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Abstract: Under the influence of multiple types of noises, missing measurement, one-step measure-
ment delay and packet loss, the robust Kalman estimation problem is studied for the multi-sensor
descriptor system (MSDS) in this paper. Moreover, the established MSDS model describes uncertain-
variance noises, multiplicative noises, time delay and packet loss phenomena. Different types of
noises and packet loss make it more difficult to build the estimators of MSDS. Firstly, MSDS is
transformed to the new system model by applying the singular value decomposition (SVD) method,
augmented state and fictitious noise approach. Furthermore, the robust Kalman estimator is con-
structed for the newly deduced augmented system based on the min-max robust estimation principle
and Kalman filter theory. In addition, the given estimator consists of four parts, which are the usual
Kalman filter, predictor, smoother and white noise deconvolution estimator. Then, the robust fusion
Kalman estimator is obtained for MSDS according to the relation of augmented state and the original
system state. Simultaneously, the robustness is demonstrated for the actual Kalman estimator of
MSDS by using the mathematical induction method and Lyapunov’s equation. Furthermore, the
error variance of the obtained Kalman estimator is guaranteed to the upper bound for all admissible
uncertain noise variance. Finally, the simulation example of a circuit system is examined to illustrate
the performance and effectiveness of the robust estimators.

Keywords: descriptor system; Kalman estimator; unified measurement model; multi-sensor;
multiplicative noises; uncertain-variance noises

1. Introduction

The descriptor system is also a singular system, which has a broader structure than the
normal system. Furthermore, the descriptor system can describe the non-causal phenomena
in real systems, such as robot systems, power systems, image modeling, and economic
systems [1–3]. The state estimation problem of the descriptor system has been a popular
topic in recent years. Many research results and methods have been obtained to solve the es-
timation problem [4–12]. Based on the reduced-order Kalman estimation algorithm [13,14],
the singular value decomposition (SVD) method for the descriptor system is presented
in [4,7]. The authors of [5] give the least squares method and the maximum likelihood
method for the descriptor systems, respectively. In [8], the time domain Wiener filter for the
descriptor system is proposed by using the modern time series analysis method. However,
the above estimation problems are only studied for the known general descriptor systems.

Moreover, it is well known that the estimator based on the classical Kalman filtering
requires that noise statistics and the model parameters are exactly known [11]. However,
in many practical systems, there exist many uncertainties such as modelling errors, un-
modeled dynamic, random perturbations, missing measurements, measurement delays,
multiplicative noises and so on [15–18]. In order to solve the effect of the uncertainty, the
robust estimation is studied for an uncertain system [11]. At present, for the uncertain
descriptor system, the Kalman robust filter and predictor are presented [12]. The robust
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time-varying estimator is proposed for descriptor systems with random one-step measure-
ment delay by using the SVD method, the augmented method, and the fictitious noise
approach [19]. However, it should be noted that reference [19] only considers the descriptor
with a one-step measurement delay, and other uncertainties are not considered. In [20],
the robust centralized and weighted observation fusion (CAWOF) prediction algorithm is
derived for the uncertain MSDS with multiplicative noise by using the SVD method and the
minimax robustness estimation criterion. Reference [20] only considers the descriptor sys-
tem with multiplicative noise and uncertain noise. However, packet loss and measurement
delay problems have not been taken into account. In [21], the uncertain-variance noises
and packet loss problems are solved in the MSDS; however, the effects of multiplicative
noise and measurement delay are not considered in the MSDS.

In addition, the estimation accuracy and performance of a single sensor descriptor
system can be easily affected by the stability and reliability of the sensor [22]. To improve
estimation accuracy and guarantee performance of the considered system, a multi-sensor
system has been widely used [23]. For the multi-sensor descriptor system, Kalman filtering
is a fundamental tool due to its recursive structure and excellent performance. In general,
the fusion method of the Kalman filter can be categorized into three types: centralized
fusion, measurement fusion, and distributed state fusion method [24,25]. In [24,26], the
authors present distributed fusion algorithms that use optimally weighted fusion criteria
with a matrix weight, a diagonal matrix weight, and a scalar weight. These algorithms the
address estimation problems in multi-sensor systems, which are typically studied based on
the known parameters of the system model and the complete known noise statistical struc-
ture. In [25], the fusion Kalman filter algorithm deals with an uncertain nonsingular system
with multiplicative noises, missing measurements, and linearly correlated white noises
with uncertain variances. However, for a multi-sensor networked descriptor control system,
the distributed fusion robust Kalman filter algorithm is proposed in [27]. However, refer-
ence [27] only considers uncertain-variance correlated noises and missing measurement
problems of the multi-sensor networked descriptor control system.

To date, the robust fusion estimation problem is not solved for MSDS with uncertain-
variance noises, multiplicative noises and a unified measurement model, which totally
include five kinds of uncertainties which are uncertain-variance noises, multiplicative
noises, missing measurements, one-step measurement delays and packet dropouts. Mo-
tivated by the aforementioned analysis, for MSDS with the above five uncertainties, the
robust estimation problem will be studied. The main contributions and innovations of this
paper are as follows: (1) The considered MSDS is novel and challenging, which includes
uncertain-variance noises, multiplicative noises, missing measurements, one-step measure-
ment delays and packet dropouts. (2) Applying the SVD method, the augmented state
method and the fictitious white noises method, MSDS is transformed to a new standard sys-
tem only with uncertain-variance noise. (3) Based on the Kalman filter and the relations of
the original MSDS and the newly obtained system, the robust Kalman estimators are given
for MSDS and the newly obtained augmented system. (4) The robustness is proved for
the proposed estimators by using the Lyapunov equation approach and the mathematical
induction method.

This paper is organized into seven sections. In Section 2, the system model is given.
In Section 3, a new standard augmented state model is presented. The robust Kalman
estimator for descriptor system is discussed in Section 4. In Section 5, a robust analysis is
discussed. Section 6 presents the numerical simulation results. Finally, Section 7 provides
the conclusion.

2. System Description and Preliminaries

Consider MSDS with uncertain-variance noises, multiplicative noises and a unified
measurement model
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Mx(t + 1) = Φx(t) + Γω(t) + Bu(t), (1)

z0i(t) =

(
Hi +

na

∑
l=1

ail(t)Hil

)
x(t), (2)

zi(t) = γi(t)z0i(t) + νi(t), (3)

yi(t) = αi(t)zi(t) + (1− αi(t))βi(t)zi(t− 1) + (1− αi(t))(1− βi(t))yi(t− 1), i = 0, 1, · · · , L (4)

where t is a discrete time, x(t) ∈ Rn is the state, u(t) is the input, ω(t) ∈ Rnw is additive
process noise, νi(t) ∈ Rmi is additive measurement noise, z0i(t) ∈ Rmi is the ith noise-
free measurement, ail(t) ∈ R1 is multiplicative state-dependent noise, zi(t) ∈ Rmi is the
measurement of the ith sensor, yi(t) ∈ Rmi is the measurement received by estimator to be
designed, na and L are the number of multiplicative noises and sensors, respectively. M, Φ,
Γ, B and Hi are constant matrices with suitable dimensions.

Assumption 1. M is a singular matrix, rank(M) = n1, n1 < n, that is, det M = 0, and the
system (1) is regular.

Assumption 2. αi(t), βi(t) and γi(t) (i = 0, 1, · · · , L) are mutually independent random se-
quences, obeying Bernoulli distributions with known probabilities of taking 1 or 0, such that

Prob{αi(t) = 1} = λαi , Prob{αi(t) = 0} = 1− λαi , 0 ≤ λαi ≤ 1, (5)

Prob{βi(t) = 1} = λβi , Prob{βi(t) = 0} = 1− λβi , 0 ≤ λβi ≤ 1, (6)

Prob{γi(t) = 1} = λγi , Prob{γi(t) = 0} = 1− λγi , 0 ≤ λγi ≤ 1, i = 0, 1, · · · , L, (7)

from Assumption 2, it follow that

E[αi(t)] = E[α2
i (t)] = λαi, E[βi(t)] = E[β2

i (t)] = λβi, E[γi(t)] = E[γ2
i (t)] = λγi, (8)

zero-means white noises α0i(t), β0i(t) and γ0i(t) are defined as follows:

α0i(t) = αi(t)− λαi, β0i(t) = βi(t)− λβi, γ0i(t) = γi(t)− λγi, (9)

it follow that

E[α0i(t)] = 0, E[α2
0i(t)] = λαi(1− λαi) , λα0i, E[α0i(t)α0j(k)] = 0, i 6= j, ∀t, k, (10)

E[β0i(t)] = 0, E[β2
0i(t)] = λβi(1− λβi) , λβ0i, E[β0i(t)β0j(k)] = 0, i 6= j, ∀t, k, (11)

E[γ0i(t)] = 0, E[γ2
0i(t)] = λγi(1− λγi) , λγ0i, E[γ0i(t)γ0j(k)] = 0, i 6= j, ∀t, k. (12)

Assumption 3. ω(t), νi(t) and ail(t) are mutually independent white noises with zero means and
the unknown actual variance are Q̄w, R̄i and σ̄αil , respectively, and

E[ω(t)ωT(t)] = Q̄w, E[νi(t)νT
j (t)] = R̄iδij, E[ail(t)aT

jl(t)] = σ̄αilδij. (13)

The unknown actual variance are, respectively, have known conservative upper
bounds, which are

Q̄w ≤ Qw, R̄i ≤ Ri, σ̄αil ≤ σαil . (14)

Remark 1. In real-world measurement, time delay and packet loss may occur at any time. The
measurement models (2)–(4) describe a unified measurement model by introducing random se-
quences αi(t), βi(t) and γi(t), which include the missing measurements, one-step delay mea-
surement and packet dropouts. If γi(t) = 1, αi(t) = 1, then yi(t) = zi(t). If γi(t) = 0,
αi(t) = 1, then yi(t) = νi(t), which means measurement missed. If αi(t) = 0 , βi(t) = 1,
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then yi(t) = zi(t − 1), which means that there is one-step measurement delay. If αi(t) = 0,
βi(t) = 0, then yi(t) = yi(t− 1), which means packet dropout.

3. New Standard Augmented State Model with Uncertain-Variance Fictitious Noises

Applying the SVD approach, there are non-singular matrices P and Q satisfying

PMQ =

[
M1 0
0 0

]
, M1 = diag{σ1, · · · , σn1}, (15)

PΦQ =

[
Φ11 Φ12
Φ21 Φ22

]
, PΓ =

[
Γ1
Γ2

]
, PB =

[
B1
B2

]
, HiQ = [Hi1, Hi2], (16)

letting

x(t) = Q
[

x1(t)
x2(t)

]
, (17)

substituting (15) and (16) into (1) yields[
M1 0
0 0

][
x1(t + 1)
x2(t + 1)

]
=

[
Φ11 Φ12
Φ21 Φ22

][
x1(t)
x2(t)

]
+

[
Γ1
Γ2

]
ω(t) +

[
B1
B2

]
u(t), (18)

then we have two new subsystems

x1(t + 1) = Jx1 x1(t) + Ux1 ω(t) + Gx1 u(t), (19)

x2(t) = Jx2 x1(t) + Ux2 ω(t) + Gx2 u(t), (20)

where Jx1 = M−1
1 (Φ11 −Φ12Φ−1

22 Φ21), Ux1 = M−1
1 (Γ1 −Φ12Φ−1

22 Γ2), Gx1 = M−1
1 (B1

−Φ12Φ−1
22 B2), Jx2 = −Φ−1

22 Φ21, Ux2 = −Φ−1
22 Γ2, Gx1 = −Φ−1

22 B2, HiQ in (16) and (17)
are substituted into (2), then it is easy to obtain

z0i(t) = Hi1x1(t) + Hi2x2(t) +

(
na

∑
l=1

αil(t)Hil

)
x(t),

substituting (20) into z0i(t) yields

z0i(t) = (Hi1 + Hi2 Jx2)x1(t) + Hi2Ux2 ω(t) + Hi2Gx2 u(t) +

(
na

∑
l=1

αil(t)Hil

)
x(t), (21)

substituting (21) into (3), it is easy to obtain

zi(t) =γi(t)(Hi1 + Hi2 Jx2)x1(t) + γi(t)Hi2Ux2 ω(t) + γi(t)Hi2Gx2 u(t)

+ γi(t)

(
na

∑
l=1

αil(t)Hil

)
x(t) + νi(t), (22)

from (9), we have γi(t) = γ0i(t) + λγi, in (22), replacing γi(t) by γ0i(t) + λγi yields

zi(t) = λγi(Hi1 + Hi2 Jx2)x1(t) + (γ0i(t) + λγi)Hi2Gx2 u(t) + νzi(t), (23)

where νzi(t) = γ0i(t)(Hi1 + Hi2 Jx2)x1(t) + (γ0i(t) + λγi)Hi2Ux2 ω(t) + (γ0i(t) + λγi)
×
(
∑na

l=1 αil(t)Hil
)

x(t) + νi(t), substituting (23) into (4) , replacing αi(t) by α0i(t) + λαi and
replacing βi(t) by β0i(t) + λβi yield
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yi(t) =λαiλγi(Hi1 + Hi2 Jx2)x1(t) + (α0i(t) + λαi)(γ0i(t) + λγi)Hi2Gx2 u(t)

+ (1− λαi)λβizi(t− 1) + (1− λαi)(1− λβi)yi(t− 1) + νyi(t), (24)

where νyi(t) = (α0i(t) + λαi)(γ0i(t) + λγi)
(
∑na

l=1 αil(t)Hil
)
x(t) + (α0i(t) + λαi)(γ0i(t)

+ λγi)Hi2Ux2 ω(t) + (α0i(t) + λαi)νi(t) + λαiγ0i(t)(Hi1 + Hi2 Jx2)x1(t) + α0i(t)γ0i(t)(Hi1
+ Hi2 Jx2)x1(t) + λγiα0i(t)(Hi1 + Hi2 Jx2)x1(t) + (1− λαi)β0i(t)zi(t− 1)− λβiα0i(t)zi(t− 1)
− α0i(t)β0i(t)zi(t− 1)− (1− λαi)β0i(t)yi(t− 1)− (1− λβi)α0i(t)yi(t− 1) + α0i(t)β0i(t)
yi(t -1). In order to facilitate the calculation, it is necessary to simplify νyi(t). New parame-
ters Cui(t) and Hui(t) (u = 1, 2, 3, 4) are defined, then we can rewrite νyi(t) as

νyi(t) =(α0i(t) + λαi)(γ0i(t) + λγi)

(
na

∑
l=1

αil(t)Hil

)
x(t) + (α0i(t) + λαi)νi(t)

+ (α0i(t) + λαi)(γ0i(t) + λγi)Hi2Ux2 ω(t) + λαiγ0i(t)(Hi1 + Hi2 Jx2)x1(t)

+
4

∑
u=1

Cui(t)Hcui

 x1(t)
zi(t− 1)
yi(t− 1)

, (25)

where C1i = α0i(t), C2i = β0i(t), C3i = α0i(t)γ0i(t), C4i = α0i(t)β0i(t), Hc1i =
[λγi(Hi1 + Hi2 Jx2), − λβi Imi, −(1− λβi)Imi], Hc2i = [0, (1− λαi)Imi, −(1− λαi)Imi],
Hc3i = [(Hi1 + Hi2 Jx2), 0, 0], Hc4i = [0, −Imi, Imi], defining new white noise variances
σ2

cui = E[CuiCT
ui] (u = 1, 2, 3, 4) as follows

σ2
c1i = λα0i, σ2

c2i = λβ0i, σ2
c3i = λα0iλγ0i, σ2

c4i = λα0iλβ0i, (26)

let

xai(t) =

 x1(t)
zi(t− 1)
yi(t− 1)

, ωai(t) =

 ωt
νzi(t)
νyi(t)

, yai(t) = yi(t)− αi(t)γi(t)Hi2Gx2 u(t), (27)

then it is easy to obtain the new standard augmented state apace model as follows

xai(t + 1) = Φaixai(t) + Γaiωai(t) + Gaiu(t), (28)

yai(t) = Haixai(t) + νyi(t), (29)

where

Φai =

 Jx1 0 0
λγi(Hi1 + Hi2 Jx2) 0 0

λαiλγi(Hi1 + Hi2 Jx2) (1− λαi)λβi Imi (1− λαi)(1− λβi)Imi

,

Γai =

 Ux1 0 0
0 Imi 0
0 0 Imi

, Gai =

 Gx1
γi(t)Hi2Gx2

0

,

Hai = [λαiλγi(Hi1 + Hi2 Jx2), (1− λαi)λβi Imi, (1− λαi)(1− λβi)Imi]. (30)

Non-central second order moments are defined as X(t) = E[x(t)xT(t)], X1(t) =
E[x1(t)xT

1 (t)] and Xai(t) = E[xai(t)xT
ai(t)], they satisfy the following Lyapunov equations

X1(t + 1) = Jx1X1(t)JT
x1 + Ux1QwUT

x1,

Xai(t + 1) = ΦaiXai(t)ΦT
ai + ΓaiQwai(t)ΓT

ai, (31)
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and we have corresponding upper values

X̄1(t + 1) = Jx1X̄1(t)JT
x1 + Ux1Q̄wUT

x1,

X̄ai(t + 1) = ΦaiX̄ai(t)ΦT
ai + ΓaiQ̄wai(t)ΓT

ai, (32)

with initial values Xai(0) = diag(P01, 0, 0), X̄ai(0) = diag(P01, 0, 0), P0 =

[
P01 ∗
∗ ∗

]
,

P̄0 =

[
P̄01 ∗
∗ ∗

]
.

For the new process noise ωai in (28), it has corresponding conservative variance
Qwai and real variance Q̄wai. Similarly, for new measurement noise νyi(t) in (29), it has
corresponding conservative variance Rzyi(t) and real variance R̄zyi(t).

Let Rzi(t) = E[νzi(t)νT
zi(t)], R̄zi(t) is actual variance of νzi(t), the conservative and

actual noise variances Rzi(t) and R̄zi(t) are given as follows

Rzi(t) =λγ0i(Hi1 + Hi2 Jx2)X1(t)(Hi1 + Hi2 Jx2)
T + λγi

na

∑
l=1

σ2
αil HilX(t)HT

il

+ λγi Hi2Ux2 Qw(Hi2Ux2)
T + Ri,

R̄zi(t) =λγ0i(Hi1 + Hi2 Jx2)X̄1(t)(Hi1 + Hi2 Jx2)
T + λγi

na

∑
l=1

σ̄2
αil HilX(t)HT

il

+ λγi Hi2Ux2 Q̄w(Hi2Ux2)
T + R̄i. (33)

Let Rzyi(t) = E[νyi(t)νT
yi(t)], then R̄zyi(t) is the actual variance of νyi(t), the conserva-

tive and actual noise variances Rzyi(t) and R̄zyi(t) are given as follows

Rzyi(t) =λαiλγ0i(Hi1 + Hi2 Jx2)X1(t)(Hi1 + Hi2 Jx2)
T + λαiλγi

na

∑
l=1

σ2
αil HilX(t)HT

il

+ λαiλγi Hi2Ux2 Qw(Hi2Ux2)
T + λαiRi,

R̄zyi(t) =λαiλγ0i(Hi1 + Hi2 Jx2)X̄1(t)(Hi1 + Hi2 Jx2)
T + λαiλγi

na

∑
l=1

σ̄2
αil Hil X̄(t)HT

il

+ λαiλγi Hi2Ux2 Q̄w(Hi2Ux2)
T + λαiR̄i. (34)

In (33) and (34), let

U1i(t) =
na

∑
l=1

σ2
αil HilX(t)HT

il , U2i(t) = (Hi1 + Hi2 Jx2)X1(t)(Hi1 + Hi2 Jx2)
T,

Ū1i(t) =
na

∑
l=1

σ̄2
αil Hil X̄(t)HT

il , Ū2i(t) = (Hi1 + Hi2 Jx2)X̄1(t)(Hi1 + Hi2 Jx2)
T,

U3i(t) = Hi2Ux2 Qw(Hi2Ux2)
T, Ū3i(t) = Hi2Ux2(t)Q̄w(Hi2Ux2)

T, (35)

then (33) and (34) can be simplified into the following equations

Rzi(t) = λγiU1i(t) + λγ0iU2i(t) + λγiU3i(t) + Ri,

R̄zi(t) = λγiŪ1i(t) + λγ0iŪ2i(t) + λγiŪ3i(t) + R̄i,

Rzyi(t) = λαiλγiU1i(t) + λαiλγ0iU2i(t) + λαiλγiU3i(t) + λαiRi,

R̄zyi(t) = λαiλγiŪ1i(t) + λαiλγ0iŪ2i(t) + λαiλγiŪ3i(t) + λαiR̄i. (36)
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Substituting (25) into ωai(t) in (27), we have

ωai(t) = Γ(1)
ai

4

∑
u=1

Cui(t)Hcuixai(t) + ω
(1)
ai (t), (37)

where Γ(1)
ai = [0, 0, Im1]

T, ω
(1)
ai (t) =

[
ωt νzi(t) ν

(1)
zyi (t)

]T
, ν

(1)
zyi (t) = αi(t)γi(t)

×
(
∑na

l=1 αil(t)Hil
)

x(t) + αi(t)γi(t)Hi2Ux2 ω(t) + αi(t)νi(t) + λαiγ0i(t)(Hi1 + Hi2 Jx2)x1(t),

we can obtain the conservative and actual variances Q(1)
wai(t) and Q̄(1)

wai(t) as follows

Q(1)
wai(t) =

 Qw λγiQw(Hi2Ux2)
T λαiλγiQw(Hi2Ux2)

T

λγi(Hi2Ux2)Qw Rzi(t) Rzyi(t)
λαiλγi(Hi2Ux2)Qw Rzyi(t)T R̆

, (38)

Q̄(1)
wai(t) =

 Q̄w λγiQ̄w(Hi2Ux2)
T λαiλγiQ̄w(Hi2Ux2)

T

λγi(Hi2Ux2)Q̄w R̄zi(t) R̄zyi(t)
λαiλγi(Hi2Ux2)Q̄w R̄zyi(t)T ˘̄R

, (39)

where R̆ = λαiλγiU1i(t) + λ2
αiλγ0iU2i(t) + λαiλγiU3i(t) + λαiRi, ˘̄R = λαiλγiŪ1i(t)

+ λ2
αiλγ0iŪ2i(t) + λαiλγiŪ3i(t) + λαiR̄i. Defining U4i(t) and Ū4i(t), we have

Qwai(t) = Γ(1)
ai U4i(t)Γ

(1)
ai

T
+ Q(1)

wai(t),

Q̄wai(t) = Γ(1)
ai Ū4i(t)Γ

(1)
ai

T
+ Q̄(1)

wai(t), (40)

where U4i(t) = ∑4
u=1 σ2

cui HcuiXai(t)HT
cui, Ū4i(t) = ∑4

u=1 σ2
cui HcuiX̄ai(t)HT

cui, then we have

Ryi(t) = λαiλγiU1i(t) + λ2
αiλγ0iU2i(t) + λαiRi + λαiλγiU3i(t) + U4i(t),

R̄yi(t) = λαiλγiŪ1i(t) + λ2
αiλγ0iŪ2i(t) + λαiR̄i + λαiλγiŪ3i(t) + Ū4i(t), (41)

the conservative and actual cross-covariance Sai(t) and S̄ai(t) are defined as follows

Sai(t) = E[ωai(t)νT
yj(t)] =

 λαiλγiQw(Hi2Ux2)
T

Rzyi(t)
Ryi(t)

δij,

S̄ai(t) = E[ω̄ai(t)ν̄T
yj(t)] =

 λαiλγiQ̄w(Hi2Ux2)
T

R̄zyi(t)
R̄yi(t)

δij. (42)

Lemma 1 ([28]). (i) Let Ai ≥ 0, i = 0, 1, · · · , L, then diag(A1, · · · , AL) ≥ 0. (ii) Let
A ≥ 0, A ∈ Rn×n, and Aδ = (Aij)nL×nL, Aij = A, then Aδ ≥ 0. (iii) Let A ≥ 0, A ∈ Rm×m,
then for arbitrary C ∈ Rp×m, CACT ≥ 0.

Parameters ∆X1(t), ∆X(t), ∆Xai(t), ∆Ryi(t) and ∆Qwai(t) are defined as ∆X1(t) =
X1(t) − X̄1(t), ∆X(t) = X(t) − X̄(t), ∆Xai(t) = X1(t) − X̄ai(t), ∆Ryi(t) = Ryi(t) −
R̄yi(t), ∆Qwai(t) = Qwai(t)− Q̄wai(t).

Theorem 1. For all admissible uncertain variance Q̄ω , R̄i, σ̄il in (13), all of the following inequali-
ties are true, that is,

∆X1(t) ≥ 0, ∆X(t) ≥ 0, ∆Xai(t) ≥ 0, ∆Ryi(t) ≥ 0, ∆Qwai(t) ≥ 0. (43)



Sensors 2023, 23, 6968 8 of 18

Proof of Theorem 1. From (31) and (32), it is easy to obtain

∆X1(t + 1) = Jx1∆X1(t)JT
x1 + Ux1∆QwUT

x1, (44)

with the initial condition ∆X1(0) = X1(0) − X1(0) ≥ 0, ∆Qw ≥ 0, applying Lemma 1,
iterating (44) yield ∆X1(t) ≥ 0.

Let Q = [Q1, Q2], from (17), (19) and (20), it is easy to obtain

x(t) = (Q1 + Q2 Jx2)x1(t) + Q2Ux2ω(t) + Q2Gx2u(t), (45)

∆X(t) = (Q1 + Q2 Jx2)∆X1(t)(Q1 + Q2 JX2)
T + Q2Ux2∆Qw(Q2Ux2)

T, (46)

because of ∆X1(t) ≥ 0 and ∆Qw ≥ 0, based on Lemma 1, we have ∆X(t) ≥ 0.
Rewriting Q(1)

wai(t) as follows

∆Q(1)
wai(t) =D(0)

 ∆Qw ∆Qw ∆Qw
∆Qw 0 0
∆Qw 0 0

D(0)T
+ λαiλγiD(1)∆U1iD(1)T

+ λγ0iD(2)∆U2iD(2)T
+ λαiλγiD(3)∆U3iD(3)T

+ λαiD(4)∆RiD(4)T

+

 0 0 0
0 λγi(1− λαi)∆U1i + λγi(1− λαi)∆U3i + (1− λαi)∆Ri 0

∆0 0 0

 (47)

where D(0) = diag{In1, λγi Hi1Ux2, λαiλγi Hi1Ux2}, D(1) = D(3) = D(4) =

 0
Im1
Im1

,

D(2) = diag{In1, Im1, λαi Im1}.
Let ∆U1i = U1i − Ū1i, ∆U2i = U2i − Ū2i, ∆U3i = U3i − Ū3i, from (35), we have

∆U1i =
na

∑
l=1

(∆σ2
αil HilX(t)HT

il + σ2
αil Hil∆X(t)HT

il ),

∆U2i = (Hi1 + Hi2 Jx2)∆X1(t)(Hi1 + Hi2 Jx2)
T,

∆U3i = Hi2Ux2 ∆Qw(Hi2Ux2)
T, (48)

since ∆σ2
αil ≥ 0, ∆X(t) ≥ 0, ∆X1(t) ≥ 0 and ∆Qw ≥ 0, based on Lemma 1, it is easy to obtain

∆U1i ≥ 0, ∆U2i ≥ 0, ∆U3i ≥ 0, (49)

applying Lemma 1, we can easily obtain ∆Q(1)
wai(t) ≥ 0, from (31), (32) and (40), it is easy to

obtain ∆Xai(t + 1) as follows

∆Xai(t + 1) = Φai∆Xai(t)ΦT
ai + Γai∆Qwai(t)ΓT

ai (50)

∆Xai(t + 1) = Φai∆Xai(t)ΦT
ai + Γai(Γ

(1)
ai ∆U4i(t)Γ

(1)
ai

T
+ ∆Q(1)

wai(t))Γ
T
ai, (51)

then we have

∆U4i(t) =
4

∑
u=1

σ2
cui Hcui∆Xai(t)HT

cui, (52)

we can easily obtain ∆U4i(t) ≥ 0, with the initial condition ∆Xai(0) ≥ 0. According to (50)
and applying mathematical induction, yield ∆Xai(t) ≥ 0, since ∆Q(1)

wai(t) ≥ 0, ∆U4i(t) ≥ 0,
from (40), yield ∆Qwai(t) ≥ 0.
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From (41), it is easy to obtain

∆Ryi(t) = λαiλγi∆U1i + λαi∆Ri + λ2
αiλγ0i∆U2i + λαiλγi∆U3i, (53)

from (49), yield ∆Ryi(t) ≥ 0. The Proof of Theorem 1 is completed.

4. Robust Kalman Estimator of Descriptor System
4.1. Conservative Kalman Estimator of New State Space Model

For the new standard system (28) and (29), applying the Kalman filtering algo-
rithm [29] yields the optimal Kalman estimator x̂ai(t|t + N) (include filter (N = 0), predic-
tor (N = −1), smoother (N ≥ 1))

x̂ai(t + 1|t) = Ψpi(t)x̂ai(t|t− 1) + Kpi(t)yai(t) + Gai(t), (54)

x̂ai(t|t + N) = hatxai(t|t− 1) +
N

∑
r=0

Ki(t|t + r)εi(t + r), N ≥ 0, (55)

εi(t) = yai(t)− Hai x̂ai(t|t− 1), (56)

where Ψpi(t) = Φai−Kpi(t)Hai, Kpi(t) = (ΦaiPai(t|t− 1)HT
ai + ΓaiSai(t))Q−1

εi (t), Qεi(t) =
HaiPai(t|t− 1)HT

ai + Ryi(t), Ki(t|t) = Pai(t|t− 1)HT
aiQ
−1
εi (t), Ki(t|t + r) = Pai(t|t− 1)×{

∏r−1
j=0 Ψpi(t + j)

}
HT

aiεi(t + r), r ≥ 1, and the conservative prediction error variance satis-
fies the Riccati equation

Pai(t + 1|t) =ΦaiPai(t|t− 1)ΦT
ai − (ΦaiPai(t|t− 1)HT

ai + ΓaiSai(t))(HaiPai(t|t− 1)HT
ai

+ Ryi(t))−1 × (ΦaiPai(t|t− 1)HT
ai + ΓaiSai(t))T + ΓaiQwaiΓT

ai. (57)

The one-step predicting error is defined as x̃ai(t + 1|t) = xai(t)− x̂ai(t + 1|t)

x̃ai(t + 1|t) = Ψpi(t)x̃ai(t|t− 1) + [Γai, −Kpi(t)]ξwv(t), (58)

where ξwv(t) =

[
ωai(t)
νyi(t)

]
.

Furthermore, the conservative and the actual variance Λi(t) and Λ̄i(t) are defined as
follows

Λi(t) =

[
Qwai(t) Sai(t)
ST

ai(t) Ryi(t)

]
, Λ̄i(t) =

[
Q̄wai(t) S̄ai(t)
S̄T

ai(t) R̄yi(t)

]
. (59)

The conservative and actual one-step prediction error variance Pai(t + 1|t) and P̄ai(t +
1|t) can be rewritten as the following Lyapunov function

Pai(t + 1|t) = Ψpi(t)Pai(t|t− 1)ΨT
pi(t) + [Γai, −Kpi(t)]Λi(t)[Γai, −Kpi(t)]T (60)

P̄ai(t + 1|t) = Ψpi(t)P̄ai(t|t− 1)ΨT
pi(t) + [Γai, −Kpi(t)]Λ̄i(t)[Γai, −Kpi(t)]T, (61)

with the initial values Pai(1|0) = diag{P01, 0, 0}, P̄ai(1|0) = diag{P̄01, 0, 0}.
From (29), (56), we have εi(t + r) = Hai x̃ai(t + r|t + r− 1) + νyi(t + r), iterating (58),

we can obtain

x̃ai(t|t + N) = ΨN(t)x̃ai(t|t− 1) +
N

∑
r=0

[KNw
r (t), KNv

r (t)]ξwv(t + r), (62)
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where Ψpi(t + r|t) = Ψpi(t + r− 1) · · ·Ψpi(t) and Ψpi(t|t) = In1+2mi,

ΨN(t) = In1+2mi −
N

∑
r=0

Ki(t|t + r)HaiΨpi(t + r|t),

{
KNw

r (t) = −∑N
j = r+1 Ki(t + r)HaiΨpi(t + j|t + r + 1)Γai,

KNw
r (t) = 0, N ≥ 0,

{
KNv

r (t) = −∑N
j = r+1 Ki(t + r)HaiΨpi(t + j|t + r + 1)Kpi(t + r)− Ki(t|t + r),

KNv
r (t) = − Ki(t|t + r), N ≥ 0.

Furthermore, the optimal conservative white noise deconvolution estimator ω̂ai(t|t + N)
of fictitious noise ωai(t) is

ω̂ai(t|t− 1) = 0, (63)

ω̂ai(t|t + N) =
N

∑
r=0

Mwi(t|t + r)εi(t + r), N ≥ 0, (64)

where Mwi(t|t) = Sai(t)Q−1
εi (t), Mwi(t|t) = (Qwai(t)ΓT

ai−Sai(t)KT
pi(t))

{
∏r−1

j=0 ΨT
pi(t + j)

}
×

HT
aiQ
−1
εi (t + r), noise estimation error is defined as ω̃ai(t|t + N) = ωai(t)− ω̂ai(t|t + N),

then it is easy to obtain

ω̃ai(t|t + N) = Ψw
N(t)x̃ai(t|t− 1) +

N

∑
r=0

[MNw
r (t), MNv

r (t)]ξwv(t + r), (65)

where Ψw
N(t) = −∑N

r=0 Mwi(t|t + r)HaiΨpi(t + r|t),
MNw

0 (t) = Ir −∑N
k = 1 Mωi(t|t + k)HaiΨpi(t + k|t + 1)Γai,

MNw
r (t) = −∑N

j = r+1 Mωi(t|t + j)HaiΨpi(t + j|t + r + 1)Γai, r = 0, · · · , N − 1
MNw

N (t) = 0,

{
MNv

r (t) = ∑N
j = r+1 Mωi(t|t + j)HaiΨpi(t + j|t + r + 1)Kpi(t + r)−Mωi(t|t + r),

MNv
r (t) = −Mωi(t|t + N).

The conservative and actual estimation error variances Pai(t|t + N) and P̄ai(t|t + N)
are defined as follows

Pai(t|t + N) =ΨN(t)Pai(t|t− 1)ΨT
N(t)

+
N

∑
r=0

[KNw
r (t), KNv

r (t)]Λi(t + r)[KNw
r (t), KNv

r (t)]T,

P̄ai(t|t + N) =ΨN(t)P̄ai(t|t− 1)ΨT
N(t)

+
N

∑
r=0

[KNw
r (t), KNv

r (t)]Λ̄i(t + r)[KNw
r (t), KNv

r (t)]T. (66)
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The conservative and actual estimation error variances Pwai(t|t + N) and P̄wai(t|t + N)
of ω̃ai(t|t + N) are defined as follows

Pwai(t|t + N) =Ψw
N(t)Pai(t|t− 1)Ψw

N
T(t)

+
N

∑
r=0

[MNw
r (t), MNv

r (t)]Λi(t + r)[MNw
r (t), MNv

r (t)]T,

P̄wai(t|t + N) =Ψw
N(t)P̄ai(t|t− 1)Ψw

N
T(t)

+
N

∑
r=0

[MNw
r (t), MNv

r (t)]Λ̄i(t + r)[MNw
r (t), MNv

r (t)]T. (67)

4.2. Conservative Kalman Estimator of Original Descriptor System

Theorem 2. For the uncertain MSDS (1)–(4) with Assumptions 1–3, the robust Kalman estimator
x̂(t|t + N) is obtained as follows

x̂(t|t + N) = Q0

[
x̂ai(t|t + N)
ω̂ai(t|t + N)

]
+ Q

[
0

Gx2

]
u(t), (68)

where

Q0 = Q
[

In1 0
Jx1 Ux2

][
In1 0n1×mi 0n1×mi 0n1×nw 0n1×nw 0n1×nw

0nw×n1 0nw×mi 0nw×mi Inw 0nw×mi 0nw×mi ,

]
,

P(t|t + N) = Q0

[
Pai(t|t + N) Pxω(t|t + N)
PT

xω(t|t + N) Pwai(t|t + N)

]
,

P̄(t|t + N) = Q0

[
P̄ai(t|t + N) P̄xω(t|t + N)
P̄T

xω(t|t + N) P̄wai(t|t + N)

]
,

where

Pxω(t|t + N) =ΨN(t)Pai(t|t− 1)Ψw
N

T(t)

+
N

∑
r=0

[KNw
r (t), KNv

r (t)]Λi(t + r)[MNw
r (t), MNv

r (t)]T,

P̄xω(t|t + N) =ΨN(t)P̄ai(t|t− 1)Ψw
N

T(t)

+
N

∑
r=0

[KNw
r (t), KNv

r (t)]Λ̄i(t + r)[MNw
r (t), MNv

r (t)]T.

Proof of Theorem 2. From (27), we can obtain

x1(t) = [In1 , 0n1×mi , 0n1×mi ]xai(t), (69)

ω(t) = [Inw , 0nw×mi , 0nw×mi ]ωai(t). (70)

Substituting (69) and (70) into (17) yields

x(t) =Q
[

x1(t)
Jx1x1(t) + Ux2ω(t) + Gx2u(t)

]
=Q

[
In1 0
Jx1 Ux2

][
In1 0n1×mi 0n1×mi 0n1×nw 0n1×nw 0n1×nw

0nw×n1 0nw×mi 0nw×mi Inw 0nw×mi 0nw×mi

][
x̂ai(t|t + N)
ω̂ai(t|t + N)

]
+

[
0

Gx2

]
u(t). (71)
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Taking the projection of (71), we can obtain (68). Subtracting (71) from (68), yields

x̃(t|t + N) = Q0

[
x̃ai(t|t + N)
ω̃ai(t|t + N)

]
, (72)

then we can obtain the conservative and actual state estimation error variance E[x̃(t|t +
N)x̃T(t|t + N)]. The Proof of Theorem 2 is completed.

5. Robust Analysis

Theorem 3. Consider the uncertain MSDS (1)–(4), for all admissible uncertain variance Q̄ω, R̄i,
σ̄il in (13), ∆Λi(t) ≥ 0, and the actual estimation error variance P̄(t|t + N) has upper bound
P(t|t + N), and the trace of error variance tr(P̄(t|t + N)) has upper bound tr(P(t|t + N)), that is

∆P(t|t + N) ≥ 0, ∆tr(P(t|t + N)) ≥ 0, (73)

where ∆Λi(t) = Λi(t)− Λ̄i(t), ∆P(t|t + N) = P(t|t + N)− P̄(t|t + N), ∆tr(P(t|t + N)) =
tr(P(t|t + N))− tr(P̄(t|t + N)).

Proof of Theorem 3. According to (59), it is easy to obtain

∆Λi(t) =

[
∆Qwai(t) ∆Sai(t)
∆ST

ai(t) ∆Ryi(t)

]
, (74)

rewriting ∆Λi(t) as follows

∆Λi(t) = ∆Λ(1)
i (t) + ∆Λ(2)

i (t), (75)

where

∆Λ(1)
i (t) =

[
∆Qwai(t) 0

0 ∆Ryi(t)

]
, ∆Λ(2)

i (t) =

[
0 ∆Sai(t)

∆ST
ai(t) 0

]

∆Λ(2)
i (t) =


0 0 0 λαi∆Qw(Hi2Ux2)

T

0 0 0 ∆Rzyi(t)
0 0 0 ∆Ryi(t)

λαi Hi2Ux2∆Qw ∆Rzyi(t) ∆Ryi(t) 0



=λαidiag{Ini×m1 , Imi , Imi , Hi2Ux2}


0 0 0 ∆Qw
0 0 0 0
0 0 0 0

∆Qw 0 0 0



× diag{Ini×m1 , Imi , Imi , Hi2Ux2}T +


0 0 0 0
0 0 0 ∆Rzyi(t)
0 0 0 0
0 ∆Rzyi(t) 0 0



+


0 0 0 0
0 0 0 0
0 0 0 ∆Ryi(t)
0 0 ∆Ryi(t) 0

,

since ∆Qwai(t) ≥ 0, ∆Ryi(t) ≥ 0, we have ∆Λ(1)
i (t) ≥ 0, applying Lemma 1, we have

∆Λ(2)
i (t) ≥ 0, then ∆Λi(t) ≥ 0.
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Parameters ∆Pai(t|t− 1), ∆Pai(t|t + N), ∆Pwai(t|t + N) and ∆Pxw(t|t + N) are defined
as follows:

∆Pai(t|t− 1) = Pai(t|t− 1)− P̄ai(t|t− 1),

∆Pai(t|t + N) = Pai(t|t + N)− P̄ai(t|t + N),

∆Pwai(t|t + N) = Pwai(t|t + N)− P̄wai(t|t + N),

∆Pxw(t|t + N) = Pai(t|t + N)− P̄xw(t|t + N), (76)

from (60) and (61) and (67), it is easy to obtain

∆Pai(t|t− 1) =Ψpi(t)∆Pai(t|t− 1)ΨT
pi(t) + [Γai, −Kpi(t)]∆Λi(t)[Γai, −Kpi(t)]T, (77)

∆Pai(t|t + N) =ΨN(t)∆Pai(t|t− 1)ΨT
N(t)

+
N

∑
r=0

[KNw
r (t), KNv

r (t)]∆Λi(t + r)[KNw
r (t), KNv

r (t)]T,

∆Pwai(t|t + N) =Ψw
N(t)∆Pai(t|t− 1)Ψw

N
T(t)

+
N

∑
r=0

[MNw
r (t), MNv

r (t)]∆Λi(t + r)[MNw
r (t), MNv

r (t)]T,

∆Pxω(t|t + N) =ΨN(t)∆Pai(t|t− 1)Ψw
N

T(t)

+
N

∑
r=0

[KNw
r (t), KNv

r (t)]∆Λi(t + r)[MNw
r (t), MNv

r (t)]T, (78)

with the initial condition ∆Pai(1|0) ≥ 0, applying mathematical induction method, yield

∆Pai(t|t− 1) ≥ 0. (79)

From (72), defining ∆P(t|t + N) = E[x̃(t|t + N)x̃T(t|t + N)], we have

∆P(t|t + N) = Q0

[
∆Pai(t|t + N) ∆Pxω(t|t + N)
∆PT

xω(t|t + N) ∆Pwai(t|t + N)

]
QT

0 , (80)

substituting (78) into (80), yield

∆P(t|t + N) =Q0

[
ΨN(t)∆Pai(t|t− 1)ΨT

N(t) ΨN(t)∆Pai(t|t− 1)Ψw
N

T(t)
Ψw

N(t)∆Pai(t|t− 1)ΨT
N(t) Ψw

N(t)∆Pai(t|t− 1)Ψw
N

T(t)

]
QT

0

+ Q0

[
∑N

r=0 K̆∆Λi(t + r)K̆T ∑N
r=0 K̆∆Λi(t + r)M̆T

∑N
r=0 M̆∆Λi(t + r)K̆T ∑N

r=0 M̆∆Λi(t + r)M̆T

]
QT

0 , (81)

then (81) can be rewritten as

∆P(t|t + N) =Q(0)
[

∆Pai(t|t− 1) ∆Pai(t|t− 1)
∆Pai(t|t− 1) ∆Pai(t|t− 1)

]
Q(0)T

+
N

∑
r=0

Q(1)
[

∆Λi(t + r) ∆Λi(t + r)
∆Λi(t + r) ∆Λi(t + r)

]
Q(1)T

,

where Q(0) = Q0diag
{

ΨN(t), Ψw
N(t)

}
, K̆ = [KNw

r (t), KNv
r (t)], M̆ = [MNw

r (t), MNv
r (t)],

Q(1) = Q0diag
{
[KNw

r (t), KNv
r (t)], [MNw

r (t), MNv
r (t)]

}
, applying Lemma 1, we have

∆P(t|t + N) ≥ 0. Taking the trace of ∆P(t|t + N), we can easily obtain ∆tr(P(t|t + N))
≥ 0. The Proof of Theorem 3 is completed.
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6. Simulation

Consider the circuits system shown in Figure 1, ue(t) is control input, R0, L0, C1 and
C2 are resister, inductor and capacities, respectively. The MSDS model is given as follows

C1 0 0 0
0 C2 0 0
0 0 −L0 0
0 0 0 0

dx(t)
dt

=


0 0 0 1
0 0 1 0
−1 1 0 0
1 0 R0 R0

x(t) +


0
0
0
−1

w(t) +


0
0
0
−1

u(t)

where, x(t) = [ue1(t), ue2(t), i1(t), i2(t)]T, ue1(t) and ue2(t) are the voltage of C1 and C2, i1(t)
and i2(t) are the current of C1 and C2, w(t) is zero mean white noise,the variance is QW .

Figure 1. The circuit system.

Taking the sample period T0 = 0.1 s, the brief parameter matrices are as follows:

M =


C1 0 0 0
0 C2 0 0
0 0 −L0 0
0 0 0 0

, Γ =


0
0
0
−1

, Φ = M + T0


0 0 0 1
0 0 1 0
−1 1 0 0
1 0 R0 R0

, B =


0
0
0
−T0

.

Let ue1(t) = 0.1, C1 = 2, C2 = 10, L0 = 1, H = [0, 1, 0, 1], λα = 0.9, λβ = 0.9, λγ = 0.9,
QW = 1.5, R = 4, P0 = 102 I4. Furthermore, the following matrices in (15) as given as

M1 =

 10 0 0
0 2 0
0 0 1

, P =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

, Q =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 1

.

Figures 2 and 3 gives the first and second components of actual state x1, x2 and
corresponding filters x1(t|t), x2(t|t) from t = 600 to t = 1200, where the solid curves
denote the true state components x(t) and the dotted curves denote xp(t|t). From Figure 3,
the every component of robust filter can effectively follow the true state component xp(t).

To verify the correctness of the obtained robust Kalman estimator, a Monte Carlo
simulation is performed, and the mean square error (MSE) curve of the robust time-varying
estimator is shown in Figures 4–6. It is easy to see that the value of MSE(t|t + N) can be
approximated to the value of trP(t|t + N), and as Theorem 3 states, it has an upper bound
trP(t|t + N).
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Figure 2. x1 and its filter x̂1(t|t).

Figure 3. x2 and its filter x̂2(t|t).

Figure 4. MSE(t|t− 1) curve.
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Figure 5. MSE(t|t) curve.

Figure 6. MSE(t|t + 1) curve.

In Figures 4–6, the dashed black line shows the trace of the actual estimated error
variance, the curved line shows the MSE value, and the dashed orange line shows the
actual upper bound on the variance of the estimation error.

Remark 2. Time delay is not considered in references [20–27]. Meanwhile, references [19–21]
do not consider missing measurement, references [19,21,27] ignore the multiplicative noise, and
references [19,20,25,27] do not consider packet dropouts. In Table 1, the model of this paper contains
more influencing factors, and it is more general than references [19–27].
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Table 1. Model comparisons.

Model This Paper [19] [20] [21] [25] [27]

Uncertain-variance noise
√ √ √ √ √ √

Multiplicative noise
√

×
√

×
√

×

Missing measurement
√

× × ×
√ √

Time delay
√ √

× × × ×

Packet dropouts
√

× ×
√

× ×

Multi-sensor descriptor system
√

×
√ √

×
√

Where “
√

” means that the model contains this component, and “×” means that the model does not contain
this component.

7. Conclusions

In this paper, the robust Kalman estimation of multi-sensor linear singular systems is
studied. The singular value decomposition (SVD) method, the augmented state method
and the fictitious noise method are applied to transform the original generalized system into
a new standard system with uncertain-variance noise. Based on the minimum–maximum
robust estimation principle and Kalman filtering theory, a new robust Kalman estimator
for augmented systems is obtained. According to the relationship between the augmented
state and the original system state, the robust Kalman estimator of the original system is
given. Using mathematical induction and the Lyapunov equation method, the robustness
of the actual Kalman estimator to the original system is proved. In the future, we will
investigate time-varying robust Kalman estimators for a multi-sensor descriptor system
with a measurement delay and packet loss. Furthermore, we will consider an uncertain
multi-sensor descriptor system in which multiplicative noise occurs simultaneously in both
the system and the measurement models, and study the corresponding Kalman filter.

The limitation of this paper is that it uses a general method for studying singular
systems. In the future, we will explore some novel methods to study the problem of robust
estimation of multi-sensor singular systems
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