) ΩL0 (p̃i

n,o) ΩF−α (p̃i
n,o) ΩR−α (p̃i

n,o) ΩL−α (p̃i
n,o) ΩF+α (p̃i

n,o) ΩR+α (p̃i
n,o) ΩL+α (p̃i

n,o).

Figure 7 shows that the model response to a face is shaped like a blob in the FOS. This
blob-shape-like behavior resembles that of Gaussian behavior. The width of the significant
response levels in the (u, v) plane is small, a few pixels in diameter. The width in response
to the template size S is much larger, several tens of pixels.

5.2.2. Exploration Mechanism of the FOS

One exploration alternative could be to evaluate the likelihood of the particle’s projec-
tion on the FOS. However, the peak’s width of the response on the image plane (u, v) is
very narrow. This characteristic is right from the point of view of location accuracy, but it
increases the possibility that no particle will hit the same region where a peak appears in
the FOS. On the other hand, exploring the FOS domain in the whole area occupied by the
particles may imply a high computational cost.

To ensure that the region with a peak response is found while keeping computational
complexity low, we plan to take advantage of the model’s face response’s redundancy
in dimension S. Our proposal consists of exploring the volume occupied by particles in
the FOS using three slices in the S dimension. With the response in these slices, we can
estimate a Gaussian shape of the likelihood in the FOS, to finally, weight all particles with
the estimated Gaussian.
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Figure 7. Face likelihoods response at different 2D BB sizes (Si
n,o) in pixels. (Left): likelihood maps.

(Right): 3D plot of the likelihoods in the FOS (ui
n,o, vi

n,o, Si
n,o).

The three slices or scanning planes are defined, one at the average face size, one γ times
larger, and one γ times smaller than the average size: [S̄/γ, S̄, S̄ · γ]. The average face size
of particles is computed as S̄o = 1

NP ∑NP
i=1 Si

o. In (u, v), the exploration is restricted to the
rectangular area defined by the maximum and minimum particle position values in each
dimension [umin : umax, vmin : vmax]. Figure 8 shows the process to weight the particles.

Figure 8. VJ Likelihood Model: Predicted particles (red dots) projected on the image (left), the three
slices in the S dimension (middle) with the particles (red dots), and the estimated Gaussian (green
blob) along with particles (red dots) in the FOS (right).

5.2.3. Gaussian Approximation

For each pose, the VJ likelihood is evaluated in the three slices. Next, a threshold θV J

is applied to remove points outside the Gaussian pursuit, and the mean µ
p̃
n,o = (µu, µv, µs)

and covariance matrix Σp̃
n,o of the remaining points are computed.
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Next, instead of adding all pose outputs, like in [2,23], we select the best pose (posebest)
as that with the highest response value (described in Equation (17)), proven to reduce the
number of false positives in preliminary experiments.

posebest
n,o = arg max

pose
{Ωpose(p̃i

n,o)}, with pose ∈ {F0R0L0F−αR−αL−αF+αR+αL+α} (17)

Using the centroid’s value µ
p̃
n,o, the corresponding pose face BB is projected to the

Fg./Bg. image. Finally, poses whose BB have less than 60% of intersection with the
foreground area are eliminated, as 60% is the approximated area percentage covered by a
face in the templates.

From the remaining poses, that with the greatest number of particles is selected on
the set of not eliminated poses, and the observation confidence of the appearance-based
model is set to one: CV J

o = 1. In the case all the poses were eliminated, it will be considered
that there is no visual observation with the appearance-based model, setting CV J

o = 0 and
emptying the associated µ

p̃
n,o and Σp̃

n,o.
Finally, some adjustment to the covariance matrix is needed. To avoid orientation

artifacts in the generated Gaussian model, covariance terms are not considered, setting
σuv,o = σus,o = σvs,o = 0. Also, the horizontal and vertical dispersion values are equalized,
taking the minimum of both values σuu,o = σvv,o = min(σuu,o, σvv,o). To prevent a zero
variance in the S dimension, caused by the case where only one slice had points over the
threshold, its minimum value is set to σmin

ss,o , so that σss,o ≥ σmin
ss .

The right image in Figure 8, shows the particles (red), their mean value (black cross),
and the standard deviation of the estimated Gaussian as a 3D surface (green).

5.2.4. Occlusion Detection with the VJ Model

After estimating which of the measurements are associated with each target, it is
necessary to make sure that multiple targets are not related to the same measurement.

The following procedure is used to avoid this situation:

• For each pair of targets (o, o′), the overlap between the exploration spaces (FoVs) of
both targets is calculated ρ = ([umin : umax, vmin : vmax]o ∩ [umin : umax, vmin : vmax]o′).

• If there is overlap (ρ 6= ∅), the global possible measurements’ dispersion σuu,o for each
target (o) in the image plane (u, v) is calculated.

• If any of the targets have high dispersion, it may imply that some of the assigned
measurements are from other targets. The threshold value to consider that a target
has a high measurement dispersion is calculated as a fraction of the average face size
of the particle set S̄o.

• If the dispersion of any target exceeds this threshold and is not occluded, the Gaussian
related to that target observation is recalculated after removing the assigned measure-
ments within the ρ overlapping region. Then, the Euclidean distance between the
two centroids of the observations reassigned to each target within the image plane is
calculated as duv = ‖(µp̃

n,o, µ
p̃
n,o′)‖.

• If this duv distance is less than two times the dispersion in the image plane (2 · σuu,o)
the decision of which measurement is associated with which target is based on another
definition of the distance duv is defined, using the representation of the predicted
particles in the image plane as duv = ‖(µp̃

n,o, p̄n,o)‖. Then again, the observations will
be assigned to the target (o) from which the shortest distance duv is found, and the
other target (o′) is declared as occluded, and the related particles are at a shorter
distance than the threshold.

The pseudocode of this process is presented in Algorithm 1.
Figure 9 shows an occlusion situation. In the left graph, the image and the related

locations (in the image plane) from the particles representing two targets are shown in red
and green colors. The center graph shows a top view of the particle positions in the WCS.
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Finally, the right-hand graph shows the same particles’ related location in 2D together
with the standard dispersion σuu,o, through its representing circle (in magenta and cyan).
There, it can be observed that part of the particles representing target number two (green)
are being assigned in the observation space to target one (red). It can be thus noticed the
particles dispersion, and therefore the occlusion situation.

Algorithm 1 Occlusions detection in VJ likelihood block.

if every target pair o, o′ in FoV then
ρ← ([umin : umax, vmin : vmax]o∩[umin : umax, vmin : vmax]o′) % intersection factor
if ρ 6= ∅ then

find intersection region, ([umin, umax, vmin, vmax]inter)

for o∗ ∈ {o, o′} do
if σuu,o∗ > S̄o∗ and f aceIsOccluded(o∗) == 0 then
[umin : umax, vmin : vmax]o∗ ← [umin : umax, vmin : vmax]o∗ − ρ

end if
end for
if duv = ‖(µp̃

n,o, µ
p̃
n,o′)‖ < σuu,o then

if duv = ‖(µp̃
n,o′ , p̄n,o)‖ < duv = ‖(µp̃

n,o, p̄n,o)‖ then
f aceIsOccluded(o)← 1 % The target with prediction farthest from the measure
is occluded
for each particle do

if duv = ‖(µp̃
n,o′ , p̃i

n,o)‖ < 2σuu,o′ then
occIdx(i)← 1 % particles are set as occluded

end if
end for

else
f aceIsOccluded(o′)← 1
for each particle do

if duv(µ
p̃
n,o, p̃i

n,o′)) < 2σuu,o then
occIdx(i)← 1

end if
end for

end if
end if

end if
end if

Figure 9. Occlusion situation. Image with particles’ projection (left). Top view of 3D position-related
particles (middle). The same with standard deviation circles (right). For target one the particles are
in red color, and the standard deviation circle in magenta. For target two the particles are in green
color, and the standard deviation circle in cyan.
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5.2.5. VJ Likelihood Assignment

The likelihood values assigned to the particles are associated with the Gaussian with
mean µ

p̃
n,o, covariance matrix Σp̃

n,o and amplitude equal to the maximum observed there
Ωposebest (with posebest

n,o as defined in Equation (17)). Likelihood values below the threshold
θV J are set to zero. Equation (18) describes such likelihood.

lV J(p̃i
n,o) =

{
ΩposebestN (p̃i

n,o|µ
p̃
n,o, Σp̃

n,o) if ΩposebestN (p̃i
n,o|µ

p̃
n,o, Σp̃

n,o) ≥ θV J

0 otherwise
(18)

5.3. Head Color-Based Likelihood Block

As explained above, in the FOS coordinates, each particle is assigned a BB in the image,
corresponding to the face in a frontal pose. To tackle face occlusions, the spatiogram of
the 2D BB mouth estimation BBi

n,o is calculated as in [17], and replicated in Equation (19).
The likelihood will be proportional to the Bhattacharyya coefficient between the histogram
associated with each particle i and the spatiogram of the reference face patch image BB f a

n,o:

S(BBi
n,o, BB f a

n,o) =
B

∑
b=1

√
rb

i rb
f a[8π|Σb

i Σb
f a|

1
4N (µb

i |µb
f a, 2(Σb

i + Σb
f a))], (19)

were rb
i , µb

i , Σb
i and rb

f a, µb
f a, Σb

f a are the histogram count, the spatial mean and covariance
matrices in the color bin b of particle i and in the reference face patch image f a, respectively.

The face is considered to be located by the color model (setting Ccol
o = 1) if the

maximum similarity value exceeds a threshold θcol . In this case, the 75th percentile of
the lower likelihoods is discarded, to reduce the dispersion of particles due to the higher
dispersion of the color model. Otherwise, we assume that the face is not detected by this
color-based strategy (setting Ccol

o = 0).
Equation (20) describes the final color likelihood proposed lCol(p̃i

n,o).

lCol(p̃i
n,o) =

{
S(BBi

n,o, BB f a
n,o) if max(S(BBi

n,o, BB f a
n,o)) ≥ θcol

0 otherwise
(20)

The color reference histogram is initialized in the face BB of the first ground-truth
frame, considering a frontal pose. This reference model is updated in every iteration when
the VJ likelihood delivers a confident value. In this case, the face BB corresponding to the
best-detected pose is used.

Like in the VJ likelihood block, with the color model, particles from an occluded target
o, very close to another target o′, can be captured by the significant likelihood region of o′.
To avoid this situation, the o particles that are very close to o′ are labeled as occluded. The
limit value of closeness is set equal to the diagonal of the average face size of the o′ target√

2S̄o′ . This procedure is carried out before evaluating the color-based likelihood.

5.4. Correction on Occlusions

The occlusion correction stage is aimed at avoiding hypotheses of one person’s position
(target) obtaining a high likelihood if mistaken for another target. Simultaneously, this
correction mechanism should not penalize hypotheses in an occluded region, thus allowing
the mechanism to keep track of persons passing behind one another in the monitored
environment.

The correction globally works as described in Algorithm 2. If a target is occluded and
all its related position hypotheses are in an occluded area, all their likelihood values lv(p̃i

n,o)
are set to 1/NP . Otherwise, if the target has some position hypotheses in an occluded area
and some others in a non-occluded one, the likelihood of those located in the occluded area
(occIdx(i) == 1) is set to the average of those in a non-occluded one (occIdx(i) 6= 1).
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Algorithm 2 Occlusions correction pseudocode.

for every target o do
if target o is occluded then

if all position hypotheses p̃i
n,o are occluded then

lv(p̃i
n,o) = 1/NP∀i

else
lv(p̃i

n,o/occIdx(i) == 1) = mean(lv(p̃i
n,o/occIdx(i) 6= 1))∀i

end if
end if

end for

5.5. Foreground vs. Background Segmentation (Fg. vs. Bg.)

The foreground vs. background segmentation procedure starts by subtracting a
reference frame (with the environment background, without people) from the given one, in
grayscale. After the subtraction, a threshold θ f g is applied to the resulting difference image,
obtaining a binary image Iθ, f g.

Hypotheses in the foreground or outside the camera’s FoV receive a uniformly dis-
tributed likelihood value (U (p̃i

n,o)). In contrast, those within the FoV but in the background,
receive a zero weight, as stated in Equation (21):

l f g(p̃i
n,o) =

{
∼ U (p̃i

n,o) if Iθ, f g(p̃i
n,o) == 1∨ /∈ FoV

∼ 0 otherwise

}
(21)

6. Audio Observation Model

In this work, the audio observation model is based on a probabilistic version of
SRP-PHAT, proposed in [55]. This model exploits a probabilistic interpretation of the Gener-
alized Cross-Correlation with PHAT transform (GCC-PHAT) between the signals of each pair
of microphones. With probabilistic GCC-PHAT, it is possible to associate only one correlation
peak to each target. For each time step, the procedure works as follows:

1. The GCC-PHAT for every pair of microphones, and its associated Gaussian model
are obtained.

2. SRP-PHAT is computed for every particle position.
3. A Gaussian selection procedure chooses which Gaussian is associated with each target.
4. Finally, the probabilistic SRP-PHAT value is associated with the likelihood of the targets.

Figure 10 shows the general scheme of the audio observation model.

Figure 10. General scheme of the audio likelihood model.
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6.1. GCC-PHAT and Gaussian Model

The GCC-PHAT (to ease the notation, we will skip the explicit mention to PHAT when
referring to the GCCPHAT and SRPPHAT functions in the equations) is computed for the
signals arriving at each microphone pair π j (composed of microphones mj1 and mj2 ) around
the evaluated video frame, as presented in Equation (22):

GCCπ j(τ) =

N f−1

∑
k=0

Ψj1 j2 [k]Sj1 [k]S
∗
j2 [k]e

j 2πk fs
Nf

τ
(22)

where N f is the number of discrete frequencies used in the Fourier analysis of the discretized
signals captured by the j1 and j2 microphones (sampled versions of the sj1(t) and sj2(t)
signals); Sj1 [k] and Sj2 [k] are the frequency spectra of these signals; and Ψj1 j2 [k] =

1
|Sj1

[k]S∗j2
[k]|

is the PHAT filter. τ is the lag variable of the correlation function, associated with the time
difference of arrival of the audio signal to the pairs of microphones.

The second step is to model the GCC-PHAT of each microphone pair π j as a Gaussian
Mixture Model (GMM). The main assumption here is that each GCC-PHAT peak is caused by
a different acoustic source at a given position, generated by the direct propagation path,
by a reverberant echo, or by other noise sources. With this consideration, each peak in the
GCC-PHAT function is associated with a Gaussian function in the GMM model described by
Equation (23):

ĜCCπ j(τ) ≈
NJ−1

∑
h=0

ωh
π j
N
(

τ|µh
π j

, σh
π j

)
, (23)

where NJ is the number of peaks detected in the GCC-PHAT function, and µh
π j

, σh
π j

and ωh
π j

represent the mean, standard deviation and weights of the hth component of the mixture.
The correlation values are first normalized (making their sum equal to one) and

their negative values are set to zero. The GMM parameters {µh
π j

, σh
π j

, ωh
π j
}NJ

h=1 are estimated
according to the procedure described in [55].

6.2. SRP-PHAT and Gaussian Selection

Once the GMM model is available, the traditional SRP-PHAT formulation can be applied
to the position of each particle. Then, the SRP-PHAT value for a given target o is calculated
as the average ŜRP over all the particles associated with o, ĘSRPn,o.

Gaussian selection is applied sequentially to every target, starting from the one with
the highest ĘSRPn,o value. For each target o and microphone pair π j, the set of maximum

SRP-PHAT delays {τpimax
n,o

π j } is evaluated in each Gaussian h, and that with the highest value
is selected, as shown in Equation (24).

pimax
n,o = arg max

pi
n,o

(
ŜRP(pi

n,o)
)

(24)

After the selection, the selected Gaussian is subtracted from the mixture, and the Gaus-
sian selection process continues with all the other targets, in ĘSRPn,o value decreasing order.

Figure 11 represents the Gaussian selection process in a frame extracted from sequence
seq18-2p-0101 in the AV16.3 dataset, where there were two close speakers. The graphic
on the left shows in black the GCCπ16(τ) function (for the π16 microphone pair) and the
calculated Gaussian mixture ĜCCπ16(τ) in blue, along with the projections of the particles
with maximum ŜRP

(
pi

n,o
)

for both targets. The graphic on the right highlights the selected
Gaussians for each target. In both graphics, target one selected Gaussian appears in red,
and target two appears in green.
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Figure 11. Gaussian selection. In the left graphic: GCCπ16 (τ) in black, and ĜCCπ16 (τ) in blue. In the
right graphic: selected Gaussians for target 1 (red) and target 2 (green). The GMM model was generated
with NJ = 7.

From Figure 11 it can be observed that both targets obtain close TDoA projection for
their particles with maximum ŜRP(pi

n,o) value, sharing the same Gaussian. In this case,
target 2 obtained the highest value, so it was assigned the associated Gaussian.

6.3. Single Gaussian SRP-PHAT Model

The final step to generate a likelihood value from the acoustic information consists
of simplifying the SRP-PHAT GMM model, by considering just one Gaussian for each pair of
microphones, that with the highest weight value, as shown in Equation (25).

ŜRP(pi
n,o) ≈

NQ

∑
j=1

ω∗π j
N (τ|µ∗π j

, σ∗π j
) (25)

where ω∗π j
, µ∗π j

and σ∗π j
are the parameters associated with the Gaussian component with

the highest weight value in Equation (23).
Because of reverberation and low SNR conditions, some speech segments may exhibit

low SRP-PHAT values, degrading the quality of the acoustic power maps. To avoid this
degradation, we consider the maximum SRP-PHAT value as an indicator of confidence, so
that a threshold θa is applied to limit the influence of such segments. Finally, the likelihood
from the audio information is calculated as described in Equation (26):

p(za
n,o|xi

n,o) ∝ la(pi
n,o) =

{
∼ ŜRP(pi

n,o) if max(ŜRP(pi
n,o)) ≥ θa

∼ U (pi
n,o) otherwise

(26)

7. Experimental Setup

The tracking system has been evaluated in three modalities. The first one uses only
audio information, the second one uses only video information, and the final one combines
the two sources of information in an audiovisual modality.

7.1. Datasets

The databases used for system evaluation are the well-known AV16.3 [45], and
CAV3D [17] in the state of the art of interest. Both databases are fully labeled, providing
the mouth ground-truth location. Synchronization information between the audio and
video streams is also available.

7.1.1. AV16.3

AV16.3 was recorded in the Smart Meeting Room of the IDIAP research institute [61],
in Switzerland, which consists of a 8.2 m × 3.6 m × 2.4 m rectangular room, containing
a centrally located 4.8 m × 1.2 m rectangular table, on top of which there are located two
circular microphone arrays of radius 0.1 m, each of them composed of eight microphones.
The centers of the two arrays are separated 0.8 m, and their coordinates origin are in the
middle point between the two arrays. The room is also equipped with three video cameras
providing different-angle views of the room. The database contains audio and video data
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taken by the three video cameras and the two circular microphone arrays. The cameras
have a frame rate of 25 f.p.s. (40 ms period) while the audio has been recorded at 16 kHz.
The dataset contains sequences grouped in two contexts, a Single Objective Tracking (SOT)
one, and a Multiple Objective Tracking (MOT) one.

7.1.2. CAV3D

CAV3D was recorded in the Bruno Kessler Center in Information and Communication
Technology (FBK-ICT) in Italy, consisting of a 4.77 m × 5.95 m × 4.5 m rectangular room.
Sensing was conducted with a monocular color camera co-located with an 8-element
circular microphone array placed in the room’s center. Video was recorded at 15 f.p.s.
(≈66.7 ms period). The audio sampling rate was 96 kHz. The dataset contains 20 sequences
grouped in three contexts, a Single Objective Tracking (SOT) one, another with a single
active speaker and a second interfering person (not speaking) (SOT2), and a Multiple
Objective Tracking (MOT) one.

7.1.3. Sequences Selection

The experiments were carried out using the same sequences in AV16.3 and CAV3D
evaluated in [17,22], two state-of-the-art proposals used for performance comparison.
Table 1 shows the AV16.3 selected sequences: seq08, seq11, seq12 for SOT, and seq18,
seq19, seq24, seq25 seq30 for MOT. For each sequence, the three cameras’ views were
tested independently and combined with the first microphone array, giving a total of
nine evaluation sequences in SOT and fifteen in MOT. Table 2 shows the CAV3D selected
sequences, which are all the available ones for the SOT and MOT cases, in which we focused
our experimental work.

Table 1. Brief descriptions of the sequences in the AV16.3 dataset.

Type Sequence ID Description Time Length (MM:SS)

SOT seq08 Moving speaker facing the array, walking backward and forward once 00:22.28

SOT seq11 Moving speaker facing the array, doing random motions 00:30.76

SOT seq12 Moving speaker facing the array, doing random motions 00:48.16

Total SOT 01:41.20

MOT seq18
Two moving speakers facing the array, speaking continuously, growing closer to
each other, then further apart twice, the first time seated and the second
time standing

00:57.00

MOT seq19
Two standing speakers facing the array, speaking continuously, growing closer
to each other, then further from each other 00:22.8

MOT seq24
Two moving speakers facing the array, speaking continuously, walking
backward and forward, each speaker starting from the opposite side and
occluding the other one once

00:47.96

MOT seq25
Two moving speakers greeting each other, discussing, then parting, without
occluding each other 00:55.72

MOT seq30
Two moving speakers, both speaking continuously, walking backward and
forward once, one behind the other at a constant distance 00:22.04

Total MOT 03:56.28

TOTAL ALL 05:37.48
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Table 2. Brief descriptions of the sequences in the CAV3D dataset.

Type Sequence ID Description Time Length (MM:SS)

SOT seq06 Female moving along a reduced area inside the room. 00:52.10

SOT seq07 Male moving along a reduced area inside the room 00:58.97

SOT seq08 Male moving along a reduced area inside the room 01:10.02

SOT seq09 Male moving along a reduced area inside the room within noisy situations 00:50.43

SOT seq10 Male moving along a reduced area inside the room within noisy situations 00:50.05

SOT seq11
Male moving along a reduced area inside the room within clapping/noising
and bending/sitting situations 01:10.61

SOT seq12
Male moving along a reduced area inside the room within clapping/noising
and bending/sitting situations 01:28.87

SOT seq13 Male moving along the whole room 01:24.22

SOT seq20 Male moving along a reduced area inside the room 00:46.46

Total SOT 9:31.73

MOT seq22 A female and a male moving along the room simultaneously speaking 00:39.55

MOT seq23 A female and a male moving along the room simultaneously speaking 01:04.04

MOT seq24 A female and a male moving along the room simultaneously speaking 01:09.46

MOT seq25 Two females and a male moving along the room simultaneously speaking 01:02.46

MOT seq26 Two females and a male moving along the room simultaneously speaking 00:36.48

Total MOT 04:31.99

TOTAL ALL 14:03.72

7.2. Evaluation Metrics

The evaluation metrics used are the Track Loss Rate (TLR), and the Mean Absolute
Error (MAE), as defined in [17]. The TLR is the percentage of frames with a track loss,
where a target is considered to be lost if the error exceeds a given threshold. These metrics
will be further specified below.

The MAE for 3D is expressed in m as in Equation (27):

ε3D =
1

NFNS

NS

∑
i=1

NF

∑
n=1
||p̂n,i − rn,i||, (27)

where NF is the number of frames evaluated, and p̂n,i and rn,i are, respectively, the esti-
mated and real positions of source i in frame n.

To evaluate the TLR in 3D, a target is considered to be lost if the error with respect
to the ground-truth is larger than 300mm. We also use a fine error metric defined as ε′3D,
where only the frames where tracking is successful are considered in Equation (27).

For 2D, the MAE in the image plane is expressed in pixels as in Equation (28):

ε2D =
1

N′FN′S

N′S

∑
i=1

N′F

∑
n=1
|| ˜̂pn,i − r̃n,i||, (28)

where N′S are N′F are the number of sources and frames, respectively, in which the source
position is inside the camera’s FoV. ˜̂pn,i and r̃n,i are, respectively, the projection of p̂n,i and
rn,i in the image plane.
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Moreover, for computing the TRL in 2D it is used a threshold of 1/30 of the image
diagonal in pixels. As in the 3D case, a fine error metric ε′2D is also defined, for this 2D
TLR threshold.

When comparing different proposals or experimental conditions, we will also calculate
the relative performance improvement in all the evaluated metrics, as follows:

∆Alg2
Alg1 = 100

MetricAlg1 −MetricAlg2

MetricAlg1
[%] (29)

where Alg1 and Alg2 refer to the algorithms or conditions we are comparing, and MetricAlg
refers to the considered Metric calculated using the corresponding Alg. Given that in all
the proposed metrics the lower the better, a positive result for ∆Alg2

Alg1 implies that Alg2 is
better than Alg1.

7.3. System Configuration

In AV16.3, the audio signals were resampled up to 96 kHz. Also in this database, each
image frame was scaled by 2 to adapt them to the VJ OpenCV [62] templates (20× 20 pixels)
when they are far away from the camera. Also, a lens distortion correction was applied.

For both AV16.3 and CAV3D data, the audio signal pre-processing starts with a
pre-emphasis filter (H(z) = 1− 0.98z−1) to enhance high-frequency content. After filtering
a segment of 8192 samples (≈ 85.3ms), flattop weighted windows are applied to the signal,
with a window shift value equal to the video frame rate (25 f.p.s. in AV16.3 and 15 f.p.s. in
CAV3D). Thus, there is one audio segment associated with each video frame. Moreover,
the Fourier filter size has been selected equal to the signal window size (8192).

Regarding the algorithm parameters needed in the proposal as described in
Sections 5 and 6, all of them were tuned on a small subset composed of additional se-
quences from the AV16.3 dataset, except for the Fg./Bg. Segmentation, in which the tuning
was carried out using the extra sequence seq21 from CAV3D.

These are the final values in the experimental setup: The face size in 3D was set to
a fixed value of h3D

r = 17 cm. The appearance-based likelihood threshold θV J , was set to
0.5. The γ face size change factor for slice exploration was set to γ = 1.2. The minimum
dispersion in the S dimension was fixed to σmin

ss = 10. The color spatiogram likelihood
threshold was set to θcol = 0.6. The Fg./Bg. Segmentation gray scale intensity threshold
was set to θ f g = 80 for AV16.3 and θ f g = 30 for CAV3D. The acoustic power threshold
θa was set to 0.8. The model parameters v̄ = 1 ms−1 and β = 10 s−1 used in [60,63] have
shown good results, and thus they are the ones we applied in this work. The PF algorithm
used was the SIR with NP = 1000 particles per target.

8. Results and Discussion

In this section, different results, both quantitative and qualitative, are included to
demonstrate the contributions of the GAVT global proposal and its processes in the audiovi-
sual MOT objective.

As mentioned in Section 2, the AV16.3 and CAV3D datasets are used for the experimen-
tal work, due to their application in the most important state-of-the-art related works [17,20].

Therefore two different sections are here included to analyze such results: a first
one in which the multimodality of the proposal is evaluated and discussed; and a sec-
ond one in order to compare them with the best proposals in the state-of-the-art on the
selected datasets [20].

In the tables within this section, we will provide values for TLR, ε2D, ε′2D, ε3D, ε′3D,
segregated for SOT and MOT partitions, and their average value. In all cases, we explicitly
include the average of the standard deviation of the metric (±σ), given that we carried out
ten runs per sequence due to the probabilistic nature of the GAVT proposal. We will also
include information on the modality being used, either audio only (A for short), video only
(V for short), or audiovisual (AV for short). Finally, to quickly identify the experimental
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conditions of each table with results, in the first row we state the dataset used (AV16.3
or CAV3D), and if the metrics are in the image plane (2D) of in the three-dimensional
space (3D), also including the modality being used. The comparison between modalities
and algorithms will be done using the ∆alg2

alg1 metric defined in the previous section. In all
cases, the best results across metrics will be highlighted with a green background in the
corresponding cell.

8.1. Audiovisual Combination Improvements

We first present the contribution of audiovisual tracking versus individual audio-only
and video-only modalities on the AV16.3 database sequences. We did not make this
comparison in the CAV3D dataset as in that one there are several sequences in which the
speakers leave the camera’s FoV for a certain time, so that the video-only modality could
not be compared equally with the other two modalities within such dataset.

The results of our GAVT proposal using the audio-only (A), video-only (V) and audio-
visual (AV) modalities are shown in Tables 3 and 4 for the 2D and 3D metrics, respectively,
as well as the relative performance improvements comparison from A to AV modalities
(∆AV

A ), and from V to AV (∆AV
V ).

Table 3. Performance scores of GAVT on AV16.3. Average TLR [%] and MAE in 2D [pixels] per
modality (A: audio-only, V: video-only, and AV: audiovisual), and summary comparison (∆AV

A :
improvement from A to AV, ∆AV

V : improvement from V to AV). The best results across metrics are
highlighted with a green background.

GAVT on AV16.3 in 2D (A, V, AV and Comparison)
A V AV ∆AV

A ∆AV
V

SOT

TLR 65.35 ± 3.50 6.42 ± 3.54 5.19 ± 2.55 92.1% 19.2%
ε2D 37.09 ± 2.53 5.78 ± 2.11 5.12 ± 1.42 86.2% 11.4%
ε′2D 8.98 ± 0.41 3.35 ± 0.12 3.35 ± 0.10 62.6% −0.1%

MOT

TLR 74.56 ± 6.87 20.19 ± 7.49 9.55 ± 7.26 87.2% 52.7%
ε2D 57.01 ± 12.12 14.29 ± 7.08 7.40 ± 5.46 87.0% 48.2%
ε′2D 8.39 ± 0.80 3.15 ± 0.33 3.27 ± 0.32 61.0% −4.0%

Avg

TLR 69.95 ± 5.18 13.31 ± 5.51 7.37 ± 4.91 89.5% 44.6%
ε2D 47.05 ± 7.32 10.03 ± 4.60 6.26 ± 3.44 86.7% 37.6%
ε′2D 8.69 ± 0.60 3.25 ± 0.22 3.31 ± 0.21 61.9% −2.0%

Table 4. Performance scores of GAVT on AV16.3. Average TLR [%] and MAE in 3D [m] per modality
(A: audio-only, V: video-only, and AV: audiovisual), and summary comparison (∆AV

A : improvement
from A to AV, ∆AV

V : improvement from V to AV). The best results across metrics are highlighted with
a green background.

GAVT on AV16.3 in 3D (A, V, AV and Comparison)
A V AV ∆AV

A ∆AV
V

SOT

TLR 43.80 ± 2.78 46.76 ± 6.14 12.05 ± 3.84 72.5% 74.2%
ε3D 0.37 ± 0.02 0.33 ± 0.04 0.15 ± 0.01 59.4% 54.6%
ε′3D 0.17 ± 0.01 0.15 ± 0.01 0.10 ± 0.01 38.8% 29.3%

MOT

TLR 59.88 ± 9.07 46.15 ± 9.58 19.78 ± 11.0 67.0% 57.1%
ε3D 0.68 ± 0.15 0.39 ± 0.09 0.21 ± 0.08 69.7% 46.7%
ε′3D 0.16 ± 0.02 0.15 ± 0.02 0.11 ± 0.01 26.1% 24.2%

Avg

TLR 51.84 ± 5.93 46.46 ± 7.86 15.92 ± 7.43 69.3% 65.7%
ε3D 0.52 ± 0.09 0.36 ± 0.06 0.18 ± 0.12 66.1% 50.3%
ε′3D 0.16 ± 0.01 0.15 ± 0.02 0.11 ± 0.01 32.7% 26.7%
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The obtained results clearly show that for both the SOT and MOT tasks, the audiovisual
combination outperforms its monomodal counterparts. As expected, the visual modality is
far better than the audio modality, but in all cases, the audiovisual combination contributes
to improved results.

In the 2D case, the average MAE is strongly improved when combining the audio and
video modalities, with similar improvements for the SOT and MOT tasks (86.2% and 87%,
respectively), with an average improvement of 86.7%. The improvements of the audiovisual
modality as compared with the video-only one are still relevant, being 37.6% on average.
When considering the fine MAE, the audiovisual modality does not improve the visual-only
modality, with minor degradation of −2.0% on average, which is not significant (especially
considering the non-linear characteristic of this metric), with errors below 3.35 pixels in
all cases.

In the 3D case, the improvements of the audiovisual modality are consistent across all
metrics, with MAE of 18 cm on average, and very relevant improvements of up to 50.03%
as compared with the visual-only modality.

Also as expected, the results for the SOT task are better than those for the MOT task.
For example, in the audiovisual modality, with SOT 2D MAE of 5.12 pixels vs. MOT 2D
MAE of 7.4. In the 3D case, the 3D MAE for SOT is 15 cm vs. 21 cm in the MOT task.

For the SOT task, the highest relative improvement in the comparison between audio-
visual and audio-only modalities was found for sequence seq11 camera 2, with a 79%, and
the lowest relative improvement happened for sequence seq08 camera 1 with a 25%. We
will further discuss these two extreme cases.

The top part of Figure 12 shows the mean (dark line) and standard deviation (light
color area) of the 3D error over time for the seq11 sequence camera 2. The bottom part of
Figure 12 shows the top view of the tracked trajectories for each of the modalities.

Analyzing the errors in 2D (Table 3), where the tracked positions are reprojected to the
camera image plane, we can see that the video-only modality is very accurate, with an error
of 5.78 pixels, and close to the audiovisual solution with 5.12 pixels, while the audio-only
modality presents a much higher error of 37.9 pixels.

From comparing 2D and 3D errors, we can observe that the video modality errors
come principally from the estimation of depth (see the bottom part of Figure 12), so that we
can interpret that the proposed multi-pose face model can accurately locate the mouth in
the image plane domain.

From the results of sequence seq11 camera 2 in Figure 12, it can be observed that the
audio modality tracker presents significant errors for most of the sequence. This error
can be observed in the trajectories (see bottom left graphic in Figure 12) where the system
overestimates the distance from the target to the microphone array, especially when the
target is far from it. The video-only tracker presents a better estimation in the first part
of the sequence but underestimates the distance at the end of the sequence (see bottom
middle graphic in Figure 12) when the target is farthest from the camera. Observing the
audiovisual trajectories (see bottom right graphic in Figure 12), both modalities compensate
for each other errors, presenting an intermediate estimation that leads to improved results.

Figure 13 shows the detailed results for sequence seq08 camera 1, where it can be
observed that the audio-only modality present low errors during the whole sequence
(bottom left graphic), while the video-only modality fails on the estimation of depth with
important errors (bottom middle graphic). Although the video-only modality presents
more relevant errors than the audio-only one, the audiovisual combination improves again
the monomodal tracking options.
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Figure 12. Detailed results for seq11 camera 2: Mean and standard deviation of error over time (top
graphic), and top view of the speaker trajectory (bottom graphics). Green: audio only, blue: video
only, red: audiovisual, black: ground truth).

Figure 13. Detailed results for seq08 camera 1: Mean and standard deviation of error over time (top
graphic), and top view of the speaker trajectory (bottom graphics). Green: audio only, blue: video
only, red: audiovisual, black: ground truth). The dotted circle represents the microphone array.

This behavior of audiovisual integration usually works successfully even when the
video performance is lower than the audio. As an example, the upper graphic of Figure 14
shows the 3D MAE variation along time for sequence seq08 camera 3, where the video
modality shows higher errors than the audio-only modality, especially in the first half
of the sequence. The audiovisual fusion is again able to obtain results that improve the
monomodal versions. The lower graphic of Figure 14 shows another case in which the
audio modality presents higher errors than the video modality in the central part of the
sequence, and the audiovisual fusion compensates for such behavior.
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Figure 14. Additional detailed results for sequences seq08 camera 3 and seq12 camera 1: Mean and
standard deviation of error over time. Green: audio only, blue: video only, red: audiovisual, black:
ground truth).

For the MOT task, the audio modality significantly increases its errors, up to 68 cm on
average, while the video modality obtained a result of 39 cm. This performance decrease
in the audio tracking modality could be explained by targets being interchanged between
them.

Regarding the detailed analysis for the MOT task, Figure 15 shows an example for
sequence seq24 camera 3. The top part of Figure 15 shows the mean (dark line) and
standard deviation (light color area) of the 3D error over time for the seq24 sequence
camera 3. The bottom part of Figure 15 shows the top view of the tracked trajectories for
each of the modalities. In this sequence, there were two speakers, so two sets of graphics
are shown.

In this case, the audio-only modality (bottom left graphics of Figure 15) only shows
good results in the initial part of the sequence. The video-only modality (bottom middle
graphics of Figure 15) exhibits good results for speaker 2, but not so good for speaker one,
but the combination of both modalities (bottom right graphics of Figure 15) can compensate
the errors, achieving good results even for speaker 1.

In the MOT task, the average 3D errors are 40% higher compared to the SOT case. We
observed that most large errors were associated with instances where one target was lost be-
cause of a missing face and the difficulty to recover it, similar to the difficulties encountered
in the SOT task. Nevertheless, our occlusion detection and handling mechanisms proved
effective in preventing particle interchanges, leading to good results. As an example, in
sequence seq22 (see Figure 16), we can see the successful tracking of two targets walking
in circular patterns in front of the camera.

We can also find examples of audiovisual integration not being able to successfully
compensate for the impact of a modality performing badly. Figure 17 illustrates such a
scenario, where the system correctly integrates the audio and video modalities for speaker
1 (top graphic), resulting in improved tracking accuracy. However, for speaker 2 (bottom
graphic), the integration improves the results as compared with the video-only modality,
but grows worse as compared with the audio-only modality toward the end of the sequence.
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Figure 15. Detailed results for sequence seq24 camera 3: Mean and standard deviation of error
over time for the tracking of two speakers (top graphics), and top view of the 3D trajectories of both
speakers (bottom graphics). Green: audio only, blue: video only, red: audiovisual, black: ground truth.
Speaker one graphics are above those of speaker two. The dotted circle represents the microphone
array.

Figure 16. Top view of the 3D trajectories for the two speakers in the seq22 camera 5 (red: audiovisual,
black: ground truth). The dotted circle represents the microphone array.
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Figure 17. Detailed results for sequence seq30 camera 3: Mean and standard deviation of error over
time. Top: speaker 1; Bottom: speaker 2. Green: audio only, blue: video only, red: audiovisual, black:
ground truth).

8.2. Comparison with the State-of-the-Art

In this section, we will compare our GAVT proposal with that of [17] (which we will
refer to as AV3T) that represents state-of-the-art performance in the AV16.3 and CAV3D
datasets within our experimental design.

Tables 5 and 6 show the 2D and 3D performance metrics of the GAVT and AV3T systems
on the AV16.3 dataset, for the audio-only (A) and video-only (V) modalities. The tables also
include the relative performance improvements of GAVT as compared with AV3T (∆GAVT

AV3T).

Table 5. Performance scores of AV3T and GAVT on AV16.3. Average TLR [%] and MAE in 2D [pixels]
for the audio-only (A) and video-only (V) modalities, and summary improvements comparison of
GAVT to AV3T (∆GAVT

AV3T). The best results across metrics are highlighted with a green background.

GAVT, AV3T and Comparison, on AV16.3 in 2D (A and V)
A V

AV3T GAVT ∆GAVT
AV3T AV3T GAVT ∆GAVT

AV3T

SOT

TLR 48.10 ± 6.00 65.35 ± 3.50 −36% 9.00 ± 1.90 6.42 ± 3.54 29%
ε2D 24.10 ± 5.70 37.09 ± 2.53 −54% 8.20 ± 1.10 5.78 ± 2.11 30%
ε′2D 7.60 ± 0.50 8.98 ± 0.41 −18% 5.30 ± 0.10 3.35 ± 0.12 37%

MOT

TLR 56.60 ± 9.40 74.56 ± 6.87 −32% 15.50 ± 9.00 20.19 ± 7.49 −30%
ε2D 38.40 ± 9.20 57.01 ± 12.1 −48% 17.90 ± 8.80 14.29 ± 7.08 20%
ε′2D 7.70 ± 0.90 8.39 ± 0.80 −9% 5.10 ± 0.40 3.15 ± 0.33 38%

Avg

TLR 52.35 ± 7.70 69.95 ± 5.18 −34% 12.25 ± 5.45 13.31 ± 5.51 −9%
ε2D 31.25 ± 7.45 47.05 ± 7.32 −51% 13.05 ± 4.95 10.03 ± 4.60 23%
ε′2D 7.65 ± 0.70 8.69 ± 0.60 −14% 5.20 ± 0.25 3.25 ± 0.22 38%
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Table 6. Performance scores of AV3T and GAVT on AV16.3. Average TLR [%] and MAE in 3D [m] for
the audio-only (A) and video-only (V) modalities, and summary improvements comparison of GAVT
to AV3T (∆GAVT

AV3T). The best results across metrics are highlighted with a green background.

GAVT, AV3T and Comparison, on AV16.3 in 3D (A and V)
A V

AV3T GAVT ∆GAVT
AV3T AV3T GAVT ∆GAVT

AV3T

SOT

TLR 34.90 ± 8.90 43.80 ± 2.78 −26% 52.70 ± 5.50 46.76 ± 6.14 11%
ε3D 0.28 ± 0.01 0.37 ± 0.02 −30% 0.41 ± 0.01 0.33 ± 0.04 20%
ε′3D 0.15 ± 0.01 0.17 ± 0.01 −14% 0.16 ± 0.10 0.15 ± 0.01 8%

MOT

TLR 44.90 ± 1.20 59.88 ± 9.07 −33% 56.30 ± 9.80 46.15 ± 9.58 18%
ε3D 0.48 ± 0.12 0.68 ± 0.15 −42% 0.52 ± 0.11 0.39 ± 0.09 26%
ε′3D 0.15 ± 0.02 0.16 ± 0.02 −4% 0.15 ± 0.02 0.15 ± 0.02 −1%

Avg

TLR 39.90 ± 5.05 51.84 ± 5.93 −30% 54.50 ± 7.65 46.46 ± 7.86 15%
ε3D 0.38 ± 0.06 0.52 ± 0.09 −38% 0.47 ± 0.06 0.36 ± 0.06 23%
ε′3D 0.15 ± 0.02 0.16 ± 0.01 −9% 0.16 ± 0.15 0.15 ± 0.02 3%

From these results, it is clear that our audio-only method performs worse than that pro-
posed by Qian since we did not use height information from the video (−51% performance
improvement for the average 2D MAE and −38% for the average 3D MAE).

It’s also clear that our video-only tracker outperforms AV3T in the MAE metrics (23% for
both the average 2D and 3D MAEs). This result shows that our proposed pose-dependent
visual appearance model works better to localize the mouth than using the generic face
detection with a mouth position estimation based on the aspect ratio proposed in [17].

Tables 7 and 8 show again, for the AV16.3 dataset, the 2D and 3D performance
metrics for the audiovisual modality (AV) of the GAVT and the AV3T systems, as well as the
improvements of our proposal against AV3T (∆GAVT

AV3T).

Table 7. Performance scores of AV3T and GAVT on AV16.3. Average TLR [%] and MAE in 2D [pixels]
for the AV modality, and summary improvements comparison of GAVT to AV3T (∆GAVT

AV3T). The best
results across metrics are highlighted with a green background.

GAVT, AV3T and Comparison (AV), on AV16.3 in 2D
AV3T GAVT ∆GAVT

AV3T

SOT

TLR 8.50 ± 3.60 5.19 ± 2.55 38.9%
ε2D 16.50 ± 8.60 5.12 ± 1.42 69.0%
ε′2D 12.20 ± 0.30 3.35 ± 0.10 72.5%

MOT

TLR 11.20 ± 5.90 9.55 ± 7.26 14.7%
ε2D 24.80 ± 23.7 7.40 ± 5.46 70.2%
ε′2D 10.10 ± 0.60 3.27 ± 0.32 67.6%

Avg

TLR 9.85 ± 4.75 7.37 ± 4.91 25.2%
ε2D 20.65 ± 16.1 6.26 ± 3.44 69.7%
ε′2D 11.15 ± 0.45 3.31 ± 0.21 70.3%
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Table 8. Performance scores of AV3T and GAVT on AV16.3. Average TLR [%] and MAE in 3D [m] for
the AV modality, and summary improvements comparison of GAVT to AV3T (∆GAVT

AV3T). The best results
across metrics are highlighted with a green background.

GAVT, AV3T and Comparison (AV), on AV16.3 in 3D
AV3T GAVT ∆GAVT

AV3T

SOT

TLR 13.30 ± 4.30 12.05 ± 3.84 9.4%
ε3D 0.16 ± 0.20 0.15 ± 0.15 7.4%
ε′3D 0.11 ± 0.10 0.10 ± 0.01 5.1%

MOT

TLR 15.80 ± 8.90 19.78 ± 11.0 −25.2%
ε3D 0.21 ± 0.07 0.21 ± 0.08 1.8%
ε′3D 0.11 ± 0.01 0.11 ± 0.01 −4.4%

Avg

TLR 14.55 ± 6.60 15.92 ± 7.43 −9.4%
ε3D 0.19 ± 0.14 0.18 ± 0.12 4.2%
ε′3D 0.11 ± 0.06 0.11 ± 0.01 0.3%

Our audiovisual method GAVT presents significant improvements as compared with
AV3T, for both the 2D and 3D metrics, and for both the SOT and MOT tasks. More important
error reductions were found in the 2D MAE metrics (up to almost 70% relative improvement
in 2D MAE), while the average relative improvement in 3D MAE is 4.2% at the expense of
a performance decrease of −9.4% for the 3D TLR.

The results on the CAV3D dataset for the full system with audio and video integration
are presented in Tables 9 and 10. The performance improvements we achieve are clear for
all the 3D metrics and for both the SOT and MOT tasks, reaching an average of 11.5% in
the 3D MAE. However, for the 2D metrics, we are only able to improve the average MAE
metrics, up to 2.6% in 2D MAE, with improvements in MOT, but not in SOT. It is worth
mentioning here that the most relevant metric for our purposes is the 3D MAE, as we are
interested in precise 3D localization in the given environment.

Table 9. Performance scores of AV3T and GAVT on CAV3D. Average TLR [%] and MAE in 2D [pixels]
for the AV modality, and summary improvements comparison of GAVT to AV3T (∆GAVT

AV3T). The best
results across metrics are highlighted with a green background.

GAVT, AV3T and Comparison (AV), on CAV3D in 2D
AV3T GAVT ∆GAVT

AV3T

SOT

TLR 7.00 ± 3.60 13.93 ± 5.41 −99.0%
ε2D 16.50 ± 8.60 26.76 ± 10.8 −62.2%
ε′2D 12.20 ± 0.30 8.69 ± 0.49 28.7%

MOT

TLR 11.20 ± 5.90 21.01 ± 14.7 −87.6%
ε2D 24.80 ± 23.7 13.47 ± 10.4 45.7%
ε′2D 10.1 ± 0.60 9.55 ± 0.18 5.4%

Avg

TLR 9.10 ± 4.75 17.47 ± 10.1 −92.0%
ε2D 20.65 ± 16.1 20.11 ± 10.6 2.6%
ε′2D 11.15 ± 0.45 9.12 ± 0.33 18.2%
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Table 10. Performance scores of AV3T and GAVT on CAV3D. Average TLR [%] and MAE in 3D [m] for
the AV modality, and summary improvements comparison of GAVT to AV3T (∆GAVT

AV3T). The best results
across metrics are highlighted with a green background.

GAVT, AV3T and Comparison (AV), on CAV3D in 3D
AV3T GAVT ∆GAVT

AV3T

SOT

TLR 31.80 ± 3.50 30.07 ± 4.14 5.4%
ε3D 0.30 ± 0.05 0.29 ± 0.04 2.1%
ε′3D 0.16 ± 0.01 0.13 ± 0.01 21.8%

MOT

TLR 35.70 ± 6.60 32.01 ± 4.13 10.3%
ε3D 0.43 ± 0.21 0.35 ± 0.08 18.1%
ε′3D 0.15 ± 0.01 0.13 ± 0.01 13.7%

Avg

TLR 33.75 ± 5.05 31.04 ± 4.14 8.0%
ε3D 0.37 ± 0.13 0.32 ± 0.06 11.5%
ε′3D 0.16 ± 0.01 0.13 ± 0.01 17.9%

It is worth mentioning that our method does not use a face detector and in a context
where speakers do not look at the camera for a while, go out of the FoV, or there may be no
visible face, particles may move away from the actual target (lose the target) and it is more
difficult to recover the location of the speaker. In other words, without a face detector, which
scans each frame of the entire image, it is more difficult to recover from a target loss. Despite
that, our proposal successfully solves the audiovisual 3D localization task, improving the
AV3T system in 3D MAE performance for both the AV16.3 and CAV3D datasets.

8.3. Limitations of the GAVT Proposal

We consider that the two databases, AV16.3 and CAV3D, cover a wide range of
situations that can be encountered in an intelligent space (different environment sizes,
sensor configurations, camera resolutions, speakers moving in and out of the camera’s FoV,
etc.). However, there are characteristics of GAVT that may limit its performance in additional
situations that may arise in a real-world context.

We can first refer to the presence of different head sizes, which will impact the es-
timation of the distance from cameras to the speaker: For example, smaller heads (such
as children’s) will lead to an overestimation of this distance (given our assumption of an
average adult head size).

We can also consider the effect of larger environments, which may first increase the
number of possible speakers, thus increasing the difficulty of the task; and second increase
the occurrence of situations in which any speaker will not be visible in the camera’s FoV,
mainly if the remain silent for long periods of time. In these two situations, the algorithm
will have no information to track for a long time, and the particles may drift in the direction
from the speaker’s last known position. In these cases, a detection mechanism would be
necessary, based on audio and/or video information, to reinsert particles once the speaker
starts talking or appears in the camera’s FoV. Larger environments and a higher number of
speakers will also require an increase in the particle number, which at its time, may lead to
a relevant increase in computational complexity.

9. Conclusions and Future Work

In this paper, we have proposed a robust and precise system to track a known number
of multiple speakers in a 3D smart space, combining audio and video information. The
system uses particle filters with an ad hoc designed audiovisual probabilistic observation
model. The visual likelihood model is based on VJ detectors with a pose-dependent strategy
that improves the mouth location estimation in 2D and 3D. Additionally, we adopt a specific
mechanism to handle MOT tasks and avoid target interference by exploiting the likelihood
dispersion effect. The audio likelihood model uses a probabilistic version of SRP, adopting
a refined peak selection strategy to avoid target interference, based on the joint distribution
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of all pairs of microphones. The final fusion model assumes statistical independence of
both modalities, so that the audiovisual probability results from the product of audio and
video probability density functions.

In the AV16.3 dataset, our audiovisual system proposal shows average relative im-
provements in 2D mouth localization, of 86.7% and 37.6% over the audio and visual
counterparts, respectively. In 3D localization, the improvements were 66.1% and 50.3%.
This demonstrates that the proposed audiovisual likelihood combination significantly
improves the monomodal counterparts tracking results. When compared to the state-
of-the-art, in 2D and 3D metrics, the proposed system presents improved results in the
visual and audiovisual modalities for both the SOT and MOT tasks. In the AV16.3 dataset,
the 2D average relative improvement is 23% for the visual modality and 69.7% for the
audiovisual case, while the 3D improvements are 23% for the visual modality and 4.2% for
the audiovisual one. For the audiovisual modality and the CAV3D dataset, the 2D average
improvement is 2.6%, while the 3D improvements are 11.5%, rising to 18.1% in the more
difficult MOT task. The better results in 2D show that the proposed pose-dependent face
model gives a better adapted likelihood of finding the mouth inside the face, in the image
plane, as compared with state-of-the-art proposals. The 3D results are consistently better.

The most important errors in the experiments here described are derived from bad
depth estimations and target recovery with the visual likelihood model after a target is
lost. As a global conclusion, the audiovisual system here proposed and described has been
demonstrated to successfully handle occlusions for MOT tasks, and significantly improve
state-of-the-art results in a challenging audiovisual tracking context like CAV3D.

In future work, we plan to focus on new alternatives to decrease the depth estimation
errors, being the main error source. For this purpose, we plan to improve the head pose
information. Rather than a discrete set of possible poses, we will evaluate a continuous
estimation of the three head pose angles using recent deep learning-based head pose
estimators. The challenge in this case will be the use of head pose estimation algorithms in
low-resolution faces, present in the AV16.3 sequences. We will also combine the proposed
likelihood model with a face detector, to solve target losses. To deal with long target losses,
we will include a birth and death hypotheses mechanism that will also help to handle
tracking a variable and an unknown number of speakers.
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