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Abstract: This work illustrates an innovative localisation sensor network that uses multiple PIR and
ultrasonic sensors installed on a mobile social robot to localise occupants in indoor environments. The
system presented aims to measure movement direction and distance to reconstruct the movement of a
person in an indoor environment by using sensor activation strategies and data processing techniques.
The data collected are then analysed using both a supervised (Decision Tree) and an unsupervised
(K-Means) machine learning algorithm to extract the direction and distance of occupant movement
from the measurement system, respectively. Tests in a controlled environment have been conducted
to assess the accuracy of the methodology when multiple PIR and ultrasonic sensor systems are
used. In addition, a qualitative evaluation of the system’s ability to reconstruct the movement of the
occupant has been performed. The system proposed can reconstruct the direction of an occupant
with an accuracy of 70.7% and uncertainty in distance measurement of 6.7%.

Keywords: multi-sensor system; occupant localisation; PIR sensors; ultrasonic sensors; machine learning

1. Introduction

The ability to accurately determine the location of elderly people in their homes has the
potential to support Ambient and Assisted Living (AAL) [1] scenarios in enhancing elderly
people’s safety, health, and quality of life, as well as to enable the creation of more person-
alised and efficient care plans. However, despite significant advancements in computer
vision and machine learning (ML) techniques, there are still some issues to be faced [2,3]. To
begin with, the presence of furniture and appliances in indoor environments decreases the
ability to distinguish between occupants and objects [4,5], creating an ambiguity problem.
Moreover, people may not want their movements to be tracked, especially in their own
homes, and ensuring privacy while still accurately localising occupants poses a significant
challenge [6]. With regards to the former, the most common methods used to deal with the
ambiguity problem in localising occupants in indoor environments are:

- Multi-Sensor Fusion approaches [5–8]: They integrate data from multiple sensors such
as cameras [9–12], microphones [13], passive infrared motion sensors (PIR), LiDAR,
and ultrasonic sensors to improve the accuracy of the localisation system. By using
data from multiple sensors, the system can reduce the ambiguity in location estimation
and provide more reliable and accurate results.

- Beacon-based approaches [14,15]: They use beacons, which emit radio waves to
provide location information. By placing beacons in different locations within an
indoor environment, the system can determine the location of a person based on the
strength of the signal and proximity to the beacons. This kind of approach can provide
high localisation accuracy but requires significant infrastructure investments.

- Wi-Fi-based approaches [16,17]: They use the signal strength of Wi-Fi access points
to determine the location of a person. By using a database of Wi-Fi access points and
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their signal strengths, the system can estimate the location of a person with reasonable
accuracy. However, this approach can be affected by signal interference and changes
in the environment.

To reduce ambiguity in the estimation of a person’s location, the solutions above
require the presence of a number of fixed anchor nodes and the use of AI algorithms, which,
however, increase system complexity and costs. Moreover, the accuracy of these systems
heavily relies on the optimal placement of anchor nodes, which can be difficult to achieve
in large or intricate indoor spaces. In the study presented, a novel sensor network for
occupant localisation was developed by integrating multiple PIR and ultrasonic sensors
onto an existing sensor-controlled social robot with the aim to achieve complete coverage
of a house using a single system, thus eliminating the need for an expensive and complex
sensing infrastructure with multiple anchor nodes. In this study, localization refers to the
capability of the robot to detect the presence of the occupant and determine the occupant’s
position concerning the robot’s location. The main objectives of the localization procedure
proposed are to identify whether the occupant passes by the robot or not, in which direction
the occupant is moving, and the distance between the occupant and the robot. In this
way, relevant information on the movement of the occupant, the environment in which the
person is moving, and the person’s behaviour can be retrieved. The research was partially
conducted within the framework of the “VITALITY” project, which utilises the Misty II
mobile robot as a monitoring system for elderly people in an indoor environment. In the
framework of the project, the localisation of the elderly is the first step to successfully
monitoring them. Thus, the proposed multi-sensor system offers advantages such as ease
of use, low cost, non-invasiveness, privacy preservation, robustness, and reliability, making
it suitable for deployment in elderly people’s homes compared to existing systems. The
study assumes a constant position and orientation of the robot during data acquisition for
occupant localisation since the focus is on localisation rather than on robot navigation. To
address the issue of ambiguity, the paper proposes an approach that combines PIR and
ultrasonic sensors with a well-designed activation strategy and data processing procedure.
PIR sensor data are processed using a decision tree (DT) algorithm to determine the
direction of movement of an occupant in relation to the robot’s position in the room.
Ultrasonic sensor data are processed using a K-Means clustering algorithm to differentiate
between moving and stationary objects, thus making it possible to measure the occupant’s
distance from the sensor. The effectiveness of the system was demonstrated in a controlled
scenario by two tests, where the occupant was instructed to perform predefined movements
at four different distances with a regular gait. The occupant was successfully localised,
and his movements were reconstructed based on the robot’s fixed position. The authors
believe that this approach has the potential to enhance healthcare interventions and provide
valuable information about occupants’ health and well-being to relevant stakeholders. The
early detection of changes in the behaviour of the elderly in the AAL scenario can enable
healthcare providers to deliver targeted and effective interventions that promote healthy
ageing and improve the overall quality of life. The paper is organised as follows: Section 2
offers a literature review on the implementation of sensing technologies for the purpose of
localising occupants in indoor settings by using PIR and ultrasonic sensors. Section 3 details
the sensors employed in constructing the localisation network as well as the approach
adopted to collect data. In addition, the metrics used for data processing and the tests
carried out to localise occupants within an indoor environment are illustrated. Section 4
presents the results of these tests, along with the accuracies of the sensor data. Section 5
offers a discussion of the results, while Section 6 concludes the paper by outlining the main
findings.

2. Related Works

Localising occupants in a home environment by using non-invasive sensors is the
first step in monitoring their activities and detecting possible changes in their lifestyle.
However, the variability of the physical layout of houses and the presence of obstacles
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can cause ambiguity problems that need to be addressed. As reported in Section 1, there
are three main types of approaches to reducing ambiguity in a home environment: Multi-
sensor fusion-based approaches, Wi-Fi-based approaches, and Beacon-based approaches.
Multi-sensor fusion-based approaches use sensors such as RGB cameras and microphones
to locate occupants in their homes. The main limitation of this approach lies in the fact
that these sensors raise privacy issues as they are very invasive. In addition, hardware
and implementation costs are quite high, which represents a further drawback to the use
of this multi-sensor fusion technology [18,19]. Recently, LiDAR sensors have been widely
used to localize people in an indoor environment. LiDAR are very accurate sensors, with
a wide range and a fast acquisition rate. However, the main limitation of this technology
is its use in complex environments. Real-world indoor environments can be filled with
various objects, furniture, and obstacles of diverse shapes and sizes. LiDAR may have
difficulties detecting people who are partially occluded or positioned in blind spots [20,21].
However, with the use of PIR sensors and ultrasonic sensors, it is possible to overcome these
issues by providing a flexible and economical approach to indoor localisation. Wi-Fi-based
technologies, instead, offer a cost-effective and scalable solution for indoor localisation, but
their accuracy can be affected by factors such as signal interference, building layout, and the
number of APs or beacons deployed. Similarly, the accuracy of beacon-based technologies
is also influenced by various factors, including signal interference, building structure, and
the number of beacons used.

Thus, it can be concluded that, among the three types of solutions proposed, multi-
sensor fusion approach technologies using PIR sensors and ultrasonic sensors are the most
viable option for solving privacy and ambiguity issues while minimising infrastructural
costs. In this Section, studies in the literature dealing with technologies based on both PIR
and ultrasonic sensors that proved to be a promising solution for the purpose of localising
occupants in their homes are presented. As in most of the works in the literature, in [22],
an indoor localisation system that utilises ceiling-mounted PIR sensors is proposed. The
system consists of two PIR modules and aims to evaluate the accuracy of system design
in relation to the positioning of the structure. The results demonstrate that with two PIR
modules, it is possible to simplify the system design and achieve better estimation accuracy
compared to a single PIR module, obtaining an RMSE (Root-Mean Square Error) of 0.31.
In [23], the authors propose a sensor node composed of five ceiling-mounted PIR sensors
to detect and localise people. The system is tested with different deep learning methods
and particle filter approaches, achieving distance errors of 0.4 m and 0.25 m, respectively.
In [24], a network of four ceiling-mounted PIR sensors is proposed. The system uses
particle filtering to eliminate incorrect occupancy state transition. The method proposed
achieves an accuracy of 98.3%. Despite demonstrating the potential of using multiple PIR
sensors for human indoor localisation, the system proposed is unable to provide a flexible
and useful solution for decreasing infrastructure costs, since the sensors are mounted on
the ceiling of a room.

Ultrasonic sensors are widely used in activity recognition (fall detection) [25] and
obstacle detection to help visually impaired and blind people navigate obstacles [26,27].
In [28], the authors integrated an ultrasonic sensor on an Arduino board to detect obstacles
with the aim to help blind people move around in an indoor environment. The system
alerts people when they are close to an object with an accuracy of 95.2%. In [29], the authors
propose a system that uses multiple ultrasonic sensors and machine learning techniques
to detect and estimate the distance of objects in real-time. The system consists of four
ultrasonic sensors arranged in a circular pattern around a central point, with each sensor
providing distance readings to an object in its field of view. The authors used a neural
network-based approach to process sensor data and perform object detection and distance
estimation. The system is tested in different environments, and the results show that it
can accurately detect and estimate the distance of objects. In [30], the authors used a deep
learning-based approach to process sensor data and estimate the distance of obstacles.
The system is tested in different environments, and the results show that it can accurately



Sensors 2023, 23, 6963 4 of 19

estimate the distance of obstacles and enable their avoidance. Few works in the literature
use this type of sensor to measure the distance of moving people. In [31], a trilateration-
based technique is used to estimate the location of a person based on the time-of-flight
measurements of ultrasonic signals. The system is tested in a real indoor environment and
the results show a localisation accuracy within 1 m.

While, on the one hand, it can be observed that there are quite a few works in the
literature that integrate multiple PIR sensors, on the other hand, the same cannot be said
for works that integrate multiple ultrasonic sensors. Similarly, it can be noted that there
is a lack of studies where these two types of sensors are combined and/or implemented.
Therefore, localisation using PIR and ultrasonic sensors in indoor environments remains an
open challenge to which researchers are trying to respond with different technologies and
approaches. Since the aim of the study presented here is to create a system to be installed in
the homes of elderly people, it is advisable to use non-wearable multi-sensor solutions that
have high accuracy and low costs. Based on these requirements, a system of multiple PIR
and ultrasonic sensors that can improve occupant localisation while minimising privacy
issues, infrastructural costs, and ambiguity issues is proposed.

3. Materials and Method
3.1. Misty II Robot

Misty II is a social robot equipped with more than 25 sensors, including capacitive
sensors, microphone arrays, bump sensors, time-of-flight sensors, and a structural core
depth sensor containing an RGB camera. Moreover, the robot is designed as an open plat-
form, which allows for further expansion and customisation. Misty II utilises its structural
core depth sensor in conjunction with a processing system to perceive its surroundings
and enable autonomous movement. The robot’s Simultaneous Localisation And Mapping
(SLAM) module is used to reconstruct the environment and track the robot’s position in
the global reference system, although the specific algorithms and methodologies used are
not the focus of this study.

It is important to clarify that the robot’s primary task is not simply detecting the
presence of occupants in a room. In fact, the robot’s original purpose involves other
tasks, for example, monitoring their behaviour, which need to be carefully developed and
executed. This work focuses on the localisation of occupants and thus it is crucial to ensure
that any additional task performed by the robot, e.g., its self-localisation in the space and
the map reconstruction of the environment, is accurately and effectively designed and
implemented.

3.2. System Design and Sensor Integration

To detect and localise occupants using a stationary robot, a network of sensors needs to
be installed to distinguish the occupants from their surroundings. The measurement system
proposed aims to enhance the robot’s capabilities and is based on multiple sensors that
were selected according to specific criteria, including cost-effectiveness, non-intrusiveness,
and privacy considerations. Specifically, the sensors used to implement the system are
HC-SR501 PIR sensors (refer to Table 1 for technical specifications) for motion detection,
SRF10 ultrasonic sensors (refer to Table 2 for technical specifications) for distance detection,
and an Arduino board (refer to Table 3 for technical specifications) mounted on the back of
the Misty II robot (Figure 1), which serves as a power source and communication device
with the database where data from the sensors are stored.
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Table 1. HC-SR501 PIR sensor technical specifications.

Sensor Specifications PIR Sensor (HC-SR501)

Detection range 7 m
Detection angle 120◦

Delay time 3 s
Consumption 65 mA

Operating voltage 4–12 V (5 V recommended)
Output voltage 3.3 V

Operating temperature −15–70 ◦C
Cost 3 €

Table 2. SRF10 Ultrasonic sensor technical specifications.

Sensor Specifications Ultrasonic Sensor (SRF10)

Detection range 43 mm–11 m
Frequency 40 kHz
Delay time 65 ms

Consumption 15 mV
Operating voltage 5 V

Connection Standard I2C BUS [32]
Cost 25 €

Table 3. Arduino board technical specifications.

Specifications Arduino

Microcontroller ATmega328P
Operating Voltage 3.3 V

Input Voltage 7–12 V
Digital I/O Pins 14 (of which 6 provide PWM output)

Analog Input Pins 6
Flash Memory 32 kB
Clock Speed 8 MHz

Cost 25 €
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system of Misty II robot.

The PIR sensor is designed to detect changes in infrared radiation, specifically the
heat emitted by living beings. When an occupant moves within the sensor’s field of view
(FOV), their body heat causes a change in the infrared radiation detected by the sensor,
which triggers the sensor to send a signal to the robot. The PIR sensor has three pins: VCC
for power supply, GND for ground connection, and Out for signal transmission when
movement is detected. The PIR sensors are connected to a breadboard for Arduino. The
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VCC and GND of the PIR sensors are wired with the positive pole and negative pole of
the breadboard, respectively. The Out signal is connected directly to the general-purpose
input/output (GPIO) Arduino board. The ultrasonic sensor emits a high-frequency sound
wave, usually at 40 kHz, and then listens for the echo of that sound wave bouncing off
an object. The time it takes for the echo to return is used to calculate the distance to the
object using the speed of sound. This sensor has four pins: VCC for power supply, GND
for ground connection, and two wires for the I2C bus protocol. As with the PIR sensors, the
GND pin and VCC pin are connected to the negative and positive poles of the breadboard,
while the I2C protocol uses two signal lines of the Arduino board: SDA (Serial Data) and
SCL (Serial Clock). SDA is used for bi-directional data transfer between devices, while
SCL is used for clock synchronisation between devices. In the study presented, to perform
360-degree localisation around Misty II and reduce possible ambiguity issues, a sensor
network composed of 4 PIR sensors and 4 ultrasonic sensors was used. Each PIR sensor was
paired with an ultrasonic sensor that was activated as soon as the PIR sensor was triggered.
Considering the cost of each individual component, power supply, electronics, and storage,
the system proposed costs approximately 300 euros, excluding the robot. The Misty II robot
is Wi-Fi equipped, which makes it possible for it to be connected to the home Wi-Fi network.
By taking advantage of this connection and installing sensors on the robot, it was therefore
possible to transfer data from the robot to an external database service. Sensor data were
sent to the database using robot application programming interfaces (APIs). To manage
and manipulate data, a My Structured Query Language (MySQL) database was used. It
is a fast, reliable, and scalable database solution that is widely used in web applications
and software development that will be the basis for future system developments. It is
worth noting that the system’s versatility allows it to be easily deployed on various robotic
platforms, regardless of the type of robot used.

3.3. Configuration of PIR and Ultrasonic Sensors

In order to improve the detection accuracy of the PIR sensors, it is necessary to increase
the number of sensors deployed. To achieve a 360-degree coverage area around the robot
using PIR sensors with a FOV of 110◦ each, four sensors are required (110◦ × 4 = 440◦).
However, maintaining the same FOV for each sensor may result in a significant overlap of
the FOV areas of adjacent sensors, leading to system saturation and difficulties in handling
multiple activations of the PIR and the ultrasonic sensors. To address this issue, boxes were
used to surround each PIR sensor, thereby reducing the overlap area between adjacent
sensors from 110◦ to 94◦ (Figure 2). Additionally, a box was mounted above each PIR
sensor to house the corresponding ultrasonic sensor (Figure 3). The four PIR sensors and
four ultrasonic sensors were arranged in a square configuration on the robot’s head, with a
side length of 14.5 cm.

This approach provides a solution to the problem of false-positive detections in PIR
sensor systems and improves the accuracy and reliability of such systems in various
applications, as explained in Section 3.5.1. The methodology proposed can be used in a
range of settings, from security systems to robotics and automation.

3.4. Occupant Detection and Localisation

An occupant tracking procedure that uses a mobile robot requires:

(a) A map of the environment in which the localisation is to be performed (Figure 4).
(b) The self-localisation of the robot in the environment.
(c) A system for localising people using the robot.
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It should be noted that the mapping of the home and the robot’s self-localisation
are not included in the work, since they are considered to be beyond the scope of this
study. Localisation, as intended in this study, through the sensor network proposed can be
summarised in four steps:

(1) The 4 PIR sensors are constantly activated to detect occupant motion and direction.
(2) When a PIR identifies motion, the corresponding ultrasonic sensor is activated and

identifies the distance of the moving occupant.
(3) The data on the active PIR sensor, acquisition time, and distance obtained from the

ultrasonic sensor are stored in real time in the MySQL database (Figure 5).
(4) The data are then processed locally by an ML algorithm to extract information about

the direction, detection, and distance, in order to localise the occupant in the environ-
ment considered (Figure 5).

3.5. Experimental Measurement Test Procedure

For the experimental measurement setup, the robot was equipped with a measurement
system consisting of 4 PIR sensors and 4 ultrasonic sensors integrated with an Arduino
board. Two tests were devised to assess the system in the indoor environment considered:

• The first test (red line in Figure 6) involved a movement comprising two linear seg-
ments at four different distances (0.5 m, 1.0 m, 1.5 m, and 2.0 m).

• The second test (blue line in Figure 6) involved a movement comprising three segments
at four different distances (0.5 m, 1.0 m, 1.5 m, and 2.0 m).
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Figure 6. Floor plan of the scenario in which the tests were conducted. The red and blue lines indicate
the first and second tests performed by the occupant, respectively. The robot is situated 178 cm away
from the west wall and 90 cm away from the north wall. On the south wall, there is office furniture
placed at a distance of 200 cm from the robot.

During the tests, a subject was instructed to perform predefined movements at four
different distances with a regular gait (Figure 6). The tests were conducted in an office
room at the Department of Industrial Engineering and Mathematical Sciences of Università
Politecnica delle Marche (Ancona, Italy), which contained furniture. Figure 6 illustrates
the distances between the robot with the measurement system, the furniture, and the
walls of the office room. The data were acquired at a frequency of 10 Hz then sent to the
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server and stored in the MySQL database to be post-processed to localise the occupant
in the environment. At the end of the two tests, a database of 900 PIR activations with
corresponding distance values was collected.

3.5.1. Occupant Detection and Direction Measurement

In this study, PIR sensors positioned on the head of a Misty II robot were used to accu-
rately detect the direction of motion of an occupant using a decision tree (DT) classification
algorithm. DT is a supervised machine learning algorithm used for both classification
and regression tasks. The algorithm creates a tree-like model where each internal node
represents a decision based on a feature, each branch represents the possible outcomes of
that decision, and each leaf node represents the final predicted class or value [33]. Each
PIR sensor was activated whenever the occupant was detected in its FOV. However, de-
spite the reduction in the sensors’ FOVs using specially built boxes (Section 3.3), there
was still some overlap with the FOV areas of the adjacent PIR sensors, which caused the
adjacent sensors to activate, too. The DT aimed at distinguishing between the PIR sensors’
activations caused by the occupant’s movement and the false activations caused either
by the overlap with the FOV areas of the adjacent PIR sensors or interfering sources such
as glazed windows. It was also used to reconstruct the direction of the movement of the
occupant. For these reasons, the DT was trained on models of PIR sensor activation to
recognise the activation patterns corresponding to the occupant’s movement from those
corresponding to false activations. The term “model” refers to the possible sequence of
three consecutive activations of either one PIR sensor or two adjacent PIR sensors. These
models were used to analyse the occupant’s movements and determine their location in
the indoor environment in relation to the robot’s position. Considering the configuration of
the PIR sensors reported in Figure 2, three examples of models used by the DT algorithm
are shown to illustrate what happened when the occupant moved from PIR1 to PIR2.

In Figure 7a, the occupant moved from PIR1 to PIR2 and remained in PIR2. In this
scenario, the activated PIR sensors were PIR1, PIR1, and PIR2, when the occupant moved
within the overlapping area, and PIR2. In Figure 7b, the occupant moved from PIR1 to
PIR2 and then returned to PIR1. In this scenario, the activated PIR sensors on the way from
PIR 1 to PIR2 were PIR1, PIR1, and PIR2 when the occupant moved within the overlapping
area, while on the way back from PIR2 to PIR1, the activated sensors were PIR2, PIR2,
and PIR1 when the occupant moved within the overlapping area and PIR1. In Figure 7c,
the occupant was incapable of moving past the robot, which resulted in an unauthorised
activation sequence.
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Figure 7. Examples of models used to train the DT: (a) The occupant moves from PIR1 to PIR2 and
stays there for a certain period; (b) the occupant moves from PIR1 to PIR2 and then from PIR2 back
to PIR1; (c) unauthorised movement because the occupant is unable to move past the robot.



Sensors 2023, 23, 6963 11 of 19

A dataset of 45 models based on the three possible configurations described in Figure 6
was collected to train the DT.

The DT algorithm was trained using 75% of the models generated, while the re-
maining 25% was used to test it. Accuracy (Equation (1)), precision (Equation (2)), recall
(Equation (3)), and F1-score (Equation (4)) were computed to assess the performance of the
DT algorithm.

Accuracy[%] =

(
(TP + TN)

(TP + TN + FP + FN)

)
∗ 100 (1)

Precision[%] =
TP

TP + FP
∗ 100 (2)

Recall[%] =
TP

TP + FN
∗ 100 (3)

F1score[%] =
2 ∗ PrecisionRecall
Precision + Recall

∗ 100 (4)

where TP = True Positive, TN = True Negative, FP = False Positive, and FN = False Negative.
As reported in Section 3.5, the path of the first test was split into two segments, while

the path of the second test was divided into three segments. Direction detection accuracy
was considered as the ability to correctly reconstruct the direction of the entire movement
covered by the occupant. It was computed on the two tests conducted in the controlled
environment for the four distances using Equation (5).

Accuracy [%] =

(
number of correct segments

number of total segment to be predict

)
∗ 100 (5)

3.5.2. Occupant Distance Measurement

It is not possible to obtain information about the distance of the occupant from the
PIR sensors. When the occupant is in its FOV, the PIR sensor activates and remains active,
whether the position of the occupant changes or not. With the use of an ultrasonic sensor,
instead, it is possible to measure the distance travelled by the moving occupant in time and
create a movement profile. Specifically, when a PIR detects the presence of the occupant,
it activates the ultrasonic sensor, which starts calculating the distance. It may happen
that the occupant moves too fast and therefore the ultrasonic waves hit the walls of the
room instead of the occupant, providing incorrect distance values. It is therefore necessary
to use an algorithm that can discriminate the distances of fixed surfaces, such as room
walls, from those that represent the occupant’s distances from the robot. For the study
presented, the K-Means algorithm was selected. K-Means is a powerful unsupervised
learning technique that can identify patterns in data, even in noisy environments. In fact,
the k-means algorithm is used for clustering data into distinct groups or clusters based on
similarity. It aims to partition the data into k clusters, where each data point belongs to the
cluster whose mean (centroid) is closest to it.

When implementing the K-Means algorithm, it is necessary to:

1. Choose the number of clusters (k) that need to be identified. In the context presented,
two clusters were necessary: One corresponding to the fixed objects, such as walls,
and one corresponding to the occupant’s actual movements.

2. Select k random data points to serve as the initial centroids of the clusters.
3. Calculate the distance of each data point to each of the k centroids and assign the data

point to the cluster corresponding to the nearest centroid.
4. Recalculate the centroids for each cluster as the mean of all the data points assigned

to that cluster.
5. Repeat steps 3 and 4 until the centroids no longer change or until a maximum number

of iterations is reached [34].
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In the case presented, the K-Means algorithm gave two clusters: One representing the
fixed surface and one representing the occupant’s movements.

Once the clusters are identified, this information is used to discriminate between the
fixed surface and occupants’ movements based on the new distance measurements. In
particular, each new measurement is assigned to the cluster with the nearest centroid. Over
time, this information is used to determine whether the measurement corresponds to a
fixed surface or an occupant when the sensor’s target is a fixed object such as a wall or a
piece of furniture. Static ultrasonic tests have been found to achieve an error variation of
approximately 3 cm. As a result, any centroid that exhibits movements smaller than 3 cm
over time is categorised as a fixed point, whereas centroids that exhibit bigger movements
are classified as representing occupants’ positions over time. The training of the algorithm
is applicable whenever it is necessary to localise occupants in a home, as it is independent
of the robot’s position.

To estimate the measurement uncertainty of the distance values after the application
of the K-means, the statistical confidence with a coverage factor of k = 2 is used, expressing
the level of confidence that can be attributable to the measured value [35,36].

3.5.3. Occupant Localisation

The data collected using the data acquisition methodology described in Section 3.4
were then transmitted and stored in the database. Local data processing started from the
ultrasonic data with the aim to remove error data, e.g., data related to the walls. Thus, the
ultrasonic data were first subjected to the K-Means algorithm to differentiate between the
distances of moving and fixed points. Subsequently, the fixed points were used to filter
out the data from the PIR sensors, resulting in the acquisition of PIR activation sequences
associated with the distances of the moving points. The DT algorithm was then applied to
the PIR sensor data to extract directional information regarding the occupant’s movement
(Figure 8).

Sensors 2023, 23, x FOR PEER REVIEW  12  of  19 
 

 

cm over time is categorised as a fixed point, whereas centroids that exhibit bigger move‐

ments are classified as representing occupants’ positions over time. The training of the 

algorithm is applicable whenever it is necessary to localise occupants in a home, as it is 

independent of the robot’s position.   

To estimate the measurement uncertainty of the distance values after the application 

of the K‐means, the statistical confidence with a coverage factor of k = 2 is used, expressing 

the level of confidence that can be attributable to the measured value [35,36]. 

3.5.3. Occupant Localisation   

The data collected using the data acquisition methodology described in Section 3.4 

were then transmitted and stored in the database. Local data processing started from the 

ultrasonic data with the aim to remove error data, e.g., data related to the walls. Thus, the 

ultrasonic data were first subjected to the K‐Means algorithm to differentiate between the 

distances of moving and fixed points. Subsequently, the fixed points were used to filter 

out the data from the PIR sensors, resulting in the acquisition of PIR activation sequences 

associated with the distances of the moving points. The DT algorithm was then applied to 

the PIR sensor data to extract directional information regarding the occupant’s movement 

(Figure 8). 

The reflection coordinates of the ultrasonic sensors were computed from each sensor 

perspective that detected the movement (Section 3.2). To this end, the Cartesian coordi‐

nates x_r and  y_r  of the reflection point (Equation (6)) were determined using the known 

location (x_s, y_s) and orientation (α) of the ultrasonic sensor, along with the measured 

distance (d) to the reflected object. In this context, x_r and  y_r were assumed to be the 

origin of the Cartesian system. By applying the K‐means algorithm, the points that were 

selected as  the moving points were used  to reconstruct  the movement of  the occupant 

inside the area of the corresponding PIR sensor.   

x_r = x_s + d * cos(α)    (6)

y_r  y_s  d ∗  sin α   

Through the integration of detection, direction, and distance information, it was pos‐

sible to accurately determine the position of the occupant and reconstruct their movement. 

 

Figure 8. PIR and ultrasonic sensor data processing flow. 

4. Results 

This section presents the results obtained from the experimental measurement pro‐

cedure of  the  two  tests by reporting  the accuracies of  the system  in discriminating  the 

direction and distance of the occupant’s movement from the robot. 

   

Figure 8. PIR and ultrasonic sensor data processing flow.

The reflection coordinates of the ultrasonic sensors were computed from each sensor
perspective that detected the movement (Section 3.2). To this end, the Cartesian coordinates
x_r and y_r of the reflection point (Equation (6)) were determined using the known location
(x_s, y_s) and orientation (α) of the ultrasonic sensor, along with the measured distance
(d) to the reflected object. In this context, x_r and y_r were assumed to be the origin of the
Cartesian system. By applying the K-means algorithm, the points that were selected as the
moving points were used to reconstruct the movement of the occupant inside the area of
the corresponding PIR sensor.

x_r = x_s + d ∗ cos(α) (6)
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y_r = y_s + d ∗ sin(α)

Through the integration of detection, direction, and distance information, it was possi-
ble to accurately determine the position of the occupant and reconstruct their movement.

4. Results

This section presents the results obtained from the experimental measurement pro-
cedure of the two tests by reporting the accuracies of the system in discriminating the
direction and distance of the occupant’s movement from the robot.

4.1. Accuracy in Occupant Direction Measurement

Table 4 reports the precision, recall, accuracy, and F1-score values of the DT algorithm
on the built templates, which were split into 75% for training and 25% for testing.

Table 4. Percentage values of the accuracy, precision, recall, and F1-score of the DT algorithm trained
by using the models for the possible occupant’s movement around the robot.

Algorithm Precision [%] Recall [%] Accuracy [%] F1-Score [%]

DT 92 100 88 88

The system presented to detect occupant direction based on PIR sensors achieved
accuracy in reconstructing the direction of the movement of the occupant of 70.7% and
66.3% for the first and second tests, respectively. The accuracy results for each distance in
both tests are reported in Table 5.

Table 5. Percentage values of the accuracies of Test 1 and Test 2 at the four distance values computed
using Equation (5).

PIRs to Occupant Distance
[m] Test Accuracy [%]

0.5
1 33
2 66

1.0
1 100
2 100

1.5
1 100
2 66

2.0
1 50
2 33

Mean
1 70.7
2 66.3

4.2. Measurement Uncertainty in Occupant Distance Measurement

By applying the K-Means algorithm illustrated in Section 3.5.2 and studying the
movement of the centroids over time, it was possible to distinguish between ultrasonic
sensor data referring to stationary objects and those referring to moving objects. Figure 9
shows the results of the analysis conducted on the data collected from PIR 2 to study the
movement of the centroids at different distances. As can be observed in Figure 9, at each
distance, a centroid located close to 200 cm was identified. Referring to Figure 3, furniture
was positioned at 200 cm from PIR 2. Therefore, all the points related to these centroid
values were considered fixed points. The data points within each cluster of points classified
as moving points were then utilised to calculate the measurement uncertainty expressed as
the statistical confidence with a coverage factor of k = 2 for the four ultrasonic sensors in
test 1 (8.5%) and test 2 (6.7%).
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5. Discussion

In this section, the importance of using multiple PIR and ultrasonic sensors on a
robot to localise occupants in indoor environments is discussed. Moreover, we explored
how the sensor activation and data processing techniques used in this study allowed for
the measurement of the occupant’s movement direction and distance to reconstruct their
movement.

According to the literature, most studies in this field focus on occupancy tracking and
localisation strategies that use single-target sensors installed on ceilings. In this study, a
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novel system for the localisation and tracking of an occupant mounted on a mobile robot
was presented. Compared to other approaches, the system proposed is easy to install,
non-invasive for the person, respectful of privacy, and cost-effective as it makes it possible
to reduce the infrastructure costs required for installing a sensor network in a house. Future
research in this area will involve moving the robot to locate the occupant around the house.
Moreover, unlike state-of-the-art systems, the configuration of the multi-sensor system
presented provides 360-degree coverage around the robot, minimising the possibility of
missing the detection of the occupant due to misalignment between the sensors and the
occupant. In addition, the probability of having false-positive activations was decreased by
building a box around the sensors to reduce their FOVs. These findings suggest that this
type of system has the potential to revolutionise indoor localisation and tracking and could
have practical applications in various fields, including safety and surveillance. Finally, the
decision to activate the ultrasonic sensors only when the corresponding PIR sensors are
active significantly reduced the amount of data to be processed. This approach has also
made it possible to acquire synchronised data from the two sensors, avoiding additional
data processing.

In addition, to assess the robustness of the system, a qualitative analysis in reconstruct-
ing the occupant’s movement taking into account both distance values and the direction
of occupant movement was conducted. Unsupervised (K-Means) and supervised (DT)
machine learning algorithms were employed to process the data from the sensors. In
this work, the DT trained on models built to discriminate the direction of the movement
achieved an accuracy of 88%, a precision of 92%, a recall of 100%, and an F1 score of 88%
(Table 4). The use of the two ML algorithms resulted in the successful localisation of the
system proposed. The data flow diagram shown in Figure 8 illustrates the role of the two
MLs in the filtering analysis to reduce the error in the reconstruction of the movement
direction. Activating the PIR sensors on the distances of objects classified as fixed from
the K-Means algorithm would have resulted in inconsistencies in the amount of PIR and
ultrasonic data, losing synchronisation between the two sensors. Therefore, this approach
can serve as a useful methodology for conducting preliminary data analysis for research
studies.

In Section 4.1, the authors presented the accuracy of the system in reconstructing the
movement direction based on PIR sensors at distances ranging from 0.5 m to 2.0 m, with
an intermediate step of 0.5 m. The results, which are shown in Table 4, indicate that, at
a distance of 1 m, the system achieved 100% accuracy in predicting the direction of the
occupant’s movement. However, as the distance from the PIR sensors increased (>1.5 m) or
decreased (<2.0 m), the authors observed a corresponding decrease in the system’s ability
to accurately reconstruct the direction of the occupant’s movement. These results provide
valuable insights into the performance of the system since its ability to accurately locate an
occupant in a house depends on the occupant’s distance from the system. If the occupant is
too close or too far away, the system may not be able to effectively reconstruct the direction
of their movement.

This condition may be due to the fact that, when the occupant walks too close to
the sensor, the time spent in the FOV is very short. As a result, the system acquires very
few data points, which are insufficient for the DT to accurately reconstruct the movement.
Conversely, when the occupant walks too far away from the sensor, the stationary time in
the sensor’s FOV is much longer. This produces a large amount of data that can cause the
DT to malfunction, resulting in incorrect identification of the occupant’s direction.

Therefore, to optimise detection, it is essential to identify the optimal distance at which
the robot should be positioned. Unfortunately, to the best of the authors’ knowledge, there
is a lack of studies using similar systems in the literature, so a comparison of the accuracies
is not available.

In Section 4.2, the measurement uncertainty for the two tests has been computed to
evaluate the performances of the proposed system in the measurement of distances. The
measurement uncertainty computed for test 2 (6.7%) is lower than the one of test 1 (8.5%),
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meaning that the proposed system exhibits robustness even in more complex paths or
scenarios.

6. Conclusions

The main contribution of this work is the presentation of a multi-sensor system to
localise an occupant in an indoor environment that uses four PIR sensors and four ultrasonic
sensors installed on a mobile social robot. The advantage of this non-wearable system is
that it is non-invasive, low-cost, and respectful of privacy. In addition, the system can be
easily installed in a wide range of housing situations since it does not require infrastructural
changes, unlike other systems proposed in the literature. Through tests carried out with an
occupant, the work presented demonstrated that, by using the multiple-sensor system with
the proposed sensor placement, it is possible to reconstruct the movement of an occupant
in a home environment.

In addition, the analysis of the sensor data collected using both unsupervised and su-
pervised machine learning algorithms proved to be an effective approach in increasing the
accuracy of detecting and localising the occupant within the environment by determining
their direction and distance of movement. This approach of combining different data from
different sensors is accomplished using AI techniques since, through complex analysis, AI
makes it possible to analyse heterogeneous data.

In future works, it is planned to conduct a real-time application to test the system
in a real-life scenario where the robot and the occupant are free to move within a home
environment. In addition, the DT and K-Means algorithms will be further investigated to
increase the accuracy in localising occupants.
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