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Abstract: Wheat stripe rust disease (WRD) is extremely detrimental to wheat crop health, and it
severely affects the crop yield, increasing the risk of food insecurity. Manual inspection by trained
personnel is carried out to inspect the disease spread and extent of damage to wheat fields. However,
this is quite inefficient, time-consuming, and laborious, owing to the large area of wheat plantations.
Artificial intelligence (AI) and deep learning (DL) offer efficient and accurate solutions to such
real-world problems. By analyzing large amounts of data, AI algorithms can identify patterns that
are difficult for humans to detect, enabling early disease detection and prevention. However, deep
learning models are data-driven, and scarcity of data related to specific crop diseases is one major
hindrance in developing models. To overcome this limitation, in this work, we introduce an annotated
real-world semantic segmentation dataset named the NUST Wheat Rust Disease (NWRD) dataset.
Multileaf images from wheat fields under various illumination conditions with complex backgrounds
were collected, preprocessed, and manually annotated to construct a segmentation dataset specific
to wheat stripe rust disease. Classification of WRD into different types and categories is a task that
has been solved in the literature; however, semantic segmentation of wheat crops to identify the
specific areas of plants and leaves affected by the disease remains a challenge. For this reason, in
this work, we target semantic segmentation of WRD to estimate the extent of disease spread in
wheat fields. Sections of fields where the disease is prevalent need to be segmented to ensure that
the sick plants are quarantined and remedial actions are taken. This will consequently limit the
use of harmful fungicides only on the targeted disease area instead of the majority of wheat fields,
promoting environmentally friendly and sustainable farming solutions. Owing to the complexity
of the proposed NWRD segmentation dataset, in our experiments, promising results were obtained
using the UNet semantic segmentation model and the proposed adaptive patching with feedback
(APF) technique, which produced a precision of 0.506, recall of 0.624, and F1 score of 0.557 for the
rust class.

Keywords: wheat stripe rust disease dataset; semantic segmentation; wheat rust segmentation;
computer vision; deep learning

1. Introduction

Wheat is a staple crop used across the globe for a variety of food products. A reduction
in the supply of wheat can lead to food shortages and malnutrition, especially in developing
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countries where it is a critical food crop [1]. Wheat stripe rust disease (WRD) is one of the
most detrimental diseases of the wheat crop and leads to severe yield losses if untreated.
The disease spreads rapidly and affects the entire crop field, leading to severe damage,
which, in turn, poses a threat to food security. According to estimates, 88% of the world’s
wheat production is susceptible to WRD infection, and 5.47 million tons of wheat are lost
to this disease each year [2]. A common approach to detect this disease is the manual
inspection of wheat fields by experienced personnel. However, this approach is labor-
intensive, slow-paced, and quite inefficient. Alternatively, technology-based solutions are
much faster and more accurate. Artificial intelligence (AI)-based methods can be used for
farming practices, including early detection of disease, gauging its severity, and predicting
the progression of the disease. These AI techniques use deep learning (DL) models to extract
meaningful information and features from the underlying data [3]. DL-based algorithms
can be used to distinguish between infected and healthy areas in fields [4]. Once a model is
trained, the inference parts of the algorithms can be executed on smartphones or drones
for real-time monitoring of fields [5]. This detection method can be used to quantify the
extent and severity of the disease, enabling early intervention and localized treatment of
diseased areas of plants instead of treating the entire crop. However, in order to train
these DL models effectively, access to a large, diverse, and well-annotated dataset is crucial.
In the literature, there are plant-based datasets available for research, including wheat
disease datasets.

Previous research mainly focused on the classification of WRD [5–8] , which is impor-
tant for early detection. However, semantic segmentation is crucial to estimate the extent of
disease spread, which is essential so that the infected plants can be quarantined, remedial
measures can be taken, and further spread can be monitored [9]. Unsupervised learning
can also be used to extract meaningful information from the data and tackle real-world
problems [10]. Driven by these motivations, we propose a semantic segmentation dataset
called the NUST Wheat Rust Disease Dataset (NWRD), which allows for the precise lo-
calization of disease regions at the pixel level within an image. Furthermore, we perform
semantic segmentation using the UNet model, which generates promising results.

Our main contributions are summarized as follows. (1) We present a new multi-
leaf semantic segmentation dataset for WRD. To the best of our knowledge, it is the
first real-world multileaf crop field dataset with arbitrarily shaped disease regions, busy
backgrounds, occlusions, and varying illumination conditions. Therefore, the images
are of high resolution, with a maximum resolution of 6016 × 4000. The only other
study related to semantic segmentation was carried out by Yang Li et al. (2022) [11],
who presented a segmentation dataset of wheat stripe rust; however, this dataset con-
tained images from a very close-view angle containing only one infected or healthy
leaf per image. (2) We evaluated the performance of the abovementioned dataset on
a UNet model. Due to the high resolution of the images, we used a downsampling
and patching-based approach to reduce the complexity of the dataset. We experimented
with grid patching (GP), adaptive patching (AP), and adaptive patching with feedback
(APF) techniques. The UNet model with downsampling and APF achieved a 0.506 pre-
cision, 0.624 recall, and 0.557 F1 score for the rust class. (3) We demonstrate that the
proposed preprocessing and model outperform the state of the art in terms of the F1
score and IoU. (4) We make our dataset, implementation, and pretrained models publicly
available at https://github.com/dll-ncai/NUST-Wheat-Rust-Disease-NWRD (accessed on
20 June 2023).

2. Related Work
2.1. Wheat Disease Datasets

The availability of well-annotated and diverse datasets plays a significant role in
the learning of deep learning models [12]. Disease datasets are valuable resources for
developing and testing machine learning models for automatic crop disease detection and
diagnosis [13]. However, in the literature, open-source wheat disease datasets are scarce.

https://github.com/dll-ncai/NUST-Wheat-Rust-Disease-NWRD
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Most of the available wheat disease datasets are classification-based and classify the wheat
crops in terms of disease state, type of disease, and disease severity level.

PlantVillage [5], DeepWeeds [14], and PlantDoc [15] datasets are the three most well-
known large-scale datasets related to diseases in plants; however, they are not specific
to wheat crops. Only a portion of these datasets has images related to wheat diseases.
These datasets contain labeled images of crop leaves with different kinds of plant diseases,
including some wheat leaf and stem diseases. It is important to mention that all of these
are classification datasets, and their main goal is to develop a machine learning model that
can classify each image into its respective disease category.

There is a limited number of small-scale wheat datasets available in the literature.
Either these datasets are not publicly available or they are not widely adopted. The most
recent and well-known wheat disease datasets are presented in Table 1. The table specifies
properties related to the datasets, including their name; year of publication and release; the
total number of images in the dataset; the type of dataset based on the task that it targets,
i.e., classification dataset or segmentation dataset; and the view of images as captured in
each image of the dataset. ’Close-view’ images have a single leaf per image captured with
no background, a plain/blurred background, or a background with minimal information.
However, the ’slight wide-angle view’ captures multiple leaves or an entire plant, along
with the background/clutter in the background, making these images much more complex
for feature extraction. Another attribute of the dataset is the complexity with respect to the
no. of leaves in each image.

Table 1. Comparison of available wheat disease datasets.

No. Dataset Year # of Images Type Image View Image Complexity

1. Wheat Yellow Rust Disease
Infection type Classification [4] 2021 268 Classification Close view Single leaf

2. Kaggle Wheat Leaf Dataset [6] 2021 407 Classification Close view Single leaf

3. CGIAR Computer Vision for
Crop Disease Dataset [7] 2020 1486 Classification Close view Multiple leaves

4. Wheat Nitrogen Deficiency and
Leaf Rust Image Dataset [8] 2020 859 Classification Close view Single leaf

5. Crop Disease Treatment Dataset
(CDTS) [11] 2022 2353 Segmentation Close view Single leaf

6. NUST Wheat Rust Disease
Dataset (NWRD) (This Work) 2023 100 Segmentation Slightly wide-angle view Multiple leaves

The CDTS is the most recent and only research dataset related to the segmentation
of wheat rust. This dataset targets the spore and spot segmentation and detection of rust
disease. It is also a close-view image dataset, with a focus on spores and spots of rust
disease. Every image has a single leaf with diseased and healthy parts, with segmentation
masks available for background, diseased, and healthy parts [11]. A rust disease dataset
was presented by Shafi et al. (2022) [4]; however, no specific name was assigned to the
dataset. It is also a close-view classification dataset of wheat rust, with a single rust leaf
with a white background in each dataset image.

The Kaggle research dataset is a freely available classification dataset. The data in
this dataset have a close view, with a single leaf per image [6]. The Kaggle Wheat Leaf
Dataset is a wheat disease classification dataset with images among one of the following
categories: “healthy”, “leaf rust”, “powdery mildew”, or “scab”. The CGIAR crop disease
dataset is a WRD dataset with multiple leaves per image. However, this is a classification
dataset that classifies diseased wheat leaves between leaf rust and stem rust [7]. The wheat
nitrogen deficiency and leaf rust dataset contains controlled and diseased rust leaf images
for classification into healthy and diseased images [8].
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2.2. Wheat Disease Detection Techniques

The problem of wheat head detection and counting from a complex background was
addressed by Khaki et al. (2022) [16]. An instance segmentation method, the Hybrid Task
Cascade Model, was proposed with Res2Net50 as a backbone network with rich feature
learning. The proposed model is a cascaded three-mask RCNN used to construct WheatNet,
which learns different features of the plant, thus improving the overall accuracy of detection
of wheat spikes in a complex background.

Niu et al. (2014) [17] proposed a segmentation technique for disease detection us-
ing the k-means clustering algorithm. The input RGB image of wheat is transformed
into the lab color space, and the k-means clustering algorithm is then used to create clus-
ters of high similarity, segmenting the image into foreground (disease) and background.
Zhang et al. (2022) [18] proposed that the feature fusion of multiple types of images yields
better results for disease detection. Their work also showed that features extracted through
deep learning algorithms have much more disease detection accuracy over hand-crafted features.
They compared the accuracies of multiple deep learning models, including AlexNet, VGG16,
GoogleNet, Xception, ResNet101, etc., and suggested the use of ResNet101 for deep feature
extraction due to its deep layers extracting appropriate features for disease identification.

The Mask-RCNN algorithm has also been used to identify the location of wheat rust
using semantic segmentation of diseased leaves [19]. Once a large rust leaf is segmented
from the background, the pretrained VGG16 and VGG19 classification algorithms are
applied to classify the type of wheat disease. However, the background is separated only
on the basis of color, and less focused or small rust leaves in the image are not considered.
The authors of [20] used ResNet18 to detect disease in high-resolution images, with an
accuracy of 77% at the early stage of disease or at the patch level.

Ul Haq et al. (2022) [21] presented an edge AI-based system for classification wheat
leaves as healthy or infected. Random forest produced the best accuracy for the binary
classification of wheat rust. Using the CGIAR image dataset including leaf rust, stem
rust, and healthy wheat images, Sood et al. (2022) [22] applied a pretrained VGG-16 deep-
learning-based CNN model to classify the type of rust. They optimized the model to achieve
a high training accuracy; however the validation accuracy was 77.14%. Shafi et al. (2022) [4]
proposed a framework using machine learning techniques for the precise detection of wheat
disease and its infection types. The dataset was gathered from a local field using a mobile
camera, where images of individual leaves were taken with a plain white background.
Texture features including GLCM and LBP features were extracted from the collected
images. Results indicate the combination of the CatBoost algorithm with GLCM texture
features produced a classification accuracy of 92.3%. A convolutional neural-network-based
model, Yellow-Rust-Xception, was also proposed for the classification of wheat disease into
different classes in order to determine the severity level of the disease [23].

Khanfri et al. (2018) [24] discussed the impact of segmentation on the classification
accuracy of wheat rust. GrabCut, watershed, and U2-Net segmentation techniques were
applied to the dataset, after which the ResNet18 model was used for classification. It
was shown that U2-Net segmentation performed the best among the three segmentation
models. ResNet18 was then applied to the segmented dataset, and an accuracy of 96.19%
was achieved for wheat stripe rust detection.

Image-processing-based techniques have also been used in the literature for assess-
ment of crop damage in wheat fields [25]. Khatra suggested installing cameras in the key
areas of the field center, corners, etc., to capture images of the field. Those images are then
subjected to image processing techniques to identify growth, as well as the type of disease
and infection. Khan et al. (2022) [26] presented an ML-based framework using a fine-tuned
RFC model that utilizes decision trees and randomly selects several features from the input
features to decide on a class for the input sample in order to identify brown and yellow rust
disease in wheat crops. They collected a wheat crop dataset from various fields in Pakistan
and applied segmentation and preprocessing techniques to it. The authors of [27] used
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principal component analysis (PCA) and the Gaussian mixture model to segment wheat
lesion images.

Mi et al. (2020) [28] used a wheat rust dataset with six levels of stripe rust infection.
They used C-DenseNet, which embeds a convolutional block attention module in the
densely connected convolutional network (DenseNet) for this fine-grained image classi-
fication problem. The authors of [29] automatically identified the symptom location and
disease severity of wheat spikes using dual Mask RCNNs. The authors of [30] used a GAN
on the LWCDC2020 wheat disease dataset to predict the missing data in the dataset.

3. Materials and Methods
3.1. Data Collection Protocol

The wheat crop disease dataset presented in this study is a first-of-its-kind multileaf,
open-source segmentation dataset of wheat rust disease collected from crop fields in
Islamabad, Pakistan. The data were collected over one season of wheat crop, which was
cultivated in November 2021 and harvested in May 2022. Under suitable conditions for
rust, the disease starts its onset in February and continues to spread in March and April.
The data were progressively obtained during this season in the morning and afternoon.

3.2. Data Acquisition—Collection Area

The data on wheat rust were collected in collaboration with the National Agriculture
Research Centre (NARC), Pakistan. NARC is located six kilometers southeast of the
capital, Islamabad. Physical facilities including experimental farm areas, crop fields, and
greenhouses are available to undertake the data collection process for research purposes.
Figure 1 shows an aerial view of wheat crop fields at NARC where the data were collected.

Figure 1. Aerial view of data collection wheat fields at NARC, Islamabad, Pakistan.

Images of the diseased and healthy crops were taken under different illumination
conditions during the morning and afternoon. The camera-based images collected from the
field are of varied resolutions, including a few images of 6016 × 4000 resolution, while the
rest have a resolution of 4608 × 3456.
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3.3. Dataset Properties

The proposed dataset has properties such as high resolution, dense annotation,
clear/fuzzy views of disease, arbitrarily shaped disease regions, manual annotation, image
complexity, and varied image views. It is a real-world dataset comprising high-quality,
high-resolution rust disease images. It clearly portrays the real-world and challenging
nature of the diseased crop fields and was captured under natural field and weather condi-
tions. It is a densely annotated dataset with various stages of rust disease (with respect to
the spread of disease). Densely annotated images in the dataset comprise multiple diseased
rust leaves in a single image.

As it is a real-word dataset, it contains images with clear, fuzzy, and occluded views of
WRD. As disease spread on leaves is not symmetric, there are arbitrarily shaped disease
regions of rust in each image. This shape variation of disease regions is difficult to annotate
due to its arbitrary nature; however, it portrays the true nature of real-world wheat fields.

Ground truths are manually annotated for all instances at a fine-grained level for
each image with high precision. Geometric shapes in annotation tools cannot capture the
arbitrarily shaped disease regions in the dataset images. Therefore, we categorized the
images into two categories with respect to the complexity of the detection of disease, i.e.,
easy and difficult (close view and slightly wide-angle view, respectively).Furthermore, the
dataset presents a varied view of the diseased wheat field. The images capture aerial, as
well as ground and front, views of the field, with multiple leaves in a single image. In each
image, the majority of the leaves are of the healthy wheat crop class, while a minority of the
diseased class creates an imbalance between healthy and diseased leaves. A few annotated
sample images from the proposed NWRD segmentation dataset are shown Figure 2, along
with their binary masks.

Figure 2. Sample images from the NWRD dataset: annotated images showing rust disease, along
with their binary masks.

3.4. Disease Detection Pipeline for Rust Identification in Wheat Crop

Figure 3 illustrates the disease detection pipeline proposed in this work to extract use-
ful information and features from the NWRD dataset in order to detect WRD in wheat crops.

3.4.1. Downsampling

The images in the dataset are of high resolution relative to the patch size of
128 × 128 pixels that our segmentation model accepts. The area of a patch is very small rel-
ative to the total area of the image. This results in the creation of a large number of patches
per image. A possible solution to reduce the number of patches is to increase the patch size;
however, increasing the patch size also increases the number of computations. Another
solution to this problem is to downsample the input images beforehand to a smaller size
and use them for training. Downsampling is the reduction in the spatial resolution of an
image. This process reduces the overall number of patches, reducing the training time.
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Figure 3. Detailed flow diagram of the training process of the proposed rust disease detection pipeline
in wheat crop. Step (1) involves the downsampling of input images to reduce their size. Step (2) is the
process of generating patches from input images. It includes both an adaptive patching module and
a grid patching module. Step (3) is the data augmentation step at the patch level. Step (4) includes
the training process, with adaptive patches as input to the UNet segmentation model, generating
predictions. Step (5) is the forward pass that uses grid patches for UNet segmentation and generates
prediction masks. These predictions are then sent to the AP module as feedback.

The process of downsampling results in a slight decrease in the F1 score, but this is a
tradeoff with the benefit of faster training in the case of a large dataset. Downsampling
can be performed using multiple methods; each method preserves information about lost
pixels in a different way. For our experiments, we used Lanczos filtering, which uses
a modified sinc filter to preserve the spatial information as much as possible. Lanczos
filtering is a technique that is used to resize images while maintaining their visual quality.
This is achieved by calculating new pixel values of the resized image based on a weighted
average of neighboring pixels of the original image. The weights are calculated using a
mathematical function known as the Lanczos kernel. The Lanczos kernel is defined as:

L(x) =

{
sinc(πx)sinc(πx

a ), if − a ≤ x ≤ a
0, otherwise

(1)

where sinc(πx) is the sinc function defined as sin(πx)/(πx), and a is a parameter known
as the filter radius, which governs the size of the kernel used in resizing an image. It
determines the extent to which neighboring pixels affect the value of each pixel in the
resized image. This method effectively reduces aliasing artifacts and preserves the details
and sharpness of the original image [31].
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3.4.2. Image Patching

The real-world images that are captured containing diseased and healthy leaves of
wheat are high-resolution images. The processing of these images is intensive and time-
consuming. As a first step of preprocessing, we break down these images into multiple
patches to feed to the model. We use a patch size of 128 × 128 pixels for both the images
and binary masks. This means that we can directly train our segmentation model on
these patches.

We explored three different patching techniques: grid patching (GP), adaptive patching
(AP), and adaptive patching with feedback (APF). The GP technique is used to divide a
larger image into a grid of smaller patches. These patches do not overlap with each
other. This technique is the most commonly used patching technique when working with
high-resolution images in deep learning. The patches can then be easily preprocessed
individually and used to train the convolutional models. However, the grid patching
technique comes with a drawback: it generates a large number of patches. When a dataset
has an imbalance between classes, like the NWRD dataset with imbalanced rust and non-
rust classes, grid patching generates a lot of unnecessary patches that contain non-rust
parts but do not contain rust parts. In this case, training segmentation models with GP
comparatively takes more time training on the non-rust class than on the rust class and does
not contribute much to the overall performance of the model. This unnecessary training on
the non-rust part also results in an increase in the overall time taken by the training process.

The AP technique is used to select the most useful patches for training from an image
while ensuring that patches with the maximum information are extracted. This technique
is used to reduce the number of patches that are input to the model, consequently reducing
the overall training time of the model. Unlike grid patching, this technique of adaptive
patching dynamically selects patches on runtime during training as required by the model.

Adaptive patching selects only those patches from the images for training that contain
specs of rust in them. The rest of the patches from the image are discarded. In Figure 4, the
red boxes represent patches from the image with rust on the leaves. The threshold value
that we set for a patch to be selected for training is 1%, which means that a patch with at
least 1% of rust pixels with respect to the overall pixels in an image will be selected in the
process of adaptive patching. In this technique, the model is selectively trained on only
rust patches, as the rest of the image patches are discarded.

The images from the NWRD dataset show that the ratio of rust and non-rust area
within an image is not balanced. This introduces the problem of unbalanced data for rust
and non-rust patches. If only adaptive patching is used where rust-based patches are
input to reduce the computations, the model becomes biased towards rust and generates
false positives on test images. To minimize this problem, we propose a new technique of
adaptive patching with feedback in which rust and noise-based patches from the input
images are selected for feature learning.

The adaptive patching with feedback technique has two main steps. (1) It starts
with a simple adaptive patching technique as discussed in the section above. It selects
a few patches of the image for training that contain some traces of rust and discards
other patches. This reduces the total number of patches by almost 10 times, consequently
reducing the training time. It is noteworthy that only patches of a single class are obtained
by this method, i.e., the disease class. Each rust patch obtained by this selective patching
technique contains 128 × 128 pixels.

(2) As a second step, a feedback loop is used, i.e., model predictions are merged with
the target binary masks of input images in order to include noisy patches for training. The
new mask then contains both areas that are annotated as rust in the original masks and
areas that the model segmented as rust. This means that the adaptive patching algorithm
can now pick up the pixels in the image that were part of the rust traces and the pixels
that were classified as false positives by the model. The algorithm then includes patches
according to the new mask for the upcoming training epochs. This trains the model in
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areas where rust is present, as well as in areas where the models struggled in the previous
epochs. The training continues, with step 2 executed after constant intervals.

Figure 4. The process of obtaining patches from an image. (a) Sample images from the dataset, with
red boxes indicating the presence of rust. (b) Section of the image with rust-effected leaves (c) Final
patches from the sample image, which are fed to the model for prediction.

3.4.3. Data Augmentation

In the deep learning paradigm, the more data, the better; therefore, data augmentation
is useful to increase the size of a dataset by generating new variations of existing data
samples. This will help with improving the accuracy and generalization capabilities of
the detection model. Cheng et al. (2023) [32] proposed a new augmentation model to
address the dataset scarcity problem for wheat disease detection. In our work, we applied
patch-level augmentation, including horizontal and vertical flips of the patches passed
down to the data augmentation module through the patching module, as illustrated in
Figure 5.

Figure 5. Patches generated from the original images of the NUST Wheat Rust Disease Dataset
(NWRD). The yellow area in a patch indicates the presence of rust disease, while the purple area
shows the non-rust part of a patch.

Table 2 shows the total number of patches generated using the grid patching and
adaptive patching techniques after the data augmentation step. As we input 22 and
100 images of the NWRD dataset, for training specifically, there is a huge difference between
the number of generated patches. Adaptive patching definitely reduces the number by
ensuring that patches with maximum useful information are retained for training.
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Table 2. Breakdown of the patches generated using grid and adaptive patching techniques for input
images of NWRD during the process of training, testing, and validation.

Images Process No. of Patches Generated in GP
(Stride 32) No. of Patches Generated in AP

Training 72,592 average of 12,000
22 Validation 468 468

Test 703 703

Training 327,929 average of 80,000
100 Validation 2237 2237

Test 2737 2737

3.4.4. Segmentation

A UNet model with 4 encoders and 4 decoder blocks was trained with the preprocessed
dataset. The model input size was set to 128 × 128 pixels. Images were split into patches
with dimensions of 128 × 128 to be fed into the model for training. The model was trained
with patch strides of different sizes. From the experimentation results, it was observed
that the model did not perform best with a patch stride of 128. However, a patch stride of
32 appeared to have a good balance between the overall number of generated patches and
the time taken for the training process to complete.

3.4.5. Forward Pass

During the training process, a forward pass is used to update the weights of the UNet
segmentation model, and another forward pass is used for the purpose of feedback. The
first forward pass uses the patches generated through adaptive patching; those patches are
then passed through the data augmentation module to apply augmentation techniques to
the patches. Once augmentation is done, in this forward pass, focal loss is used to update
weights during backpropagation. The second forward pass uses grid patches obtained from
the training dataset and generates prediction masks for the training data. The prediction
masks are then merged with the target binary masks to form a new mask, which is then
used by the adaptive patching algorithm to generate patches for the upcoming epochs.
However, the second forward pass occurs after a fixed number of training epochs. In our
experimentation, we observed that 5 epochs between the adaptive patching process yield
better results in providing a good balance between time complexity and accuracy of the
UNet segmentation model on the NWRD data.

4. Training and Results
4.1. Performance Evaluation Metrics

The performance of the segmentation model for wheat rust detection was evaluated
using well-known evaluation metrics. The F1 score is the harmonic mean of precision and
recall. It is a single metric that summarizes both precision and recall. The NWRD dataset
presents images in which the majority is non-rust or healthy and a small portion comprises
rust leaves. This means that there is a class imbalance problem prevalent in our data, while
dealing with class-imbalanced data, choosing evaluation metrics sufficiently robust to class
distribution is essential. F1 score is a helpful evaluation metric for imbalanced data because
it provides a balanced measure of precision and recall. The F1 score is calculated using the
following formula:

F1-score = 2 · Precision · Recall
Precision + Recall

(2)

Precision refers to the proportion of correctly identified rust disease cases (i.e., true
positives) among all the predicted rust disease cases. In other words, it measures how
accurate the model is when it predicts that a wheat crop has rust disease. A high precision



Sensors 2023, 23, 6942 11 of 16

value means that the model is making fewer false-positive errors, i.e., predicting that a
wheat crop has rust disease when it actually does not.

Precision =
True Positives

True Positives + False Positives
(3)

Recall, on the other hand, refers to the proportion of correctly identified rust disease
cases among all the actual rust disease cases. In other words, it measures how well the
model is able to identify all the wheat crops that actually have rust disease. A high recall
value means that the model is making fewer false-negative errors, i.e., correctly identifying
most of the wheat crops that have rust disease.

Recall =
True Positives

True Positives + False Negatives
(4)

4.2. Model Training

The overall training process of UNet is divided into two stages: model training and a
forward pass to generate predictions of the GPs for feedback. The preprocessing and the
UNet model are implemented in Python and Pytorch, respectively. In our experiments, we
explored the aforementioned performance parameters on 22 and 100 images of the dataset.
The numbers of patches generated for the GP and AP are presented in Table 2. The images
are randomly selected, with 80% assigned to training, 10% to validation, and 10% to testing.

For UNet model training, we used the RMSprop optimizer [33], with the initial learning
rate set to 1 × 10−6 and scheduled to decrease exponentially using the ExponentialLR
scheduler. Training was carried out for 500 epochs, utilizing a batch size of 64 and a stride
of 32 and 128. Furthermore, we experimented with multiple loss functions, such as focal
loss and dice loss. In our case, focal loss yielded the best results. The experiments were
conducted on two NVIDIA Tesla V100 GPUs, each with 32 GB memory. The best qualitative
results for disease detection in wheat crops using the NWRD dataset are shown in Figure 6.

Figure 6. Qualitative analysis: the visual results of rust detection. (a) The original binary mask of
diseased leaves. (b) Results predicted by the rust detection model.
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4.3. Results

Table 3 presents the experimental results for different patching techniques and input
strides on the test dataset for 22 and 100 images. Initially, we experimented with a smaller
dataset (22 images) to estimate the hyperparameters for compression of the input images
and the UNet training and later implemented the complete dataset. For the smaller dataset,
GP with a stride of 32 generated the best results by achieving 0.683 precision, 0.685 recall,
and 0.684 F1 score for the rust class. However, from the training perspective, it took approx-
imately 11 days to train the model. In contrast, APF with an input stride of 32 achieved
an F1 score of 0.65 after approximately 2 days of training. The training time column in
Table 3 refers to the total time taken (in minutes) by the semantic segmentation pipeline
using different patching techniques, numbers of images, and input strides to yield the
results. Here, we report the model training time instead of GPU hours, since preprocessing
is performed on the CPU and the model is trained on the GPU. For the complete dataset,
APF with a stride 32 achieved 0.506 precision, 0.624 recall, and 0.557 F1 score for the rust
class. For a fair comparison, we also trained a model for GP with an input stride of 32;
however, the training did not complete due to the high memory utilization of the GPU.

Table 3. The semantic segmentation results of the 22 and 100 images of the WRD with different
patching techniques and input strides using the NWRD dataset. The experiments were conducted on
two NVIDIA Tesla V100 GPUs, each with 32 GB memory.

Patching Type # of Images Input Stride Precision Recall F1 Score Training Time (mins.)

GP 22 128 0.694 0.557 0.618 1676
GP 22 32 0.683 0.685 0.684 15,820

APF 22 128 0.685 0.555 0.613 743
APF 22 32 0.578 0.743 0.650 2661

GP 100 128 0.510 0.544 0.514 7474
APF 100 32 0.506 0.624 0.557 4791

5. Discussion

Datasets are instrumental in addressing complex research questions [34], and they
play a vital role in advancing research across various disciplines [35]. The availabil-
ity of high-quality datasets is crucial for pattern and trend analysis, driving research
advancements [36]. In this work, we present a challenging open-source segmentation
dataset of WRD. This is a multileaf complex dataset of WRD with slightly wide-angle
images of wheat crops. It is challenging due to the high complexity of the images. The
dataset has arbitrarily shaped disease regions, is densely annotated, and includes complex
foregrounds and backgrounds. Semantic segmentation helps in fine-grained understanding
of the structure and layout of images and finds its applications in various computer vision
tasks [37]. Semantic segmentation is also utilized for disease identification and detection
in plants and fruits, which is a tedious and complex task [38]. Training of segmentation
models requires a vast amount of data to learn patterns and trends. The open-source
dataset presented in this work will bridge the gap between the wheat disease detection
problem and deep learning solutions by solving the data scarcity problem in this domain.

The only semantic segmentation research work related to wheat disease segmentation
was carried out by Li et al. (2022) [11]. In their research, the authors concluded that
Octave-UNet outperformed UNet and PSPNet on the CDTS dataset in terms of IoU over
a small region and improved accuracy of spore and leaf segmentation. To compare our
proposed technique with state-of-the-art work, we trained and tested UNet and Octave-
UNet segmentation models on the proposed NWRD dataset, along with the APF patching
technique. For a fair comparison, we used the same preprocessing techniques proposed
by Li et al. (2022) [11] (images containing only background were removed from the train
and test datasets). Additionally, similar hyperparameters for training were used, such as
a stride of 128, to generate the evaluation metrics of precision, recall, F1 score, and IoU.
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Table 4 shows a comparison of the results of our proposed techniques with those of the
state of the art in the field of WRD detection.

Table 4. Comparison of our proposed work with the state-of-the-art semantic segmentation techniques.

Technique Model Input Stride Precision Recall F1 Score IoU Training Time (mins.)

APF Octave-UNet 128 0.580 0.497 0.529 0.316 923
APF UNet 128 0.593 0.552 0.564 0.438 678

The results show that the APF technique with the UNet segmentation model achieves
an F1 score of 0.564 and an IoU of 0.438, while Octave-UNet with the APF technique yields
an F1 score of 0.529 and an IoU of 0.316. The results clearly demonstrate that in the case
of the NWRD dataset, which is a complex real-world WRD dataset, the APF patching
technique with the UNet segmentation model outperforms Octave-UNet in terms of F1 and
IoU scores.

A comparison of our approach of APF and the UNet segmentation model with the
Octave-UNet model indicates that for the real-world NWRD dataset, our technique per-
forms better than the state-of-the-art Octave-UNet model. In their wheat segmentation
work, the authors used an image filtering technique that discards all image patches with
a pure background, i.e., no rust spores or spots. We argue that removing the background
images from the dataset hinders the ability of the model to learn the actual trend of the
onset of the disease. Consequently, the model will generate false positives when tested
on real-world WRD field data. The early onset of WRD affects a minority of leaves while
the majority of the leaves in the field are healthy. The model also needs to train on healthy
images to generalize and distinguish between rust and non-rust parts more accurately.

In conclusion, the UNet segmentation model, along with the APF technique, consider-
ably reduces the time taken for training and produces comparable results. Hence, there
lies a tradeoff between processing time and precision. Since the rust spots, as compared to
the healthy part of the leaf in most of the images, are very small, the UNet model is not
performing at its best. Our results demonstrate that a semantic segmentation approach can
be used to estimate the infected area in a wheat field. The initial results of the segmentation
are promising, with room for further improvement. This is the main motivation behind
making the NWRD dataset public so that the research community can explore models and
techniques to solve the problem of controlling WRD disease in wheat crops.

The investigations carried out in this study will lead to new opportunities for crop
monitoring—specifically segmentation of WRD in wheat crops. Since WRD is infectious,
the segmentation algorithm will help estimate the infected plants in their initial stages.
Furthermore, the open-source pretrained models can be mapped to other diseases in crops,
such as ascochyta blight in cotton and bacterial leaf streak disease in corn, using the transfer
learning approach. One of the limitations of our work is the class imbalance problem
prevalent in the NWRD dataset. As a complex dataset focusing on the early onset of
rust disease, the captured images contain a major portion of healthy leaves and a minor
percentage of disease, resulting in the requirement of a multistage preprocessing and
feature extraction process. In the future, we plan to improve the preprocessing module and
the detection pipeline, which will consequently improve the segmentation results.

6. Conclusions

In this work, we present an open-source semantic segmentation dataset of WRD
named the NWRD. The dataset contains high-resolution (max. 6016 × 4000) multileaf
images from wheat fields under various illumination conditions with complex backgrounds.
Previous works in this domain have focused on single-leaf, low-resolution images. Since
the input image size is quite large, we explored different compression techniques, such as
down-sampling and patch-based segmentation, to reduce the memory footprint. We also
implemented the UNet model with different patching strategies for semantic segmentation
of the NWRD. We achieved 0.506 precision and a 0.557 F1 score for the rust class. We also
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compared the presented approach with state-of-the-art segmentation techniques specifically
in the area of wheat disease segmentation. Our proposed preprocessing technique of
adaptive patching with feedback (APF) along with the UNet model showed an improved
F1 score and IoU as compared to Octave-UNet on the NWRD dataset. The achieved
segmentation results are promising, with room for further improvement. Therefore, we
made all explorations, models, and implementations open-source so that our approach
can be easily adopted or further improved by the research community. In future work, we
intend to improve the disease detection pipeline by applying fine-grained feature extraction
techniques that can consequently improve the segmentation results.
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