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Abstract: Model-based stereo vision methods can estimate the 6D poses of rigid objects. They can
help robots to achieve a target grip in complex home environments. This study presents a novel
approach, called the variable photo-model method, to estimate the pose and size of an unknown
object using a single photo of the same category. By employing a pre-trained You Only Look Once
(YOLO) v4 weight for object detection and 2D model generation in the photo, the method converts the
segmented 2D photo-model into 3D flat photo-models assuming different sizes and poses. Through
perspective projection and model matching, the method finds the best match between the model and
the actual object in the captured stereo images. The matching fitness function is optimized using
a genetic algorithm (GA). Unlike data-driven approaches, this approach does not require multiple
photos or pre-training time for single object pose recognition, making it more versatile. Indoor
experiments demonstrate the effectiveness of the variable photo-model method in estimating the
pose and size of the target objects within the same class. The findings of this study have practical
implications for object detection prior to robotic grasping, particularly due to its ease of application
and the limited data required.

Keywords: pose estimation; photo-model; stereo vision; pixel per metric ratio; genetic algorithm

1. Introduction

For home service robots, vision systems are widely used in the perception of envi-
ronment target objects [1]. Estimating an object’s 6DOF pose and size is important for
autonomous robots to track or grasp it. Stereo vision is a widely adopted and low-cost
method for estimating a 3D pose. Compared with RGB-D sensing, it perceives a greater
variety of target material properties and light conditions [2,3]. However, detecting the 3D
pose of arbitrary objects has remained a challenge, particularly when the shape or size of
the target object cannot be predetermined.

In terms of the pose detection, stereo-vision methods can be roughly divided into
stereo-matching and model-matching methods. Stereo matching, also known as disparity
estimation, aims to find the corresponding points of a physical point in a pair of rectified
stereo images. Furthermore, through epipolar geometry, stereo vision computes the 3D
coordinates of this physical point (2D–3D method). According to the number of matching
points, they are divided into feature-based [3] and point-cloud-based methods.

Feature-based methods only match some feature points of the target and take the pose
estimation with these points [4–6]. Point-cloud-based methods generate a scene point cloud,
which can be seen as a global extension of feature-based methods. They use 2D image
object detection to segment the corresponding point cloud for pose detection. However, it
is generally necessary to organize and structure the 3D discrete points into a higher-level
representation, such as voxels [7,8]. Removing mismatched noise points and identifying
and segmenting target objects in point clouds are complex problems [9]. However, no
matter which method is used, mismatches are inevitable.
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Model-based matching methods, also known as template-based methods, can avoid
mismatches and are also suitable for occlusion situations [10–12]. All the points of a solid
3D model as a group are projected into stereo-vision image planes and are matched with
the actual target (3D–2D method). Model generation is a difficult task, relying on the
model’s style and size. Some learning-based methods detect objects in a 2D image and
then segment the RGB-D point cloud to create a 3D model [13]. However, the size of the
models is difficult to change. Several researchers have used deformable models combined
with stereo vision to measure the size of tuna with excellent results [14]. However, the
complexity of the model building limits the generality of this method in detection.

We have previously proposed a photo-model-based pose estimation method. This
method involves segmenting the target object from a photo and constructing a 2D photo-
model of it. A 3D photo-model is generated from the 2D photo-model. The pose-changed
3D photo-model is projected onto stereo-vision image planes, and matches are made with
the actual target. This process can be summarized as 2D–3D–2D [15]. Experiments have
proven the reliability and effectiveness of the photo-model approach for pose estimation
using one known distance photo [16].

However, this method required photographing an object of unknown size at a specific
distance in order to determine the pixel/metric (PM) ratio. From this ratio, the object’s
actual size was calculated and a 2D photo-model generated. We also experimentally
demonstrated that the pose of an object can be estimated and tracked in real time [16].

The PM ratio is an important parameter for building a 3D photo-model from the
2D photo with the same size as the object [17,18]. Other studies usually rely on camera
calibration with reference objects of known size to ensure this ratio [19,20]. However,
suppose the shooting distance of the photos is unknown or there is no reference object; in
these cases, they cannot obtain the PM ratio. In the work described in this paper, no special
photos are required. The proposed method assumes the PM ratio and converts the 2D
photo-model into variable 3D plane photo-models. Through stereo-vision model matching
and a genetic algorithm (GA), it can assure the object’s pose and size at the same time.

On the other hand, in our previous studies, 2D photo-model making relied on the
threshold segmentation of simple background photos [15,16]. However, the threshold value
needed to be reset when the background changed. Due to the development of modern deep
learning techniques, object detection in 2D photos has achieved good results in different
contexts [21]. This study uses the training results of YOLOv4 [22] on the MS COCO
dataset (https://github.com/AlexeyAB/darknet#how-to-evaluate-ap-of-yolov4-on-the-
ms-coco-evaluation-server, accessed on 20 September 2022) to detect the object and simplify
the 2D photo-model generation process. Size-variable 3D photo-models are generated from
a 2D photo by assuming the PM ratio of the pixel length to the actual length of the object.
Since the prepared photo does not involve multiple classes, and the production process
does not require real-time capabilities, the widely used algorithm YOLOv4 is selected for
this purpose [22]. During the experiment, YOLOv8 had not been released yet [23]; thus, it
is not utilized in this paper. Additionally, the Transformer algorithm has also demonstrated
excellent performance in object detection [24]. However, the main focus of this paper is not
on 2D object detection but rather on determining whether the spatial dimensions of the
generated photo-models can be used for the pose and size detection of similar objects. In
the subsequent experiments, it was found that the YOLOv4 model effectively detected and
accurately outlined the objects in the prepared photos.

In terms of 3D pose detection, the proposed variable photo-model method belongs to
the model-based matching method not a data-driven method; hence, it requires no additional
training [25,26], and it only needs to run on CPUs with limited hardware. Using the
similarity factor of the matching degree of the projected model in the left and right images,
we constructed a new photo-model matching function. We hope to improve the existing
photo-model-based algorithms and lay a good foundation for future research on visual
servo systems.

https://github.com/AlexeyAB/darknet#how-to-evaluate-ap-of-yolov4-on-the-ms-coco-evaluation-server
https://github.com/AlexeyAB/darknet#how-to-evaluate-ap-of-yolov4-on-the-ms-coco-evaluation-server
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With an industrial product and a piece of fruit, pose–size detection experiments were
conducted to verify the effectiveness of the proposed method for daily life. According to
the results, with only one category of photo, the target’s pose and size could be estimated.

More precisely, the contributions of this paper are as follows:

(1) This paper allows the utilization of photos taken at unknown distances for model
generation. It extends the traditional photo-model-based approach;

(2) With just one photo, this method enables the generation of 3D plane models with
varying aspect ratios and sizes, which can be used for object pose estimation;

(3) The variable photo-model method combines deep learning techniques to simplify the
traditional algorithm model creation process. It leverages pre-trained weights from
existing datasets, eliminating the need for additional training. One of its advantages
is that it can be executed on a CPU with limited hardware resources.

The rest of the present paper is organized into the following sections: Section 2
provides an overview of the relevant literature and previous studies. Section 3 presents
variable photo-model generation and the photo-model pose and size estimation method. In
Section 4, we discuss the adaptability of the proposed method for recognizing an object’s
pose and size according to the experimental results. The conclusions and future work are
described in Section 5.

2. Related Work

Regarding partial occlusion, several previous studies [15,27] have explored different
environmental factors affecting its handling. These studies provide experimental evidence
to support the effectiveness of the photo-model approach [15,27].

Furthermore, in handling different lighting conditions, the practicality of the photo-
model-based method was tested experimentally [28]. The experiments focused on two
common light sources: fluorescent and light-emitting diode (LED) lighting. The method’s
ability to tolerate changes in illumination for object recognition was analyzed, and the
results demonstrated its robustness in handling different light sources and levels of il-
lumination. Additionally, a visual servo system was developed for capturing marine
creatures [29]. The adaptability of the photo-model method to these factors will not be
discussed further in this article.

On the other hand, research on 3D indoor object detection using stereo images is
still limited. There is a model-based approach that utilizes object model projections on
synthetic and real datasets to train networks to detect object poses [30]. However, most
existing datasets for pose estimation rely on RGB-D data rather than binocular vision [31].
Furthermore, while there have been studies exploring the use of infrared (IR) stereo imaging
for vegetable classification [32], the available stereo benchmark datasets primarily consist
of RGB imagery and lack object size information. This lack of comprehensive benchmark
datasets has led many studies in stereo vision pose estimation to rely on their own target-
specific datasets instead of publicly available benchmarks [33,34]. As a result, it is common
for researchers in the field of stereo vision pose estimation to utilize their own datasets.

In the next section, related work in the field of photo-model-based methods and
object pose detection is reviewed. The limitations of existing databases are also discussed.
Regarding 3D pose detection, the variable photo-model method belongs to the model-based
matching approach and does not rely on extensive data-driven techniques [25,26,34]. This
eliminates the need for additional training and allows the method to run efficiently on CPUs
with limited hardware resources. The approach combines both deep learning techniques
and traditional methods.

3. Variable Photo-Model Pose and Size Detection Method

This section introduces the variable photo-model pose and size detection methodology.
Figure 1a shows the experimental environment. Each coordinate system is as follows:

• ΣH : end-effector (hand) coordinate system;
• ΣMC01 , ΣMC02 : target object coordinate system;
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• ΣCL, ΣCR: left and right camera coordinate systems.
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Figure 1. (a) Experimental environment and related coordinate systems. (b) Perspective projection of
a photo-model of a pear in the stereo vision system. In the 3D search space, the spatial plane model is
projected onto the left and right images through perspective projection.

Figure 1b shows a perspective projection of the stereo vision system. Each coordinate
system is as follows:

• ΣIL, ΣIR: left and right image 2D coordinate systems;
• ΣMj: j-th model coordinate system;

• Mr j
i : position of the i-th point on the j-th 3D model in ΣMj;

• CLr j
i ,

CRr j
i : position of the i-th point on the j-th 3D model based on ΣCR and ΣCL;

• ILr j
i ,

IRr j
i : projected 2D position on ΣIL and ΣIR of the i-th point on the j-th 3D model.

3.1. Variable Photo-Model Generation

This subsection describes the model generation before explaining the stereo-matching
method. The model generation has two central parts. The first part is to generate a fixed
2D pixel model in pixel units. The latter is a 3D plane model generation; its size (length
and width) in millimeters is variable. Estimation of the relative pose requires the use of the
generated 3D planar model.

Figure 2 shows the model generation process. We did not take a photo of the target
pear, but downloaded one photo (Figure 2a) from Bing Images. Figure 3a shows the actual
target. Furthermore, Figure 3b shows the downloaded photos. The pre-trained YOLOv4
weight in the existing MS COCO dataset is used to detect the object in the photo. The
bounding box is defined as the model frame (Figure 2b). Figure 4a shows the coordinate
system of the model ΣP. The size of the 2D model frame is LP× BP pixels, i.e., the 2D photo-
model pixel size. The outer portion’s size is larger than the model frame size. Sampling
points are taken in the model at a regular pixel interval (Figure 2c). The coordinate of the
i-th sampling point in the 2D pixel coordinate system in ΣP is

Pri = [Pxi, Pyi]
T. (1)

In order to explore the object, the photo-model needs to be converted from a 2D pixel
model to a 3D spatial plane model. The coordinate of the i-th point of the j-th model Mr j

i in
coordinate system ΣMj in 3D searching space is

Mr j
i = [Mxj

i ,
My

j
i ,

Mz
j
i ]
T = [Mxj

i ,
Myj

i , 0]T. (2)
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As shown in Figure 1b, Equation (3) indicates the conversion relationship of the i-th
sampling point between ΣP in Figure 4 and ΣMj in Figure 1b.

Mxj
i(αj) [mm] =

Pxi [pixel]
αj

Myj
i(β j) [mm] =

Pyi [pixel]
β j

,
(3)

where

• αj: PM ratio of the j-th model in the x direction;
• β j: PM ratio of the j-th model in the y direction [20].

The PM ratio unit is (pixel/mm). It is the ratio of the 2D pixel model to the 3D spatial
plane model. αM, βM are defined as the real ratio of the 2D pixel model to the target object.
The relationship between αj and β j is

β j = αjk j, (4)

where k j is the ratio factor.
For instance, in Figure 4, at the moment when i = 109 and j = 1, the calculations are as

follows: Mx1
109(α1) =

Px109

α1
=
−434/2 [pixel]

2
= −434 [mm], and My1

109(β1) =
Py109

2× 0.5
=

−494/2 [pixel]
1

= −247 [mm].
For the j-th 3D spatial plane model, its length and width are calculated as in Equation (5).

LMj [mm] =
LP [pixel]

αj

BMj [mm] =
BP [pixel]

β j
.

(5)

Equation (5) converts the 2D pixel model into a 3D spatial plane model. The thickness
of the model is Mzi = 0; therefore, the resulting 3D photo-model is a 3D space plane. In
this study, Mr j

i is developed and can be described as the function of αj, k, i.e., Mr j
i (αj, k j).

The 3D plane model is composed of dots whose relative positions are predefined as in
Figure 4.

Model frame

(a) (b)

YOLOv4

Model frame Model frame

(d) (c)

Figure 2. Model generation processes are described as: (a) one downloaded photo with the same
type as the target. Its size is 1066 × 799 pixels. (b) A bounding box detected by YOLOv4 is defined
as the model frame. (c) The model is composed of the inner portion Sin and outer portion Sout with
sampling points. (d) The generated model. The model is only a small part of the photo including the
target, the whole photo is not a model. Sampling points are collected at a certain interval.
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(b)

(a)

C01
Pear

5.4×7×6[cm]
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Sunscreen 

5.8×9×3.2[cm]

C01
1066×799[Pixel]

C02
1200 ×1200[Pixel]

Model frame size
[pixel] 434 £ 494

Model frame size
[pixel] 528 £ 530

(c)

Figure 3. (a) Two objects. Code names are C01 and C02. The three labels correspond to model
number, English name, and size. (b) Prepared photos downloaded from Bing Images (https://cn.
bing.com/images, accessed on 29 September 2022). The pixel size of each photo is shown at the very
bottom of each frame. (c) Photo-model frames detected by YOLOv4. The detection boxes represent
the interior portion of the photo-model, which is only part of the photo. False detection of the target
name does not affect pose detection.
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i
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Mr2
i

Mr2
i

§M2§M2

Pr109
Pr109

Mr1
109

Mr1
109

Figure 4. Model display. (a) 2D photo-model generated by the process in Figure 2. Its coordinate
system ΣP is in pixels. The model frame size, i.e., 2D pixel photo-model size, is LP × BP = 434× 494
pixels. (b,c) The variable 3D plane photo-models. β1 = α1k1 = 1, β2 = α2k2 = 2.

3.2. Projective Transformation of the Photo-Model

The projective transformation of the fixed photo-model has been proposed in our
previous paper [16,35]. In the past, since Mr j

i is generated from the original object’s photo,

it is a size-fixed model, and its size is the same as the real target. In this paper, Mr j
i is a

variable photo-model, and thus a function of the PM ratio.
As shown in Figure 1a, the pose of ΣMC01 based on ΣH , including three position

variables and three orientation variables in quaternion [16], is

HφM = [HxM, HyM, HzM, Hε1M, Hε2M, Hε3M]T. (6)

As shown in Figure 1b, based on ΣH , the pose of the j-th 3D model Hφ
j
M is defined as

Hφ
j
M = [Hxj

M, Hyj
M, Hzj

M, Hε
j
1M, Hε

j
2M, Hε

j
3M]T, (7)

which has been explained in previous studies [16,35].

https://cn.bing.com/images
https://cn.bing.com/images
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For simplicity, Hφ
j
M is written as φ

j
M. The homogeneous transformation HTMj, based

on the hand coordinate system ΣH , can be calculated through the pose of the j-th model
φ

j
M [36].

Concerning stereo vision, position CLr j
i of the i-th point based on ΣCL can be calculated

through Equation (8),
CLr j

i =
CLTH

HTMj(φ
j
M) Mr j

i (αj, k j). (8)

On the j-th 3D model using the projective transformation matrix PCL, CLr j
i is projected

from 3D space ΣCL into 2D left image space ΣIL as

ILr j
i = PCL

CLr j
i

= PCL
CLTH

HTMj(φ
j
M)Mr j

i (αj, k j). (9)

Then ILr j
i can be described in short as

ILr j
i = fL(Φ

j
M), (10)

where
Φ

j
M = [φ

Tj
M , αj, k j]

T. (11)

IRr j
i can also be described in the same manner as ILr j

i . The projective transformation
process is summarized in Figure 5a, i.e., 2D–3D–2D [15]. The projection calculation process
of the C02 photo-model is the same as that of C01. The series of equations from Equations (1)
to (10) presents a detailed and systematic procedure for a 2D–3D–2D process. This process
begins by generating a 3D photo-model utilizing a single photo, culminating in mapping
pose transformations to dual eye images.
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Figure 5. (a) The summary of the calculation process from photo-model generation to the model’s
stereo vision perspective projection (2D-3D-2D). The key node formulas are pointed out. (b) A model
matching result. ILr j

i is the i-th sampling point’s coordinate of j-th model in the left image ΣIL.
Sampling points get a positive or negative score. (A) The sampling points inside the model overlap
with the real target to get a positive score pij

L,in > 0. (B) Model internal sampling points overlap with

the background to get negative values pij
L,in < 0. (C) means that the outer portion overlaps with

background pij
L,out > 0. And (D) shows outer portion overlaps with the real target pij

L,out < 0.

3.3. Photo-Model Matching and Spatial Fitness Function

In the Figure 1b, through the forward projection Equation (10), a generated 3D planar
model Mr j

i is projected from the 3D search space onto the left and right camera images.
Figure 5b is the actual left image projection example. The projection results of the inner
Sin and outer Sout parts of the model in the left image are SL,in and SL,out. The projection
process for the right image is similar to the left image. And the model projection results are
of SR,in and SR,out.

(a) (b)

Figure 5. (a) The summary of the calculation process from the photo-model generation to the model’s
stereo vision perspective projection (2D–3D–2D). The key node formulas are pointed out. (b) A model
matching result. ILr j

i is the i-th sampling point’s coordinate of the j-th model in the left image ΣIL.
Sampling points are given a positive or negative score. (A) The sampling points inside the model
overlap with the real target to acquire a positive score pij

L,in > 0. (B) Model internal sampling points

overlap with the background to acquire negative values pij
L,in < 0. (C) The outer portion overlaps

with the background pij
L,out > 0. Furthermore, (D) shows that the outer portion overlaps with the real

target pij
L,out < 0.

3.3. Photo-Model Matching and Spatial Fitness Function

In Figure 1b, through the forward projection Equation (10), a generated 3D planar
model Mr j

i is projected from the 3D search space onto the left and right camera images.
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Figure 5b is the actual left image projection example. The projection results of the inner
Sin and outer Sout parts of the model in the left image are SL,in and SL,out. The projection
process for the right image is similar to the left image. Furthermore, the model projection
results are of SR,in and SR,out.

The HSV color representation is used for the extraction of the target color (Figure 2d).
The advantage of HSV is that each of its attributes correspond directly to the basic color
concepts, which makes it conceptually simple. In addition, the hue of the HSV color system
shows good robustness against a change in the lighting intensity.

The fitness function is defined as an evaluation of how well the projection model
matches the real target in images captured by the binocular camera, i.e., the similarity
measurement.

The symbols related to function computation are explained as follows:

Cij
IL, Cij

IR: the color of point ILr j
i or IRr j

i on the captured left and right images, and the

judgment conditions with HSV (Hij
IL, Sij

IL, Vij
IL, Hij

IR, Sij
IR, Vij

IR) are shown in
Table 1;

Cij
ML: the stored color of the i-th point of the j-th model (Figure 4), and the

judgment conditions (Hij
ML, Sij

ML, Vij
ML) are shown in Table 1;

pij
L,in, pij

L,out: evaluation of the sampling point inside and outside the model frame in the
left image;

pij
R,in, pij

R,out: evaluation of the sampling point inside and outside the model frame in the
right image;

Nin, Nout: the total number of the inner and outer portion sampling points;
H̄in: The average hue of the sampling points in the rectangle BECG in Figure 6.

This is used as the evaluation threshold for the addition or subtraction
pij

L,out and pij
R,out of the outer point;

e1, e2: Evaluation value of a sampling point in the inner portion. e1 = 2, e2 = −0.5,
These evaluation values are tuned experimentally;

e3, e4: Evaluation value of a sampling point in the outer portion. e3 = 0.5, e4 =
−1.9. These evaluation values are tuned experimentally.

Equations (12) and (13) are the designed fitness between the target captured by stereo
cameras and the projected j-th model on the left and right images, respectively, [16].

Fj
L(Φ

j
M) =

(
∑

ILr j
i∈

SL,in

pij
L,in + ∑

ILr j
i∈

SL,out

pij
L,out

)
/m. (12)

Fj
R(Φ

j
M) =

(
∑

IRr j
i∈

SR,in

pij
R,in + ∑

IRr j
i∈

SR,out

pij
R,out

)
/m. (13)

In a single image, left or right, the theoretical maximum fitness of the projected j-th
model is

m = e1Nin + e3Nout. (14)

Equations (15) and (16) are used to calculate pij
L,in and pij

L,out, respectively, which are
included in Equation (12) as proposed previously [16].

pij
L,in =

{
e1, if Cij

IL and Cij
ML are close;

e2, otherwise,
(15)

pij
L,out =

{
e3, if(|Hij

IL − H̄in| > 15);

e4, if(|Hij
IL − H̄in| < 15).

(16)
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Figure 7 shows a generated photo-model placed in the 3D searching space and the left
and right 2D searching models that are projected, respectively, from photo-model with the
pose and size being assumed to be Φ

j
M. Figure 8 illustrates the calculation process of the

evaluation value pij
L,in for the inner sampling point, including the color judgment process

for Cij
IL and Cij

ML of one inner point. This is a continuous judging process [37].

(PxC ; PyC) = (
PxD

2
;

PyD

2
)(PxC ; PyC) = (

PxD

2
;

PyD

2
)

xPxP

yPyP

§P§P

Unit: pixel

Model frame

(PxD; PyD)(PxD; PyD)

C

D

(PxB; PyB) = (
PxA

2
;

PyA

2
)(PxB; PyB) = (

PxA

2
;

PyA

2
)(PxA; P yA)(PxA; P yA)

A

B G

E

Figure 6. The average hue of the sampling points in the inner rectangle BECG is used as the evaluation
threshold for the addition or subtraction of pij

L,out and pij
R,out of the outer point.

(a) target object model fitness

Left image Right image

3D searching space 

(b) j-th model

Fj

F j
L F j

R

Fj(©
j
M) =

(F j
L + F j

R)

2
(1 + gj)

(c) Spatial fitness of j-th model

Figure 7. Fitness calculation process. A photo-model in the 3D searching space on the top of this figure
is a 3D photo-model with pose and size Φ

j
M. The left and right 2D searching models represented on

the left/right bottom, are calculated by forward projection in Equation (10).

We divide the colors into four categories: black, white, gray, and other for similarity
judgment. For grayscale, it is necessary to judge whether the sampling point color Cij

ML is

close to the point color Cij
IL in the captured image with S and V. For other colors, we only

compare their H values.
The algorithm complexity for determining the evaluation value of each individual

sampling point (i-th point) based on color similarity is considered constant, with a time
complexity of O(1). Therefore, the algorithm complexity of Figure 8 can be regarded
as O(1). For each photo-model (j-th photo-model), the fitness calculation complexity in
Equation (12) is O(Nin + Nout).
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Start

Input RGB of pixel at ILr j
i on the left camera image

Convert RGB to HSV

Cij
IL=Black?

Cij
IL=White?

Cij
IL=Gray?

Cij
ML=Other color?Cij

ML=Gray?Cij
ML=White?Cij

ML=Black?

|Hij
IL − Hij

ML | 6 10 or

|Hij
IL − Hij

ML | > 170

|Vij
IL −Vij

ML | < 20

and |Sij
IL − Sij

ML | < 10

pij
L,in = e1 > 0pij

L,in = e1 > 0 pij
L,in = e1 > 0

pij
L,in = e2 < 0 pij

L,in = e2 < 0

Output pij
L,in

Stop

Yes

Yes

Yes

Yes

Yes

No

No

No

Yes

No No

Yes Yes

No No

No NoYes

Figure 8. Calculation process of the evaluation value pij
L,in for an internal sampling point. The

algorithm complexity of this part is O(1).

Table 1. Color component range according to the OpenCV HSV range. H, S, and V are all integers.

Black Gray White Other Colors

Hmin 0 0 0 0
Hmax 180 180 180 180
Smin 0 0 0 31
Smax 255 30 30 255
Vmin 0 46 221 46
Vmax 45 220 255 255

Figure 6 shows the average hue H̄in of the sampling points in the inner rectangle
BECG, which is used as the evaluation threshold of the outer portion sampling point pij

L,out

or pij
R,out.
Figure 5b shows the j-th model by 3D to 2D projection on the left image. The coordi-

nates of the sampling points are indicated as · · · , ILr j
i−1, ILr j

i ,
ILr j

i+1 · · · . In Equation (15)

and Figure 8, if the color Cij
IL of each point of the captured images, which lies inside the
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surface model frame SL,in, is similar to the color Cij
ML of each point in a model, the fitness

value will increase with the voting value of e1. These sampling points are represented by
dots designated by (A) in Figure 5b. The fitness value will decrease with the value of e2 for
every model inner portion point when Cij

ML is different from Cij
IL in the left camera image.

This represents that the model does not precisely overlap the target in the input image,
represented by (B) in Figure 5b.

Similarly, in Equation (16), if Hij
IL of a point in SL,out in the left camera image is different

with the average hue H̄in of the target, with a tolerance of 20, the fitness value will increase
with the value of e3. This means the SL,out strip area surrounding SL,in overlaps with the
background, expressing the model and the target overlap correctly as (C) in Figure 5b.
Otherwise, the fitness value will be decreased with the value of e4. This represents points
on SL,out that overlaps with the real target as (D) in Figure 5b.

Likewise, functions pij
R,in and pij

R,out are calculated in the right camera image.
As shown in Figure 7, to minimize the adverse effect of the high model matching

values on pose detection in a single-sided image, a similarity factor is proposed in this
study. This factor, denoted as gj, is designed as follows:

gj =

{
0, if (Fj

L = 0 or Fj
R = 0);

e−(Fj
L/Fj

R−µ)2/2σ2
, otherwise,

(17)

where µ = 1 and σ = 0.08. The value of gj is limited to the range [0, 1]. Higher values of gj

indicate closer values of Fj
L and Fj

R.
In the end, the stereo matching fitness of the j-th model is calculated as

Fj(Φ
j
M) =

(Fj
L + Fj

R)

2
(1 + gj). (18)

4. Pose-Size Estimation Experiment with the Genetic Algorithm

Figure 1a shows the experimental environment. The stereo camera is a ZED 2i. The
resolution of the stereo images is 1920× 1080 pixels. The PC is a Lenovo Legion Y70002021
(CPU: i5-11400H, 2.70 GHz; RAM: 16 GB).

A pose and size detection experiment was conducted in a real application scenario.
Figure 9a shows the images observed by the stereo camera. Using the same left and right
photos (Figure 9a), two separate experiments were conducted, each with only one target, a
pear and a sunscreen.

The fitness function Fj(Φ
j
M) transforms the detection problem into an optimization

problem of the pose and ratio Φ
j
M [16]. We choose the GA as an optimization method to find

the maximum fitness value because of its simplicity and effectiveness [16,38]. According to
the GA, the 3D models with random poses and ratios generated from the prepared photos
converge to target objects in 3D space. Te GA stops evolving after the 1000th generation.

As shown in Equation (19), each chromosome comprises eight variables. The first
three variables (Hxj

M, Hyj
M, Hzj

M) are the j-th model’s position in 3D space, and the middle

three variables (Hε
j
1M, Hε

j
2M, Hε3

j
M) are the orientation based on ΣH . The last variables are

the PM ratio αj and factor k j.

H xj
M︷ ︸︸ ︷

01 . . . 1︸ ︷︷ ︸
10bits

Hyj
M︷ ︸︸ ︷

00 . . . 1︸ ︷︷ ︸
10bits

Hzj
M︷ ︸︸ ︷

11 . . . 0︸ ︷︷ ︸
10bits

Hε
j
1M︷ ︸︸ ︷

01 . . . 0︸ ︷︷ ︸
7bits

Hε
j
2M︷ ︸︸ ︷

01 . . . 1︸ ︷︷ ︸
7bits

Hε
j
3M︷ ︸︸ ︷

01 . . . 0︸ ︷︷ ︸
7bits

αj︷ ︸︸ ︷
11 . . . 0︸ ︷︷ ︸

5bits

kj︷ ︸︸ ︷
01 . . . 1︸ ︷︷ ︸

5bits

. (19)



Sensors 2023, 23, 6924 12 of 17

Left Image Right ImageModel detection result

(b1) 100th
Left Image Right ImageModel detection result

Left Image Right ImageModel detection result
(c1) 500th

(d1) 1000th

C01 Pear

Left Image Right ImageModel detection result

(b2) 100th
Left Image Right ImageModel detection result

Left Image Right ImageModel detection result
(c2) 500th

(d2) 1000th

C02 Sunscreen

(a) Original left and right images.

Left Image Right Image

Figure 9. The 3D pose estimation results of the GA. (a) shows the original stereoscopic image.
(b1,c1,d1) show the magnifying view of the 100th, 500th, and 1000th generation GA exploration
results of the target pear. (b2,c2,d2) are the results for the sunscreen.

Figure 10 shows a flowchart for the GA evolution process for recognition and pose
estimation:

(1) Firstly, the individuals are randomly generated in the 3D searching area as the first
generation;

(2) New images captured by dual-eye cameras are input;
(3) The fitness value of every individual is calculated;
(4) Every individual’s fitness value is sorted by the calculated fitness value;
(5) The best individual is selected from the current population, and the weak individuals

are removed;
(6) Then, the individuals for the next generation are reproduced by performing crossover

and mutation between the selected individuals;
(7) Only new individuals in the next generation are evaluated by the fitness function,

shown in “Evaluation (2)” block, because the right and left images do not change and
the top individuals with the highest fitness do not need to calculate fitness again since
the image is constant;

(8) The above process is repeated until the desired generation is reached. Finally, the
GA outputs the best individuals of the 100th, 500th, and 1000th generation, and then
terminates the evolutionary process.
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Input new images

Model

3D search space (First generation)

Output 

Convergence in successively input images

3D search space (푛� generation)

Target object

(a)

3D search space (푛� generation)

3D search space
Output

(pose and size of the best individual)

(b)

Yes

No
100, 500 or 1000 generations

Evaluation (1)
(fitness evaluation of each model)

Sorting
(sort all models based on their fitness values)

Selection
(save models with highest fitness values)

Crossover and mutation

Initialization
(generate a population of models)

Start

푛 =1000?

End

No

Yes

Evaluation (2)
(fitness 
evaluation
of newly 
generated
models)

Figure 10. GA evolution process in which 3D models with random poses converge to the real 3D
solid target object in 3D space. The pose of the model with the highest fitness value represents the
estimated pose of the target object at that instant: (a) schematic diagram of the evolutionary process,
and (b) operational process of GA from “Initialization” to “Output” step by step.

Tables 2 and 3 present a summary of the GA estimation results at different generations,
providing the pose φ

j
M and size LMj × BMj data of the best fit individuals represented

by Fj(Φ
j
M). The “Measure” row corresponds to the actual sizes and positions of the

targets, which were measured using a manual tape measure. By the 1000th generation, the
experimental results closely matched the actual values. The detected object’s pose, length,
and width exhibited a close resemblance to their actual counterparts. It is worth noting
that the unitless orientation in quaternion represents the pose, and the actual orientation of
the targets remains unknown.

Table 2. Pear C01 GA’s detection results. Through perspective transformation, the projection results
of the model on the left and right images are shown in Figure 9(b1–d1). The table’s “Measure” row
shows the target’s measurement under the tape measure.

Generation x
[mm]

y
[mm]

z
[mm] ε1 ε2 ε3 α

β =
αk

LMj
[mm]

BMj
[mm] Fj(Φ

j
M )

100 69 113 542 0.28 −0.15 −0.38 6.94 6.81 63 73 0.5409
500 61 109 556 −0.29 0.14 0.25 6.63 6.38 66 77 0.7527
1000 59 116 558 −0.28 −0.12 −0.77 6.63 6.21 66 80 0.7987
Measure 66 98 542 54 70
Error −7 18 16 12 10
Relative
error 2.95% 22.20% 14.29%
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Table 3. Sunscreen C02 GA’s detection results. Through perspective transformation, the projection
results of the model on the left and right images are shown in Figure 9(b2–d2). The table’s “Measure”
row shows the target’s measurement under the tape measure.

Generation x
[mm]

y
[mm]

z
[mm] ε1 ε2 ε3 α

β =
αk

LMj
[mm]

BMj
[mm] Fj(Φ

j
M )

100 −8 79 743 0.16 0.27 0.45 9.44 8.58 56 97 0.3606
500 −7 90 723 0.11 0.03 0.13 9.75 8.84 54 94 0.5971
1000 −7 90 723 0.11 0.03 0.13 9.75 8.84 54 94 0.5971
Measure 14 83 735 0 0.017 0 58 90
Error −21 7 12 0.11 0.013 0.13 −4 4
Relative
error 1.63% 6.90% 4.44%

In Table 2, the last row shows the distance and size relative errors. From the table, we
can observe that the distance error ezC01 is less than 2 cm. In Table 3, we can observe that
the distance error ezC02 is also less than 2 cm.

The measurement results for the sunscreen (Table 3) outperform those for the pear
(Table 2). Although the datasets are different [32,39], there are still comparable aspects
in terms of object size and pose detection. The pear’s results demonstrate slightly lower
accuracy compared to the measurements reported in [32]. On the other hand, the sun-
screen’s results exhibit better performance than the corresponding distance measurements
presented in [32], despite the lack of object pose detection in that study. Notably, it is worth
noting that the pose errors for both objects are similar to the results highlighted in [39].

For both the sunscreen and the pear, the distance z detection error is less than 2 cm.
Table 3 shows that the GA has already found an optimal solution in the 500th generation,
which is the same as in the 1000th generation. This indicates that the algorithm has
successfully converged to the best possible solution. Regarding the pear in Table 2, the
orientation ε3 at the 1000th generation is −0.77, which is less than −0.5 and indicates a
reverse rotation around the ZM axis of more than 90 degrees. However, the actual pose of
the pear is lying horizontally and only rotated by less than 90 degrees. The pose detection
result is close to the actual pose.

The comparison with other methods is shown in Table 4. Orientation errors are
transformed from quaternion to Euler angles (e1, e2, e3) for comparison. Qualitative analysis
was performed as above on the pear orientation detection. In general model-based methods,
it is assumed that the model has the same size as the object, resulting in no size errors
∆L and ∆B [30,39]. For comparison, we examined findings related to the PM ratio [20]
or stereo vision [32] for size measurements, although these studies did not perform pose
measurements. Our method can be regarded as comparable to other reliable methods in
terms of size and pose measurements. On average, it falls into the upper middle level of
accuracy. Furthermore, our method is capable of reliably estimating both size and pose.

Through the experimental results, it is confirmed that:

(1) The proposed variable photo-model-based recognition method utilizes stereo vision
and a 2D photo to estimate the pose of a 3D target object, extending the traditional
approach;

(2) This method can generate 3D plane models with varying aspect ratios and sizes using
just one photo, enabling accurate object pose estimation;

(3) The variable photo-model method combines deep learning techniques, utilizing pre-
trained weights from existing datasets, and can be executed on a CPU with limited
hardware resources.
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Table 4. Position (mm), orientation (degrees), and size relative errors. In general model-based
methods, it is assumed that the model is the same size as the object with no dimensional errors.
Results of studies using PM ratio [20] or stereo vision [32] for size measurements are also included in
the table for comparison, but they do not have pose detection.

ex ey ez e1 e2 e3 ∆L ∆B

Tomato [20] 3.62% 4.11%
Tomato [32] 7.01%
Milk [30] 3.89 4.25 57.68 38.74 27.62 42.68
Tide detergent [30] 1.74 0.74 10.71 1.78 1.64 0.8
Sugar box [39] <50 <50 <50 <15 <15 <15
Ours (pear) −7 18 16 22.20% 14.29%
Ours (sunscreen) −21 7 12 12.33 3.11 14.69 6.90% 4.44%

5. Conclusions and Future Work

The study presented a pose and size estimation method using the variable photo-
model. The experimental results using two different objects demonstrated that the gen-
erated variable PM ratio photo-model was able to detect the objects’ pose and size in
a complex home environment. The accuracy was found to be better for the sunscreen
compared to the pear. The adaptability of the variable photo-model method to different
target shapes was also observed when using a photo from the same category.

The fact that the detection performance is better for industrially manufactured prod-
ucts (sunscreen) with fixed shapes compared to an agricultural product (pear) with irregular
shape variations suggests that the method’s ability to handle shape variations is not suffi-
ciently refined and requires improvement.

In terms of future research, it is recommended to include a wider variety of exper-
imental objects to enhance the generalizability of the findings. Moreover, conducting
information extraction from existing datasets for comparative studies would provide valu-
able insights. Furthermore, the impact of different deep learning models on the generation
of photo-models should be thoroughly investigated and analyzed.
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