
Citation: Bousdekis, A.; Kerasiotis,

A.; Kotsias, S.; Theodoropoulou, G.;

Miaoulis, G.; Ghazanfarpour, D.

Modelling and Predictive Monitoring

of Business Processes under

Uncertainty with Reinforcement

Learning. Sensors 2023, 23, 6931.

https://doi.org/10.3390/s23156931

Academic Editors: Alberto Cano and

Sylvio Barbon Junior

Received: 24 May 2023

Revised: 26 July 2023

Accepted: 1 August 2023

Published: 3 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Modelling and Predictive Monitoring of Business Processes
under Uncertainty with Reinforcement Learning
Alexandros Bousdekis 1,*, Athanasios Kerasiotis 1, Silvester Kotsias 1, Georgia Theodoropoulou 1 ,
Georgios Miaoulis 1 and Djamchid Ghazanfarpour 2

1 Department of Informatics and Computer Engineering, University of West Attica, 12242 Egaleo, Greece
2 Department of Informatics, University of Limoges, 87032 Limoges, France
* Correspondence: albous@uniwa.gr

Abstract: The analysis of business processes based on their observed behavior recorded in event
logs can be performed with process mining. This method can discover, monitor, and improve
processes in various application domains. However, the process models produced by typical process
discovery methods are difficult for humans to understand due to their high complexity (the so-
called “spaghetti-like” process models). Moreover, these methods cannot handle uncertainty or
perform predictions because of their deterministic nature. Recently, researchers have been developing
predictive approaches for running business cases of processes. This paper focuses on developing a
predictive business process monitoring approach using reinforcement learning (RL), which has been
successful in other contexts but not yet explored in this area. The proposed approach is evaluated in
the banking sector through a use case.

Keywords: predictive business process monitoring; process mining; business process management;
machine learning; data analytics

1. Introduction

Business Process Management (BPM) enables organizations to merge their own re-
quirements with those of their customers, the company’s goals, and the monitoring and
execution of business processes [1]. There is a growing trend in which information systems
automatically capture and make process data available in the form of event logs. Process
mining can be used to analyze business processes based on their recorded behavior in
event logs, providing a means to discover, monitor, and improve processes across different
application domains [2]. Proper application of BPM leads to enhanced efficiency and
productivity while reducing costs and errors. BPM also offers a way for businesses to
ensure the secure execution of procedures, protocols, resources, and capital management,
as well as evaluate and optimize their own processes with ease [3].

The demand for data scientists who can transform data into valuable insights is rapidly
increasing. In the context of process mining, the challenge is to extract relevant information
about the actual processes being executed from the vast amount of data available. Process
mining aims to discover, monitor, and improve real processes by extracting knowledge
from event logs readily available in today’s information systems [4]. Therefore, process
mining can analyze these data to establish a relationship between the observed behavior
of people, machines, and organizations and the modeled behavior. The standard process
discovery techniques may generate complex process models (the so-called “spaghetti-like”
process models) and are difficult for humans to comprehend [5]. The complexity of the
process models may depend on the event log behavior, the implemented process discovery
algorithm, etc. Most importantly, these models are deterministic, so they are not capable of
managing uncertainties that are implicit in business processes or generating predictions
about their future execution [6]. Recently, there has been a focus on developing approaches

Sensors 2023, 23, 6931. https://doi.org/10.3390/s23156931 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23156931
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7427-909X
https://doi.org/10.3390/s23156931
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23156931?type=check_update&version=1

Sensors 2023, 23, 6931 2 of 17

for predictive business process monitoring to forecast the future progression of ongoing
cases of a business process [6]. Predictive business process monitoring targets different
goals, such as predicting the next activity to be performed and estimating its execution
time or anticipating all the activities to be executed until the end of the trace, namely the
trace suffix, as well as the total execution time of the trace, that is, the trace time [7,8].

In recent years, there has been a surge in research studies that suggest utilizing
machine learning algorithms to enable predictive capabilities. However, the application
of reinforcement learning (RL) in the field of business processes has been overlooked [8].
RL is a type of machine learning technique that trains models to maximize a reward signal
without labeling data or attempting to uncover any underlying patterns [9].

The current paper is an extension of our previous work [10]. In this paper, motivated
by previous successful implementations of RL in various contexts, we develop a predictive
business process monitoring approach with the use of RL. More specifically, the proposed
approach takes as input an event log and provides as output predictions about the next ac-
tivities, and specifically about activities that have been defined as goal states (e.g., activities
corresponding to decisions), along with the most efficient path on a process model. To do
this, it incorporates five subsequent steps: (i) event log extraction; (ii) process discovery
for generating options in process models; (iii) process statistical analysis for selection of
the process model; (iv) handling incomplete traces; and (v) creating the uncertain process
model and providing predictions about the business process. The proposed approach is
evaluated in the context of a use case from the banking sector and is compared to deep
learning algorithms.

The rest of the paper is organized as follows: Section 2 presents the theoretical back-
ground and the related works on process mining and predictive business process mon-
itoring. Section 3 describes our proposed approach for the modelling and predictive
monitoring of business processes under uncertainty with RL. Section 4 discusses the results
derived from the deployment of the proposed approach to the banking sector and performs
a comparative analysis with deep learning algorithms. Section 5 concludes the paper and
presents our plans for future work.

2. Background and Related Works

Process mining extracts valuable insights and information from the event logs gener-
ated by various types of information systems [11]. It involves using specialized software
tools to analyze event logs and discover the hidden patterns, structures, and correlations
that exist within them [4]. By analyzing these patterns and structures, process mining can
help organizations identify bottlenecks, inefficiencies, and other areas where processes can
be improved [2].

Despite their proven benefits, process discovery methods usually create complex
process models (the so-called “spaghetti-like” models) that are not easily understood
by humans [12]. Moreover, due to their deterministic nature, they are not capable of
handling uncertainty or performing predictions [6]. To this end, predictive business process
monitoring methods have emerged.

Several research works deal with predictive business process monitoring with the
use of machine learning methods for a variety of applications [2]. Machine learning
methods that have been used include Naïve Bayes classifier [13], Support Vector Regression
(SVR) [14], logistic regression [15], random forest [16], K-nearest neighbor [17], Bayesian
Networks [6,14], trace clustering [18], and Artificial Neural Networks (ANN) [19]. In
addition, predictive business process monitoring can benefit from deep learning methods.
Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) have
attracted increased research attention [20–24]. They have been used for predicting the
next event of a running case and its timestamp [20,24]; predicting sequences of the next
events and their associated resource pools [20]; predicting the remaining time [25]; and
modelling the time dependencies between events [26]. Despite the promising results of
deep learning methods in predictive business process monitoring, their explainability has

Sensors 2023, 23, 6931 3 of 17

arisen as a challenge [27–29], and they require vast amounts of data [30]. At the same time,
predictive business process monitoring has not sufficiently adopted other machine learning
algorithms. For a more detailed review of machine learning in predictive business process
monitoring, the reader may refer to [15,31,32].

In this context, reinforcement learning (RL) in predictive process monitoring has just
started to emerge [8] as a promising type of ML capable of training models to directly
maximize a reward signal, without assigning any label or necessarily trying to find some
hidden structure in the data. In RL, a learning agent tries to achieve a predefined goal
state while navigating through an environment that consists of states and actions. The
agent learns by receiving rewards for selecting actions that lead to different states and
moves closer to the goal state. Unlike conventional instruction-based methods, RL involves
learning by trial and error [9]. However, for RL to be effective in complex, real-world
scenarios, agents need to efficiently represent high-dimensional inputs and generalize their
past experiences to new situations, something which is a challenging task [33].

Despite the large number of successful implementations of RL in various contexts
(e.g., [34–37]), its applicability in business processes is an underexplored area [8]. In [38], the
authors implemented an RL-based approach for optimizing resource allocation in business
process execution in order to tackle the complexity and dynamicity of resource allocation
in BPM. The experimental results indicate that their approach outperforms well-known
heuristic or hand-coded strategies. In [39], the authors proposed deep RL for business
process optimization. More specifically, the author implemented deep Q-learning in order
to deal with uncertain environments where business processes are executed. Their results
showed that business process optimization has the potential to benefit from RL; however,
further research attention should be directed towards parameter setting. In [40], the authors
proposed an online RL approach for proactive process adaptations. Their work is placed
in the context of proactive computing [41], aiming at eliminating the impact of upcoming
issues during process execution based on prediction events.

Arguably, the most representative research work in the field of predictive process
monitoring with the use of RL was proposed by [8]. The authors investigated the appli-
cability of RL, and particularly the Deep Q Networks (DQN), for the prediction of both
next event activity and time completion as well as the prediction of the whole progression
of running cases. Their work represents the core of research on RL in predictive process
monitoring. They compared their results to those derived from the application of LSTM
and they demonstrated that DQN outperforms approaches based on LSTM architectures,
while the plain workflow information seems to be insufficient to train an RL agent for the
activity prediction task. The authors propose as a future research direction, among others,
the use of alternative RL techniques.

3. The Proposed Approach for the Modelling and Predictive Monitoring of
Business Processes

In this section, we present the proposed approach for the modelling and predictive
monitoring of business processes under uncertainty with RL. The proposed approach takes
as input an event log and provides as output predictions about the next activities, and
specifically about activities that have been defined as goal states, along with the most
efficient path on a process model. To do this, it incorporates five subsequent steps: (i) event
log extraction (Section 3.1); (ii) process discovery for generating options in process models
(Section 3.2); (iii) process statistical analysis for selection of the process model (Section 3.3);
(iv) handling incomplete traces (Section 3.4); and (v) creating the uncertain process model
and providing predictions about the business process (Section 3.5). Table 1 presents the
data flow throughout the aforementioned steps by showing the inputs, the functions, and
outputs of each step.

Sensors 2023, 23, 6931 4 of 17

Table 1. The inputs, functions, and outputs of each step of the proposed approach.

Section Step Input Function Output

3.1 Event Log Extraction Information System
Database

Transformation into event log
in CSV or XES format

Event log in CSV or
XES format

3.2
Process Discovery for
Generating Options in
Process Models

Event log in CSV or
XES format

Process discovery
• Alpha Miner
• Heuristic Miner
• Inductive Miner

Petri net from Alpha Miner
Petri net from Inductive Miner
Petri net from Heuristic Miner
Performance-based Directly
Follows graph (DFG)
Frequency-based DFG
Petri net from DFG

3.3
Process Statistical
Analysis for Selection
of the Process Model

Petri net from
Alpha Miner
Petri net from
Inductive Miner
Petri net from
Heuristic Miner
Performance-based DFG
Frequency-based DFG
Petri net from DFG

Calculation of
evaluation metrics:
• Fitness
• Precision
• Generalization
• Simplicity
Selection of the optimal
process discovery algorithm
and process model
Calculation of the frequencies
of activities and transitions

Selected process model
Transition probabilities
among activities

3.4 Handling Incomplete
Traces

Selected process model
Event log

Identification of
incomplete traces
Creation of a “Frozen” state for
incomplete traces
Calculation of transition
probabilities among activities
based on frequencies

Transition probabilities
among activities

3.5

Creating the Uncertain
Process Model and
Providing Predictions
about the Business
Process

Selected process model
Transition probabilities
among activities

Creation of the uncertain
process model using RL
Definition of the goal state
Calculation of the
optimal policy

The most efficient path on the
selected process model
Predictions about the next
activity and the goal state

3.1. Event Log Extraction

To begin the proposed approach, the dataset is extracted from the relevant information
system in the form of an event log, which is required to have certain attributes. These
mandatory attributes include a case ID for each event, an activity related to each event, and
timestamps to order events and measure performance. Optional attributes may also be
included. However, event log data are not always in a usable format for process mining
and may need to be reconstructed from other business data. Typically, event logs are in the
XES format, which is a tag-based language for capturing system behaviors through event
logs and streams. The XES standard includes a schema for the structure of the event log
and its extensions, as well as prototypes for providing semantics to certain attributes [42].
Figure 1 provides an example of the XES format. It is also possible to convert the dataset
into a CSV/XLS file for a better understanding of its elements.

Sensors 2023, 23, 6931 5 of 17Sensors 2023, 23, x 5 of 17

Figure 1. An example of the XES format.

3.2. Process Discovery for Generating Options in Process Models
Process discovery refers to a data-driven technique that generates a process model

without prior knowledge by utilizing an event log as input. It must be able to cope with
noisy, incorrect, and incomplete data. Process discovery is used in several ways such as
understanding an unknown process structure, examining decision paths between choice
points, identifying the path with the highest number of cases, and examining the distri-
bution of cases along possible routes. Our methodology involves the implementation and
comparison of three process discovery algorithms, namely Alpha Miner, Heuristic Miner,
and Inductive Miner. For more details about process discovery algorithms, readers may
refer to [43]. This step generates options for process models derived from the aforemen-
tioned process discovery algorithms. More specifically, it produces the following process
models: Petri net derived from Alpha Miner, Petri net derived from Inductive Miner, Petri
net derived from Heuristic Miner, Performance-based DFG, Frequency-based DFG, and
Petri net derived from DFG. These process models feed into the subsequent step for fur-
ther processing.

3.3. Process Statistical Analysis for Selection of the Process Model
The examination of a business process involves a statistical analysis that yields sig-

nificant insights and serves as the basis for subsequent event log processing. Several met-
rics are employed to analyze and select the most suitable mining algorithm for the case,
including [44] (i) fitness, which measures how well the model captures the event data; (ii)
precision, which quantifies the fraction of the behavior allowed by the model that is not
seen in the event log; (iii) generalization, which assesses the extent to which the resulting
model will be able to reproduce future behavior of the process; and (iv) simplicity, which
quantifies the complexity of the process model. The statistical measures help to determine
the optimal process discovery algorithm and, thus, its resulting process model. Moreover,
in this step, the frequencies of the activities and of the transitions among them are calcu-
lated, forming the basis for deriving the transition probabilities.

Figure 1. An example of the XES format.

3.2. Process Discovery for Generating Options in Process Models

Process discovery refers to a data-driven technique that generates a process model
without prior knowledge by utilizing an event log as input. It must be able to cope with
noisy, incorrect, and incomplete data. Process discovery is used in several ways such as
understanding an unknown process structure, examining decision paths between choice
points, identifying the path with the highest number of cases, and examining the distri-
bution of cases along possible routes. Our methodology involves the implementation
and comparison of three process discovery algorithms, namely Alpha Miner, Heuristic
Miner, and Inductive Miner. For more details about process discovery algorithms, read-
ers may refer to [43]. This step generates options for process models derived from the
aforementioned process discovery algorithms. More specifically, it produces the following
process models: Petri net derived from Alpha Miner, Petri net derived from Inductive
Miner, Petri net derived from Heuristic Miner, Performance-based DFG, Frequency-based
DFG, and Petri net derived from DFG. These process models feed into the subsequent step
for further processing.

3.3. Process Statistical Analysis for Selection of the Process Model

The examination of a business process involves a statistical analysis that yields sig-
nificant insights and serves as the basis for subsequent event log processing. Several
metrics are employed to analyze and select the most suitable mining algorithm for the
case, including [44] (i) fitness, which measures how well the model captures the event
data; (ii) precision, which quantifies the fraction of the behavior allowed by the model
that is not seen in the event log; (iii) generalization, which assesses the extent to which the
resulting model will be able to reproduce future behavior of the process; and (iv) simplicity,
which quantifies the complexity of the process model. The statistical measures help to
determine the optimal process discovery algorithm and, thus, its resulting process model.
Moreover, in this step, the frequencies of the activities and of the transitions among them
are calculated, forming the basis for deriving the transition probabilities.

Sensors 2023, 23, 6931 6 of 17

3.4. Handling Incomplete Traces

After exploring data, it is important to check if all the cases of the event log reach a final
state. If not, it would prove problematic in the calculation of the transition probabilities
among the activities of the process model. Therefore, we create a new state for all the
cases that do not reach terminal states and terminate them in that state. We call this state
“Frozen”. The transition probabilities are calculated using all individual instances on each
state divided by the complete number of instances: P(s) = instances(s)

instances . Moreover, based on
the frequencies of transitions among activities, calculated in the previous step, we calculate
the transition probabilities that will be used for handling the uncertainty of the process
model in the following step.

3.5. Creating the Uncertain Process Model and Providing Predictions about the Business Process

We use RL to solve an uncertain process model by finding the best policy. To do this,
this step takes as input (i) the selected process model in order to utilize the activities as
states and its structure with regard to the transitions among the activities; and (ii) the
transition probabilities among the activities.

To apply RL, we require an environment and an agent. The environment consists
of a set of states and actions, where the unique activities of the event act as states and
the possible actions represent the selection of the next state. Rewards are specified by
the developer based on what needs to be maximized. The agent is trained through the
algorithm that interacts with the environment set. RL problems involve defining three sets:
(i) the states of the environment (S), (ii) actions the agent can perform (A), and (iii) short-
term rewardsI). During training, the agent learns to make sequential decisions, aiming to
maximize the reward over an episode, which is a sequence of state, action, and rewards
that concludes at a terminal state. The reward system is used during the training process
to provide the agent with positive feedback for correct actions and negative feedback for
wrong ones. Below are the key terms in RL models:

• Policy (π): defines the agent’s strategy to decide on the next action based on the
present state.

• Discount factor γ (gamma): a number between 0 and 1 that determines the significance
of future rewards. If γ is equal to or greater than 1 in a problem without a terminal state
or when we cannot reach the terminal state, the undiscounted rewards may become
infinite. If γ is 0, the agent only values short-term rewards, making it short-sighted.

• Value function (V): calculates the expected long-term reward with discount.
• Learning rate: determines the rate at which the agent overrides old knowledge with

newly acquired knowledge.

Our proposed approach employs the Q-learning algorithm, a model-free reinforcement
learning technique that learns the value of an action in a given state without requiring
an environment model. It can handle problems with stochastic transitions and rewards
without any adjustments [45]. Q-learning is based on temporal difference and approximates
the optimal function q* using the action-value function Q, regardless of the policy being
followed. To perform Q-learning, we need a Q-table, which is a matrix of state×action that
stores the maximum expected future reward for the actions at each state. The Q-table can
be initialized with a policy we are trying to improve or no policy.

During training, the agent can get stuck in certain actions, even if they are not the
optimal ones, because of the exploration–exploitation problem. This problem can lead to
sub-optimal policies and results. One approach to address this problem is the ε-greedy
method, where ε is a parameter that controls the exploration–exploitation rate by determin-
ing the probability of choosing to explore or exploit. After the initialization, we select an
action by using the ε-greedy method, where

0 < ε < 1 and p is a random probability distribution action =

{
random action (a) p < ε

maxQ(a) else 1− ε

Sensors 2023, 23, 6931 7 of 17

Then, we perform the chosen action and we evaluate the observed outcome and
reward. Last, we update the Q-table. To carry out this procedure, the algorithm uses the
Q-function (Sutton, and Barto, 2018).

Q(St , At)← Q(St , At)︸ ︷︷ ︸
old value

+ a︸︷︷︸
learning rate

[Rt+1 + γmax
a

Q(St+1, a)−Q(St , At)]︸ ︷︷ ︸
new value with TD

To start the process, we set up the Q-table and let the agent select an action from a pool
of available actions. Then, the agent collects rewards and updates the Q-table accordingly.
To create the action pool, we use the reward matrix where non-negative rewards correspond
to available actions and negative rewards correspond to unavailable actions. In order to
randomly select an action from the pool, we use the Next Action function. Finally, we
update the Q-table using the Q-function. This process is repeated over a number of episodes
to train the agent.

The outcomes of this step, and thus the final outputs of the proposed approach, are
(i) the most efficient path on the selected process model; and (ii) predictions about the next
activity and the goal state, e.g., an activity that corresponds to a decision as the outcome of
the process.

4. Implementation and Deployment in the Banking Sector
4.1. Technology Stack

The methodology described was implemented using Python programming language,
a commonly used language for machine learning and data analytics projects. Anaconda
was selected for its user-friendly interface, which includes the Spyder IDE and Jupyter
notebook, as well as its ability to manage different environments. To read XES files, perform
process discovery, and create process models in the form of Petri nets and DFGs, pm4py,
a process mining library, was used. Data exploration, statistics, and permutations were
performed using Pandas, which was also used in conjunction with numpy and pm4py.
The probabilities for the Markov models were calculated using information extracted from
the dataset. The matplotlib library was used to create visualizations such as plots and
figures. NetworkX is a package designed for creating and analyzing complex networks and
data structures like graphs. It was used to visualize the Markov models. TensorFlow is a
collection of tools and libraries for machine learning development, and keras is an API for
deep learning built on top of TensorFlow. Keras-rl, which integrates with keras, implements
reinforcement learning algorithms and works with OpenAI Gym. These libraries were
used to create the ANN and DQN agents. Gym, an open-source library developed for
creating and evaluating reinforcement learning algorithms, was used to create a custom
environment and manage experimentation and exploration. It is also compatible with
libraries like TensorFlow.

4.2. Application of the Proposed Approach
4.2.1. Event Log Extraction

The dataset used comes from the Business Process Intelligence (BPI) Challenge 2017
and specifically the Offer Event log. In this case, the dataset is already extracted from a
database and it has been transformed to an event log, making it capable of subsequent pro-
cessing. This event log pertains to a loan application process of a Dutch financial institute.
This event log provides all the applications filled in 2016, and contains 1,202,267 events
pertaining to 31,509 loan applications. For these applications, a total of 42,995 offers were
created. We will be focusing on the business process that manages the 42,995 offers. The
dataset’s original form was in XES but it was also converted into a csv/xls file in order
to obtain a better understanding of the dataset and its elements. The features of the csv
file are presented in Table 2. Table 3 presents the identified states that correspond to the
activities of the business process along with their description.

Sensors 2023, 23, 6931 8 of 17

Table 2. The elements of the dataset.

Element Name Description

Action Action taken in the business process.

Org:resource User/actor from the organization.

Concept:name Business process state name.

EventOrigin Origin of business process (offer).

EventID The unique identifier of the event.

Lifecycle:transition Transition of state (complete).

Time:timestamp Given time at each state.

Case:concept:name The unique identifier of the event.

Case:MonthlyCost The monthly costs to be paid by the customer to reimburse the loan.

Case:Selected Boolean that indicates whether an offer is signed by the customer or not.

Case:ApplicationID The identifier of the application.

Case:FirstWithdrawalAmount The initial withdrawal amount.

Case:CreditScore The credit score of the customer.
The higher the credit score, the higher the client trustworthiness.

Case:OfferedAmount The loan amount offered by the bank.

Case:NumberOfTerms The number of payback terms.

Case:Accepted The offer is acceptable based on the bank’s terms.

OfferID The unique identifier of the offer.

Table 3. The activities of the event log.

State Name Description

O_Create offer Creating a credit offer.

O_Created Offer created.

O_Sent (online only) Offer sent online.

O_Sent (mail and online) Offer sent online and by mail.

O_Returned Client submitted documents for the offer.

O_Accepted Application passed all checks and verification.

O_Cancelled Offer canceled by the client.

O_Refused Offer canceled by the bank.

4.2.2. Process Discovery for Generating Options in Process Models

The aforementioned event log feeds into the process discovery methods that were
mentioned in Section 3.2. In this step, three algorithms and two types of visualization were
used. The algorithms used are Alpha Miner (Figure 2), Inductive Miner (Figure 3), and
Heuristic Miner (Figure 4). As for visualization, the following graphs (Figures 5 and 6) and
Petri nets (Figure 7) were used. A process tree can be directly transformed into a Petri net.

Sensors 2023, 23, 6931 9 of 17Sensors 2023, 23, x 9 of 17

Figure 2. The Petri net derived from Alpha Miner.

Figure 3. The Petri net derived from Inductive Miner.

Figure 4. The Petri net derived from Heuristic Miner.

Figure 5. Performance-based DFG.

Figure 2. The Petri net derived from Alpha Miner.

Sensors 2023, 23, x 9 of 17

Figure 2. The Petri net derived from Alpha Miner.

Figure 3. The Petri net derived from Inductive Miner.

Figure 4. The Petri net derived from Heuristic Miner.

Figure 5. Performance-based DFG.

Figure 3. The Petri net derived from Inductive Miner.

Sensors 2023, 23, x 9 of 17

Figure 2. The Petri net derived from Alpha Miner.

Figure 3. The Petri net derived from Inductive Miner.

Figure 4. The Petri net derived from Heuristic Miner.

Figure 5. Performance-based DFG.

Figure 4. The Petri net derived from Heuristic Miner.

Sensors 2023, 23, x 9 of 17

Figure 2. The Petri net derived from Alpha Miner.

Figure 3. The Petri net derived from Inductive Miner.

Figure 4. The Petri net derived from Heuristic Miner.

Figure 5. Performance-based DFG. Figure 5. Performance-based DFG.

Sensors 2023, 23, 6931 10 of 17Sensors 2023, 23, x 10 of 17

Figure 6. Frequency-based DFG.

Figure 7. The Petri net derived from DFG.

4.2.3. Process Statistical Analysis for Selection of the Process Model
The results obtained from calculating the percentage fit traces, average trace fitness,

log fitness, precision, generalization, and simplicity are presented in Table 4. Based on
these results, the Inductive Miner is selected as the preferred method for further pro-
cessing due to its superior performance. The Inductive Miner produces process models
that correspond to sound, block-structured workflow net systems, and is capable of han-
dling infrequent behavior by allowing for multiple variants. Additionally, Figure 8 dis-
plays a bar chart indicating the frequency of activities, which will aid in calculating the
transition probabilities.

Table 4. Process statistical analysis results of the process discovery algorithms.

 Alpha Miner Inductive Miner Heuristic Miner
Percentage fit traces 0.0 100.0 38.311
Average trace fitness 0.839 1.0 0.909
Log fitness 0.835 1.0 0.914
Precision 0.812 0.780 1.0
Generalization 0.991 0.983 0.799
Simplicity 0.455 0.630 0.577

Figure 6. Frequency-based DFG.

Sensors 2023, 23, x 10 of 17

Figure 6. Frequency-based DFG.

Figure 7. The Petri net derived from DFG.

4.2.3. Process Statistical Analysis for Selection of the Process Model
The results obtained from calculating the percentage fit traces, average trace fitness,

log fitness, precision, generalization, and simplicity are presented in Table 4. Based on
these results, the Inductive Miner is selected as the preferred method for further pro-
cessing due to its superior performance. The Inductive Miner produces process models
that correspond to sound, block-structured workflow net systems, and is capable of han-
dling infrequent behavior by allowing for multiple variants. Additionally, Figure 8 dis-
plays a bar chart indicating the frequency of activities, which will aid in calculating the
transition probabilities.

Table 4. Process statistical analysis results of the process discovery algorithms.

 Alpha Miner Inductive Miner Heuristic Miner
Percentage fit traces 0.0 100.0 38.311
Average trace fitness 0.839 1.0 0.909
Log fitness 0.835 1.0 0.914
Precision 0.812 0.780 1.0
Generalization 0.991 0.983 0.799
Simplicity 0.455 0.630 0.577

Figure 7. The Petri net derived from DFG.

4.2.3. Process Statistical Analysis for Selection of the Process Model

The results obtained from calculating the percentage fit traces, average trace fitness,
log fitness, precision, generalization, and simplicity are presented in Table 4. Based on these
results, the Inductive Miner is selected as the preferred method for further processing due to
its superior performance. The Inductive Miner produces process models that correspond to
sound, block-structured workflow net systems, and is capable of handling infrequent behav-
ior by allowing for multiple variants. Additionally, Figure 8 displays a bar chart indicating
the frequency of activities, which will aid in calculating the transition probabilities.

Table 4. Process statistical analysis results of the process discovery algorithms.

Alpha Miner Inductive Miner Heuristic Miner

Percentage fit traces 0.0 100.0 38.311

Average trace fitness 0.839 1.0 0.909

Log fitness 0.835 1.0 0.914

Precision 0.812 0.780 1.0

Generalization 0.991 0.983 0.799

Simplicity 0.455 0.630 0.577

Sensors 2023, 23, 6931 11 of 17Sensors 2023, 23, x 11 of 17

Figure 8. Bar chart with the frequency of activities in the event log.

4.2.4. Handling Incomplete Traces
The aforementioned analysis revealed that some cases never reached a terminal state.

Therefore, we created a new state called “Frozen” for all unfinished cases. We also noticed
that all the cases from the “O_Created_Offer” state transitioned to the “O_Created” state,
so we removed “O_Created_Offer” to eliminate the complexity of the process model.
Moreover, we calculated the transition probabilities that will be used for handling the un-
certainty of the process model in the following step.

4.2.5. Creating the Uncertain Process Model and Providing Predictions about the Busi-
ness Process

This step takes as input the Petri net derived from the Inductive Miner and the tran-
sition probabilities that were calculated in the previous step. In this way, it learns the en-
vironment of the RL model, i.e., its structure and the transition probabilities among its
states. The reward matrix of the RL model is presented in Table 5, with the rows and col-
umns representing the activities of the process model that was chosen. Each cell in the
matrix corresponds to either a state or a transition between states. If an element has a value
of minus one (“−1”), it indicates that there is no direct connection between the states. On
the other hand, an element with a value of zero (“0”) denotes a direct connection between
the states, making it a valid action to move to that state. The goal state is represented by
the value one hundred (“100”), along with the transition to that state. The next step in-
volves initializing the Q-matrix, which is of the same size as the reward matrix, i.e., 8 × 8.

Table 5. Q-learning reward matrix.

 Frozen O_Accepted O_Canceled O_Created O_Refused O_Returned
O_Sent (Mail
and Online)

O_Sent
(Online Only)

Frozen −1 −1 −1 0 −1 −1 −1 −1
O_Accepted −1 100 −1 0 −1 −1 −1 −1
O_Canceled −1 −1 −1 0 −1 −1 −1 −1
O_Created −1 −1 0 −1 0 −1 0 0
O_Refused −1 −1 −1 0 −1 −1 −1 −1
O_Returned 0 100 0 −1 0 −1 −1 −1
O_Sent (mail
and online) 0 −1 0 −1 0 0 −1 −1

O_Sent
(online only)

0 −1 0 −1 0 0 −1 −1

Figure 8. Bar chart with the frequency of activities in the event log.

4.2.4. Handling Incomplete Traces

The aforementioned analysis revealed that some cases never reached a terminal state.
Therefore, we created a new state called “Frozen” for all unfinished cases. We also noticed
that all the cases from the “O_Created_Offer” state transitioned to the “O_Created” state,
so we removed “O_Created_Offer” to eliminate the complexity of the process model.
Moreover, we calculated the transition probabilities that will be used for handling the
uncertainty of the process model in the following step.

4.2.5. Creating the Uncertain Process Model and Providing Predictions about the
Business Process

This step takes as input the Petri net derived from the Inductive Miner and the
transition probabilities that were calculated in the previous step. In this way, it learns
the environment of the RL model, i.e., its structure and the transition probabilities among
its states. The reward matrix of the RL model is presented in Table 5, with the rows and
columns representing the activities of the process model that was chosen. Each cell in the
matrix corresponds to either a state or a transition between states. If an element has a value
of minus one (“−1”), it indicates that there is no direct connection between the states. On
the other hand, an element with a value of zero (“0”) denotes a direct connection between
the states, making it a valid action to move to that state. The goal state is represented by the
value one hundred (“100”), along with the transition to that state. The next step involves
initializing the Q-matrix, which is of the same size as the reward matrix, i.e., 8 × 8.

Table 5. Q-learning reward matrix.

Frozen O_Accepted O_Canceled O_Created O_Refused O_Returned O_Sent (Mail
and Online)

O_Sent
(Online Only)

Frozen −1 −1 −1 0 −1 −1 −1 −1

O_Accepted −1 100 −1 0 −1 −1 −1 −1

O_Canceled −1 −1 −1 0 −1 −1 −1 −1

O_Created −1 −1 0 −1 0 −1 0 0

O_Refused −1 −1 −1 0 −1 −1 −1 −1

O_Returned 0 100 0 −1 0 −1 −1 −1

O_Sent (mail
and online) 0 −1 0 −1 0 0 −1 −1

O_Sent
(online only) 0 −1 0 −1 0 0 −1 −1

Sensors 2023, 23, 6931 12 of 17

The Q-matrix initialization is the next step, and it is of the same size as the reward
matrix, 8 × 8. To implement Q-learning, three functions are used:

• Available_actions: This takes a number matching a state as input, which corresponds
to an activity. The available actions for the input state are selected from that row,
which are all indexes whose elements are non-negative.

• next_action: this takes the list of available actions as input and randomly selects one
of them.

• learn: This has three inputs, including the current state, an action, and the discount
factor gamma. The Q function is implemented, and a greedy method is used to select
an action.

The transitions among the states of the RL model are shown in Figure 9, which allows
us to make predictions about the next activity during the runtime of a process instance.
In this context, it also allows to perform predictions on the goal state which corresponds
to a decision within the process, i.e., whether an application is accepted (O_Accepted) or
rejected (O_Refused). The training graph in Figure 10 shows that it takes about 500 episodes
of training to achieve the maximum score and stable results. Table 6 presents the results
of Q-learning after training. Based on these results, the most efficient path on the process
model is O_Created—O_Sent (mail and online)—O_Returned—O_Accepted, as shown in
the Petri net of Figure 11.

Table 6. Q-learning results.

Frozen O_Accepted O_Canceled O_Created O_Refused O_Returned O_Sent (Mail
and Online)

O_Sent
(Online Only)

Frozen 0 0 0 51.2 0 0 0 0

O_Accepted 0 100 0 51.2 0 0 0 0

O_Canceled 0 0 0 51.2 0 0 0 0

O_Created 0 0 40.96 0 40.96 0 63.99 63.99

O_Refused 0 0 0 51.2 0 0 0 0

O_Returned 40.96 100 40.96 0 40.96 0 0 0

O_Sent (mail
and online) 40.96 0 40.96 0 40.96 79.99 0 0

O_Sent
(online only) 40.96 0 40.96 0 40.96 80 0 0

Sensors 2023, 23, x 12 of 17

The Q-matrix initialization is the next step, and it is of the same size as the reward
matrix, 8 × 8. To implement Q-learning, three functions are used:
• Available_actions: This takes a number matching a state as input, which corresponds

to an activity. The available actions for the input state are selected from that row,
which are all indexes whose elements are non-negative.

• next_action: this takes the list of available actions as input and randomly selects one
of them.

• learn: This has three inputs, including the current state, an action, and the discount
factor gamma. The Q function is implemented, and a greedy method is used to select
an action.
The transitions among the states of the RL model are shown in Figure 9, which allows

us to make predictions about the next activity during the runtime of a process instance. In
this context, it also allows to perform predictions on the goal state which corresponds to
a decision within the process, i.e., whether an application is accepted (O_Accepted) or
rejected (O_Refused). The training graph in Figure 10 shows that it takes about 500 epi-
sodes of training to achieve the maximum score and stable results. Table 6 presents the
results of Q-learning after training. Based on these results, the most efficient path on the
process model is O_Created—O_Sent (mail and online)—O_Returned—O_Accepted, as
shown in the Petri net of Figure 11.

Table 6. Q-learning results.

 Frozen O_Accepted O_Canceled O_Created O_Refused O_Returned O_Sent (Mail
and Online)

O_Sent
(Online Only)

Frozen 0 0 0 51.2 0 0 0 0
O_Accepted 0 100 0 51.2 0 0 0 0
O_Canceled 0 0 0 51.2 0 0 0 0
O_Created 0 0 40.96 0 40.96 0 63.99 63.99
O_Refused 0 0 0 51.2 0 0 0 0
O_Returned 40.96 100 40.96 0 40.96 0 0 0
O_Sent (mail
and online)

40.96 0 40.96 0 40.96 79.99 0 0

O_Sent
(online only)

40.96 0 40.96 0 40.96 80 0 0

Figure 9. Visualization of the transitions among the states. Figure 9. Visualization of the transitions among the states.

Sensors 2023, 23, 6931 13 of 17Sensors 2023, 23, x 13 of 17

Figure 10. Q-learning training scores.

Figure 11. The most efficient path on the Petri-net.

4.3. Comparative Analysis with Deep Learning Extensions
In response to the increasing usage of deep learning techniques for predictive busi-

ness process monitoring, we have replaced Q-learning with its deep learning counterpart
in our proposed approach for comparison purposes. Deep Q-learning makes use of an
Artificial Neural Network (ANN) to replace the Q-table, creating a Deep Q-Network
(DQN). Instead of value iteration, this approach employs a function approximator to ob-
tain an estimate of the optimal Q-function. To overcome this challenge, we need to intro-
duce the concepts of experience replay and target network. The agent stores its experi-
ences in memory through experience replay. Once a certain memory threshold is reached,
the agent can learn from it by randomly selecting uniformly distributed samples from the
stored memory, learning from batches to prevent biased decisions. The target network, on
the other hand, adds stability to the training process. The second network generates the
target Q values used to calculate the loss for each action during training. The updating of
the target network should be frequent yet slow.

The use of deep Q-learning algorithms for predictive business process monitoring
has been shown to require a large amount of data for optimal performance, according to
previous research [46,47]. In our proposed approach, we first create a network and a target
network, and then choose actions based on the exploration–exploitation trade-off. The
network’s weights are updated after each action selection [48]. Unlike traditional DQN,
which uses three convolution layers with ReLU activation for image inputs, we use four
dense layers with ReLU and linear activation for numerical input data. To set up the rein-
forcement learning environment and tasks, we use the Gym library and create an envi-
ronment represented as a class. We then set up a reward matrix or step function based on
our goal, guiding the agent through the matrix to learn optimal paths. After all necessary
attributes are set up, we validate the agent’s actions, set rewards for state transitions, and
notify the agent of cycle completion or incomplete transitions.

Figure 10. Q-learning training scores.

Sensors 2023, 23, x 13 of 17

Figure 10. Q-learning training scores.

Figure 11. The most efficient path on the Petri-net.

4.3. Comparative Analysis with Deep Learning Extensions
In response to the increasing usage of deep learning techniques for predictive busi-

ness process monitoring, we have replaced Q-learning with its deep learning counterpart
in our proposed approach for comparison purposes. Deep Q-learning makes use of an
Artificial Neural Network (ANN) to replace the Q-table, creating a Deep Q-Network
(DQN). Instead of value iteration, this approach employs a function approximator to ob-
tain an estimate of the optimal Q-function. To overcome this challenge, we need to intro-
duce the concepts of experience replay and target network. The agent stores its experi-
ences in memory through experience replay. Once a certain memory threshold is reached,
the agent can learn from it by randomly selecting uniformly distributed samples from the
stored memory, learning from batches to prevent biased decisions. The target network, on
the other hand, adds stability to the training process. The second network generates the
target Q values used to calculate the loss for each action during training. The updating of
the target network should be frequent yet slow.

The use of deep Q-learning algorithms for predictive business process monitoring
has been shown to require a large amount of data for optimal performance, according to
previous research [46,47]. In our proposed approach, we first create a network and a target
network, and then choose actions based on the exploration–exploitation trade-off. The
network’s weights are updated after each action selection [48]. Unlike traditional DQN,
which uses three convolution layers with ReLU activation for image inputs, we use four
dense layers with ReLU and linear activation for numerical input data. To set up the rein-
forcement learning environment and tasks, we use the Gym library and create an envi-
ronment represented as a class. We then set up a reward matrix or step function based on
our goal, guiding the agent through the matrix to learn optimal paths. After all necessary
attributes are set up, we validate the agent’s actions, set rewards for state transitions, and
notify the agent of cycle completion or incomplete transitions.

Figure 11. The most efficient path on the Petri-net.

4.3. Comparative Analysis with Deep Learning Extensions

In response to the increasing usage of deep learning techniques for predictive business
process monitoring, we have replaced Q-learning with its deep learning counterpart in our
proposed approach for comparison purposes. Deep Q-learning makes use of an Artificial
Neural Network (ANN) to replace the Q-table, creating a Deep Q-Network (DQN). Instead
of value iteration, this approach employs a function approximator to obtain an estimate of
the optimal Q-function. To overcome this challenge, we need to introduce the concepts of
experience replay and target network. The agent stores its experiences in memory through
experience replay. Once a certain memory threshold is reached, the agent can learn from it
by randomly selecting uniformly distributed samples from the stored memory, learning
from batches to prevent biased decisions. The target network, on the other hand, adds
stability to the training process. The second network generates the target Q values used
to calculate the loss for each action during training. The updating of the target network
should be frequent yet slow.

The use of deep Q-learning algorithms for predictive business process monitoring
has been shown to require a large amount of data for optimal performance, according
to previous research [46,47]. In our proposed approach, we first create a network and a
target network, and then choose actions based on the exploration–exploitation trade-off.
The network’s weights are updated after each action selection [48]. Unlike traditional
DQN, which uses three convolution layers with ReLU activation for image inputs, we
use four dense layers with ReLU and linear activation for numerical input data. To set
up the reinforcement learning environment and tasks, we use the Gym library and create
an environment represented as a class. We then set up a reward matrix or step function
based on our goal, guiding the agent through the matrix to learn optimal paths. After
all necessary attributes are set up, we validate the agent’s actions, set rewards for state
transitions, and notify the agent of cycle completion or incomplete transitions.

Sensors 2023, 23, 6931 14 of 17

To calculate and select rewards for each action, we utilize a reward matrix based on
the same principles as Q-learning (see Table 7.). The architecture of the Artificial Neural
Network we employ is shown in Figure 12. Our agent relies on the ANN along with an
ε-greedy policy and sequential memory.

Table 7. DQN reward matrix.

Frozen O_Accepted O_Canceled O_Created O_Refused O_Returned O_Sent (Mail
and Online)

O_Sent
(Online Only)

Frozen −1 −1 −1 0.1 −1 −100 −1 −1

O_Accepted −1 −1 −1 0.1 −1 −100 −1 −1

O_Canceled −1 −1 −1 0.1 −1 −100 −1 −1

O_Created −1 −1 −1 0.1 −1 −100 1 1

O_Refused −1 −1 −1 0.1 −1 −100 −1 −1

O_Returned −1 100 −1 −1 −1 −100 −1 −1

O_Sent (mail
and online) −1 −1 −1 −1 −1 1 −1 −1

O_Sent
(online only) −1 −1 −1 −1 −1 1 −1 −1

Sensors 2023, 23, x 14 of 17

To calculate and select rewards for each action, we utilize a reward matrix based on
the same principles as Q-learning (see Table 7.). The architecture of the Artificial Neural
Network we employ is shown in Figure 12. Our agent relies on the ANN along with an ε-
greedy policy and sequential memory.

Table 7. DQN reward matrix.

 Frozen O_Accepted O_Canceled O_Created O_Refused O_Returned
O_Sent (Mail
and Online)

O_Sent
(Online Only)

Frozen −1 −1 −1 0.1 −1 −100 −1 −1
O_Accepted −1 −1 −1 0.1 −1 −100 −1 −1
O_Canceled −1 −1 −1 0.1 −1 −100 −1 −1
O_Created −1 −1 −1 0.1 −1 −100 1 1
O_Refused −1 −1 −1 0.1 −1 −100 −1 −1
O_Returned −1 100 −1 −1 −1 −100 −1 −1
O_Sent (mail
and online) −1 −1 −1 −1 −1 1 −1 −1

O_Sent (online
only) −1 −1 −1 −1 −1 1 −1 −1

Figure 12. ANN model description.

After undergoing 50,000 training iterations, the agent has identified the optimal
route, which comprises three steps and achieves a maximum reward of 102. Furthermore,
we integrated a binary sorting neuron that utilizes a refined dataset and accepts seven
inputs, five of which represent the primary data for each case, while the remaining two
signify the classification outcomes. These primary elements include:
• Main elements:

o case: MonthlyCost
o case: FirstWithdrawalAmount
o case: CreditScore
o case: OfferedAmount
o case: NumberOfTerms

• Classification Results:
o Selected
o Accepted
To begin, we trained the ANN with both the primary elements and classification out-

comes. Following the completion of training, we leveraged the ANN to categorize each

Figure 12. ANN model description.

After undergoing 50,000 training iterations, the agent has identified the optimal route,
which comprises three steps and achieves a maximum reward of 102. Furthermore, we
integrated a binary sorting neuron that utilizes a refined dataset and accepts seven inputs,
five of which represent the primary data for each case, while the remaining two signify the
classification outcomes. These primary elements include:

• Main elements:

case: MonthlyCost
case: FirstWithdrawalAmount
case: CreditScore
case: OfferedAmount
case: NumberOfTerms

• Classification Results:

Selected
Accepted

To begin, we trained the ANN with both the primary elements and classification
outcomes. Following the completion of training, we leveraged the ANN to categorize each
case based on the five primary elements and then contrasted its own forecasts with the
actual classifications (as illustrated in Table 8).

Sensors 2023, 23, 6931 15 of 17

Table 8. DQN accuracy.

Accuracy

First training results (case: Selected) 84.85%

Second training results (case: Accepted) 67.57%

5. Conclusions and Future Work

Process mining is a useful method for analyzing business processes by examining
their observed behavior in event logs. However, traditional process mining methods have
their limitations due to their complexity and lack of ability to handle uncertainty and make
predictions. Recent research has focused on developing predictive approaches for business
process monitoring, and this paper proposes a new approach using reinforcement learning
(RL). The proposed RL-based approach was evaluated in a use case from the banking
sector and compared to traditional Q-learning and DQN methods. The results show that
Q-learning has better performance in simple problems, while DQN is more suitable for
complex problems due to its neural network structure.

Our future work will move in the following directions. First, we will embed the
hereby proposed approach for predictive business process monitoring into the “Smyrida”
system that we have developed [12]. “Smyrida” is a modular software system in the form
of a web application with open APIs, making it adaptive to new techniques for process
mining. Second, we plan to incorporate and compare additional RL algorithms in order to
examine their benefits, and also compare the proposed approach with other ML and deep
learning algorithms.

Author Contributions: Methodology, A.B. and G.M.; Software, A.K. and S.K.; Validation, A.K., S.K.
and G.T.; Investigation, A.B.; Writing—original draft, A.B., A.K., S.K. and G.T.; Writing—review &
editing, A.B.; Supervision, G.M. and D.G. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset that was used was retrieved from the BPI Challenge 2017
(https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884, accessed on 31 July 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Baiyere, A.; Salmela, H.; Tapanainen, T. Digital transformation and the new logics of business process management. Eur. J. Inf.

Syst. 2020, 29, 238–259. [CrossRef]
2. Garcia, C.D.S.; Meincheim, A.; Junior, E.R.F.; Dallagassa, M.R.; Sato, D.M.V.; Carvalho, D.R.; Santos, E.A.P.; Scalabrin, E.E. Process

mining techniques and applications—A systematic mapping study. Expert Syst. Appl. 2019, 133, 260–295. [CrossRef]
3. Hammer, M. What is business process management? In Handbook on Business Process Management 1: Introduction, Methods, and

Information Systems; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–16.
4. Van Der Aalst, W. Process mining: Overview and opportunities. ACM Trans. Manag. Inf. Syst. (TMIS) 2012, 3, 1–17. [CrossRef]
5. Imran, M.; Ismail, M.A.; Hamid, S.; Nasir, M.H.N. Complex Process Modeling in Process Mining: A Systematic Review. IEEE

Access 2022, 10, 101515–101536. [CrossRef]
6. Prasidis, I.; Theodoropoulos, N.-P.; Bousdekis, A.; Theodoropoulou, G.; Miaoulis, G. Handling uncertainty in predictive business

process monitoring with Bayesian networks. In Proceedings of the 2021 12th International Conference on Information, Intelligence,
Systems & Applications (IISA), Chania Crete, Greece, 12–14 July 2021; pp. 1–8. [CrossRef]

7. Di Francescomarino, C.; Ghidini, C.; Maggi, F.M.; Milani, F. Predictive process monitoring methods: Which one suits me
best? In Proceedings of the 16th International Conference on Business Process Management (BPM 2018), Sydney, Australia,
9–14 September 2018; pp. 462–479. [CrossRef]

8. Chiorrini, A.; Diamantini, C.; Mircoli, A.; Potena, D. A preliminary study on the application of reinforcement learning for
predictive process monitoring. In Proceedings of the International Conference on Process Mining (CPM 2020), Padua, Italy,
5–8 October 2021; pp. 124–135. [CrossRef]

https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884
https://doi.org/10.1080/0960085X.2020.1718007
https://doi.org/10.1016/j.eswa.2019.05.003
https://doi.org/10.1145/2229156.2229157
https://doi.org/10.1109/ACCESS.2022.3208231
https://doi.org/10.1109/iisa52424.2021.9555507
https://doi.org/10.1007/978-3-319-98648-7_27
https://doi.org/10.1007/978-3-030-72693-5_10

Sensors 2023, 23, 6931 16 of 17

9. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2017.
10. Kotsias, S.; Kerasiotis, A.; Bousdekis, A.; Theodoropoulou, G.; Miaoulis, G. Predictive and Prescriptive Business Process

Monitoring with Reinforcement Learning. In Proceedings of the 2nd International Conference on Novel & Intelligent Digital
Systems (NiDS 2022), Athens, Greece, 29–30 September 2022; pp. 245–254.

11. Van der Aalst, W.; Weijters, T.; Maruster, L. Workflow mining: Discovering process models from event logs. IEEE Trans. Knowl.
Data Eng. 2004, 16, 1128–1142. [CrossRef]

12. Merkoureas, I.; Kaouni, A.; Theodoropoulou, G.; Bousdekis, A.; Voulodimos, A.; Miaoulis, G. Smyrida: A web application for
process mining and interactive visualization. SoftwareX 2023, 22, 101327. [CrossRef]

13. Umer, R.; Susnjak, T.; Mathrani, A.; Suriadi, S. On predicting academic performance with process mining in learning analytics.
J. Res. Innov. Teach. Learn. 2017, 10, 160–176. [CrossRef]

14. Savickas, T.; Vasilecas, O. Belief network discovery from event logs for business process analysis. Comput. Ind. 2018, 100,
258–266. [CrossRef]

15. Teinemaa, I.; Dumas, M.; Maggi, F.M.; Di Francescomarino, C. Predictive business process monitoring with structured and un-
structured data. In Proceedings of the 14th International Conference on Business Process Management (BPM 2016), Rio de Janeiro,
Brazil, 18–22 September 2016; pp. 401–417. [CrossRef]

16. Teinemaa, I.; Dumas, M.; Rosa, M.L.; Maggi, F.M. Outcome-oriented predictive process monitoring: Review and benchmark.
ACM Trans. Knowl. Discov. Data (TKDD) 2019, 13, 1–57. [CrossRef]

17. Kang, B.; Kim, D.; Kang, S.-H. Real-time business process monitoring method for prediction of abnormal termination using
KNNI-based LOF prediction. Expert Syst. Appl. 2012, 39, 6061–6068. [CrossRef]

18. Cesario, E.; Folino, F.; Guarascio, M.; Pontieri, L. A CloudBased Prediction Framework for Analyzing BP Performances. In Proceedings of
the International Cross Domain Conference and Workshop (CD-ARES 2016), Salzburg, Austria, 31 August–2 September 2016; pp. 63–80.

19. Weytjens, H.; De Weerdt, J. Learning uncertainty with artificial neural networks for predictive process monitoring. Appl. Soft
Comput. 2022, 125, 109134. [CrossRef]

20. Camargo, M.; Dumas, M.; González-Rojas, O. Learning accurate LSTM models of business processes. In Proceedings of the
17th International Conference on Business Process Management (BPM 2019), Vienna, Austria, 1–6 September 2019; pp. 286–302.

21. Evermann, J.; Rehse, J.-R.; Fettke, P. Predicting process behaviour using deep learning. Decis. Support Syst. 2017, 100, 129–140. [CrossRef]
22. Lin, L.; Wen, L.; Wang, J. Mm-pred: A deep predictive model for multi-attribute event sequence. In Proceedings of the 2019 SIAM

International Conference on Data Mining, Calgary, AB, Canada, 2–4 May 2019; Society for Industrial and Applied Mathematics:
Philadelphia, PA, USA, 2019; pp. 118–126.

23. Pasquadibisceglie, V.; Appice, A.; Castellano, G.; Malerba, D. Using convolutional neural networks for predictive process analytics. In
Proceedings of the International Conference on Process Mining (ICPM), Aachen, Germany, 24–26 June 2019; pp. 129–136. [CrossRef]

24. Tax, N.; Verenich, I.; La Rosa, M.; Dumas, M. Predictive business process monitoring with LSTM neural networks. In Proceedings
of the 29th International Conference on Advanced Information Systems Engineering (CAiSE 2017), Essen, Germany, 12–16 June
2017; pp. 477–492.

25. Navarin, N.; Vincenzi, B.; Polato, M.; Sperduti, A. (LSTM) networks for data-aware remaining time prediction of business
process instances. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA,
27 November–1 December 2017. [CrossRef]

26. Nguyen, A.; Chatterjee, S.; Weinzierl, S.; Schwinn, L.; Matzner, M.; Eskofier, B. Time Matters: Time-Aware LSTMs for Predictive
Business Process Monitoring. arXiv 2020. [CrossRef]

27. Harl, M.; Weinzierl, S.; Stierle, M.; Matzner, M. Explainable predictive business process monitoring using gated graph neural
networks. J. Decis. Syst. 2020, 29, 312–327. [CrossRef]

28. Li, X.-H.; Cao, C.C.; Shi, Y.; Bai, W.; Gao, H.; Qiu, L.; Wang, C.; Gao, Y.; Zhang, S.; Xue, X.; et al. A Survey of Data-driven and
Knowledge-aware eXplainable AI. IEEE Trans. Knowl. Data Eng. 2020, 34, 29–49. [CrossRef]

29. Mehdiyev, N.; Fettke, P. Explainable artificial intelligence for process mining: A general overview and application of a novel local
explanation approach for predictive process monitoring. In Interpretable Artificial Intelligence: A Perspective of Granular Computing;
Springer: Cham, Switzerland, 2021; pp. 1–28. [CrossRef]

30. Käppel, M.; Jablonski, S.; Schönig, S. Evaluating predictive business process monitoring approaches on small event logs. arXiv
2021. [CrossRef]

31. Kratsch, W.; Manderscheid, J.; Röglinger, M.; Seyfried, J. Machine learning in business process monitoring: A comparison of deep
learning and classical approaches used for outcome prediction. Bus. Inf. Syst. Eng. 2020, 63, 261–276. [CrossRef]

32. Rama-Maneiro, E.; Vidal, J.; Lama, M. Deep Learning for Predictive Business Process Monitoring: Review and Benchmark. IEEE
Trans. Serv. Comput. 2021, 16, 739–756. [CrossRef]

33. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

34. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al. A general
reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 2018, 362, 1140–1144. [CrossRef]

35. Wang, Z.; Hong, T. Reinforcement learning for building controls: The opportunities and challenges. Appl. Energy 2020, 269,
115036. [CrossRef]

https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1016/j.softx.2023.101327
https://doi.org/10.1108/JRIT-09-2017-0022
https://doi.org/10.1016/j.compind.2018.04.020
https://doi.org/10.1007/978-3-319-45348-4_23
https://doi.org/10.1145/3301300
https://doi.org/10.1016/j.eswa.2011.12.007
https://doi.org/10.1016/j.asoc.2022.109134
https://doi.org/10.1016/j.dss.2017.04.003
https://doi.org/10.1109/icpm.2019.00028
https://doi.org/10.1109/ssci.2017.8285184
https://doi.org/10.48550/arXiv.2010.00889
https://doi.org/10.1080/12460125.2020.1780780
https://doi.org/10.1109/TKDE.2020.2983930
https://doi.org/10.1007/978-3-030-64949-4_1
https://doi.org/10.48550/arXiv.2104.00362
https://doi.org/10.1007/s12599-020-00645-0
https://doi.org/10.1109/TSC.2021.3139807
https://doi.org/10.1038/nature14236
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1016/j.apenergy.2020.115036

Sensors 2023, 23, 6931 17 of 17

36. Zhou, M.; Yu, Y.; Qu, X. Development of an efficient driving strategy for connected and automated vehicles at signalized
intersections: A reinforcement learning approach. IEEE Trans. Intell. Transp. Syst. 2019, 21, 433–443. [CrossRef]

37. Lepenioti, K.; Bousdekis, A.; Apostolou, D.; Mentzas, G. Human-augmented prescriptive analytics with interactive multi-objective
reinforcement learning. IEEE Access 2021, 9, 100677–100693. [CrossRef]

38. Huang, Z.; van der Aalst, W.; Lu, X.; Duan, H. Reinforcement learning based resource allocation in business process management.
Data Knowl. Eng. 2011, 70, 127–145. [CrossRef]

39. Silvander, J. Business process optimization with reinforcement learning. In Proceedings of the 9th International Symposium on
Business Modeling and Software Design (BMSD 2019), Lisbon, Portugal, 1–3 July 2019; pp. 203–212.

40. Metzger, A.; Kley, T.; Palm, A. Triggering proactive business process adaptations via online reinforcement learning. In Proceedings
of the 18th International Conference on Business Process Management (BPM 2020), Seville, Spain, 13–18 September 2020;
pp. 273–290. [CrossRef]

41. Magoutas, B.; Stojanovic, N.; Bousdekis, A.; Apostolou, D.; Mentzas, G.; Stojanovic, L. Anticipation-driven Architecture for
Proactive Enterprise Decision Making. In Proceedings of the 26th International Conference on Advanced Information Systems
Engineering (CaiSE), Thessaloniki, Greece, 16–20 June 2014; pp. 121–128.

42. Acampora, G.; Vitiello, A.; Di Stefano, B.; van der Aalst, W.; Günther, C.; Verbeek, E. IEEE 1849tm: The XES standard. IEEE
Comput. Intell. Mag. 2017, 12, 4–8. [CrossRef]

43. Van Der Aalst, W. Process Mining: Data Science in Action; Springer: Heidelberg, Germany, 2016; Volume 2.
44. Buijs, J.C.; Van Dongen, B.F.; van Der Aalst, W.M. On the role of fitness, precision, generalization and simplicity in process

discovery. In On the Move to Meaningful Internet Systems: OTM 2012, Proceedings of the Confederated International Conferences: CoopIS,
DOA-SVI, and ODBASE 2012, Rome, Italy, 10–14 September 2012; Part I; Springer: Berlin/Heidelberg, Germany, 2012; pp. 305–322.

45. Melo, F.S. Convergence of Q-Learning: A Simple Proof ; Technical Report; Institute of Systems and Robotics: Lisbon, Portugal, 2001;
pp. 1–4.

46. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep Reinforcement Learning: A Brief Survey. IEEE Signal
Process. Mag. 2017, 34, 26–38. [CrossRef]

47. Sewak, M. Deep Reinforcement Learning; Springer: Singapore, 2019.
48. Li, Y.; Yuan, Y. Convergence analysis of two-layer neural networks with ReLU activation. In Proceedings of the 31st Conference

on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TITS.2019.2942014
https://doi.org/10.1109/ACCESS.2021.3096662
https://doi.org/10.1016/j.datak.2010.09.002
https://doi.org/10.1007/978-3-030-58666-9_16
https://doi.org/10.1109/MCI.2017.2670420
https://doi.org/10.1109/MSP.2017.2743240

	Introduction
	Background and Related Works
	The Proposed Approach for the Modelling and Predictive Monitoring of Business Processes
	Event Log Extraction
	Process Discovery for Generating Options in Process Models
	Process Statistical Analysis for Selection of the Process Model
	Handling Incomplete Traces
	Creating the Uncertain Process Model and Providing Predictions about the Business Process

	Implementation and Deployment in the Banking Sector
	Technology Stack
	Application of the Proposed Approach
	Event Log Extraction
	Process Discovery for Generating Options in Process Models
	Process Statistical Analysis for Selection of the Process Model
	Handling Incomplete Traces
	Creating the Uncertain Process Model and Providing Predictions about the Business Process

	Comparative Analysis with Deep Learning Extensions

	Conclusions and Future Work
	References

