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Abstract: Wireless sensor networks (WSNs) have been commonly utilized in event detection and
environmental observation applications. The main aim of event detection is to define the presence
or absence of an event. Various existing studies in the field of event detection depend on static or
threshold values to reveal the occurrence of an event, which can result in imprecise sensor readings.
Recently, many studies have utilized fuzzy logic to treat fluctuating sensor readings; as a result, they
have decreased the number of false alarms created. However, there is some attention required when
utilizing fuzzy logic. One aspect is that the efficiency and accuracy of the fuzzy membership function
can be impacted by the utilization of heterogeneous sensors, which may increase the complexity
of the fuzzy logic operation as the number of inputs rises. To address these issues, this paper
proposes an approach named Probabilistic Collaborative Event Detection (PCED), which is a hybrid
event detection technique that is based on a cluster WSN topology. The PCED approach utilizes
a validated probabilistic technique for heterogeneous sensor nodes to transform sensing values
into probability formulas and introduces a Cluster Head Decision Mechanism to make decisions
based on the aggregated data from the sensors. The proposed approach employs fuzzy logic at the
fusion center level to enhance the precision of event detection. The effectiveness of this method is
thoroughly evaluated using MATLAB software, demonstrating an improvement in the probability of
detection and a decrease in the probability of false alarms. PCED is compared to well-established
event detection mechanisms such as the REFD mechanism. The results show that PCED reduces the
occurrence of false alarms from 37 to 3 in certain scenarios, while improving detection accuracy by
up to 19.4% over REDF and decreasing detection latency by up to 17.5%.

Keywords: cluster head (CH); event detection; wireless sensor network (WSN)

1. Introduction

Wireless sensor networks (WSNs) are proving to be highly beneficial for various
applications that involve large-scale monitoring, especially in low-power and remote areas.
As a result, they are increasingly being utilized for event-based detection mechanisms like
fire and intrusion detection, both indoors and outdoors. However, the primary difficulty
in designing a successful event detection mechanism using WSNs is to ensure that it is
robust and reliable in order to reduce false alarms. The task of enhancing an effective
event detection system utilizing WSNs that can improve accuracy and performance while
reducing the possibility of false event detection is complicated, mainly in indoor scenarios.
Various existing approaches struggle to achieve these goals [1].
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Compared with the indoor environment, damaged sensors in outdoor environments
are almost impossible to identify, maintain, or replace. An example of such a scenario is seen
in cases in which WSNs are deployed in hilly areas. These sensors are usually thrown from
a helicopter to monitor temperature or rainfall [2]. With their self-organization capability,
sensors are organized into clusters after deployment, whereby cluster heads (CHs) collect
and aggregate data and send it to the sink or base station (BS). Due to long-distance
communication, most of the sensors will die when their battery dies, which completely
disrupts the network. Therefore, extending the network’s lifetime can be achieved by
clustering the network through a distributive mechanism [2,3].

Moreover, the detection strategies include collaboration detection and operation mode.
The collaboration of the neighboring nodes in deciding whether sufficient evidence exists
to trigger the propagation of an event detection report is of great benefit for energy conser-
vation, accurate detection, and event processing delays [4]. To help firefighting operations,
an alarm application based on Telos B motes [5] was proposed in [6]. A combination of
temperature, light, and humidity sensors in harsh, hostile environments was used. The
researchers considered a scattered WSN which consisted of several isolated WSNs. The
scenario included sensor nodes destroyed by fire. The findings revealed that a system
that achieves greater longevity by avoiding synchronization costs during idle periods can
be successfully applied to fire breakouts when swift responses to such destructive events
are needed. To recognize different classes of application-specific events, the authors of [7]
proposed a system for the collaborative detection of an event in which instead of depending
on a centralized BS for coordination or processing, sensing nodes collaborate to accurately
conclude the occurrence of the event. Through the evaluation of the system using a WSN
of 100 nodes deployed on the fence of a real-world construction site, it was found that the
direct processing of the raw data on the nodes that only propagate events that have been
detected contributes to a considerable reduction in communication overhead. Earlier, the
authors of [8] proposed Data Service Middleware (DSWare), which can provide swift event
detection services through collaborative correlations between different sensor observations
according to real-time characteristics of events. This approach can distinguish between
real occurrences of events and false alarms. Confidence functions were also used to define
the relative importance of sub-events. Low detection rates trigger the instant report of the
partial detections of these events. Therefore, a more accurate and comprehensive under-
standing of when and where events have happened can be achieved through collaborative
detection. It does not contribute to a false-positive detection of the outcome. Nevertheless,
exchanging collaboration information would delay the delivery of event reports; hence, the
sink is not notified about the event swiftly, which affects the reliability and effectiveness of
the applications.

Although the disk model is commonly utilized [9], it has drawbacks as the sensor
node can only detect data within its radius range, causing events outside of the range to be
missed [10]. Therefore, to overcome the limitations of the disk model, an attenuation model
is utilized. This model considers the continuous attenuation of signals as sensors move
further apart and the impact of noise on signal dispatch. In terms of data representation,
researchers have reviewed the utilization of real values and a probabilistic approach. How-
ever, utilizing real values in sensing data presents two challenges. Firstly, the fusion center
and cluster head must accommodate a range of sensor types which can be heterogeneous
in nature. The second issue deals with fixed sensor thresholds. For instance, when a
temperature sensor’s threshold is located at 55 ◦C and the genuine temperature for a fire is
45 ◦C, the sensor will only trigger an alarm when the temperature reaches 55 ◦C, resulting
in a delay in detection and a risk of false alarms. To address this challenge, a probabilistic
approach for sensing data representation has been devised which effectively removes the
need for a predetermined threshold value [11]. Although a probabilistic technique has been
developed to eliminate the reliance on fixed threshold values for sensor data representation,
it has not been applied to different types of sensors that use different units and threshold
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levels. Therefore, this study utilized a probabilistic strategy to effectively represent data at
the sensor level and address the variability in sensor types and units.

In addition, it is recommended that clustering-based WSNs are employed to improve
the quality of sensing data before sending them to the fusion center to enhance decision
making. To achieve this, recent techniques have combined data from multiple sensors to
improve the accuracy of event detection [12]. However, the use of different types of sensors
to detect an event and submitting their combined data to the cluster head can lead to an
increase in the number of memberships, resulting in reduced detection accuracy and an
increase in false alarms. Moreover, the majority of existing event detection methods depend
on fuzzy logic techniques [13] to enhance decision-making accuracy, as fuzzy logic more
closely resembles human cognition. For instance, instead of considering a fire event an
incident with a temperature exceeding 55 ◦C and a smoke obscuration level above 15%, it
can be perceived as an event with a high temperature and smoke. The utilization of fuzzy
logic is much simpler and more straightforward in reality. To assess the credibility of each
cluster and make a final decision regarding the presence of the target, fuzzy logic can be
integrated [1,14].

While fuzzy logic is simpler to use, one major drawback is the exponential growth of
rules with the increase in variables. This could lead to slow event detection and complexity
as the number of rules in the rule base is mn when there are n variables that can each take
m values. In addition, the performance of fuzzy logic may be affected by the ranges and
settings for membership function in heterogeneous sensors, leading to incorrect decisions
as the number of inputs and evaluation levels increases.

The utilization of two types of sensors, namely, temperature and smoke, was explored
in [14] to address the possibility of negative or zero readings in sensing values. However,
this approach can also affect the decision-making process of fuzzy logic, resulting in an
increased number of false alarms prior to the actual occurrence of an event. The paper’s
subsequent sections are organized as follows: Section 2 presents an overview of related
works. In Section 3, we present the problem definition and system formulation. The
decision model and solution for event detection are detailed in Section 4. Section 5 features
the simulation results. Lastly, we conclude this paper in Section 6.

2. Related Work

In this section, the focus is on the current body of research on WSNs and their applica-
tion to event detection. This is a critical field of study that has garnered significant interest
from researchers and scientists in recent times.

The application of the sensors’ disk model was initially deployed on a large scale. This
technique is known as the disk model because the sensing field of the sensor resembles a
disk shape. The sensor can detect a target if it is within the radius of the disk. The authors
of [15] conducted a study on the search techniques and network detection capabilities
of this model. They covered a range of sensor models and targets, such as mobile and
stationary sensors and targets placed under random or optimal conditions. Additionally,
the discussion included independent or globally coordinated search strategies and the use
of stealthy or visible sensors. Throughout these various detection approaches, a Boolean
sensing model with a fixed sensing radius was employed. In their research, the authors
of [16] put forward a mathematical approach for analyzing the coverage of WSNs. The
methodology involves calculating the number of active nodes needed to attain the desired
coverage by comparing the range of a sensor node to that of the overall deployment area.
If an event falls within a sensor’s range, it will be detected; otherwise, it will go undetected.
The disk model has been deemed overly idealistic for a few reasons [10]. Due to the signal
attenuation model, the signal detected by sensors experiences continual attenuation as the
distance between them increases, and noise interference is also a factor. This means that the
sensor measurements can be realistically simulated rather than providing a binary output.
To enhance the study of Wireless Sensor Networks (WSNs) for event detection, researchers
have turned to probabilistic event detection models. These models involve calculating and
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measuring probabilities associated with event occurrence, as well as related parameters,
instead of relying on statistical computation and sample datasets.

In their study, the authors of [16] assessed the probability of detecting mobile targets
in a scenario in which multiple sensors were randomly positioned to monitor a specific area
of interest. The detection difficulty was related to the problem of line-set intersection and
was dependent upon the perimeter constraints. The researchers found that the likelihood
of detection was determined by the length of the sensor perimeters, with no influence from
the shape of the perimeters. As a result, they developed a modified disk model that allows
for the adjustment of the sensor range based on the perimeter constraints.

Data fusion (DF) is a technique often utilized for enhancing the performance of
detection systems [17]. DF involves the employment of a range of procedures to gather
data from diverse sources, including sensors or CHs, to produce more precise inferences.
Nowadays, there are two types of fusion centers in use: cluster-based and non-cluster-based
fusion centers.

In [18], a hierarchical decision fusion technique was presented that aimed to improve
the probability of network-wide detection. This method includes every sensor making its
own local decision according to a signal attenuation model. After that, utilizing the closest
neighboring sensors, a cluster-level sensor fusion is conducted to acquire new decision
results. Lastly, sensors with positive fusion outcomes forward their data to the network
fusion center, which makes the ultimate network-level decision. This fusion approach relies
on certain assumptions, such as a higher-level decision yielding a comparable positive
outcome or a negative one if the lower-level positive decision count exceeds a specific
threshold. Despite these strategies’ potential advantages, they have encountered some
challenges, such as the final decision always being based on more than half of the total
number of positive local decisions made by the sensors. However, a smaller number of
positive local decisions could still lead to a reliable final decision. To make the decision-
making criteria more accurate, it is essential to consider more realistic indicators than just a
single number. One fusion technique that accomplishes this is called “decision fusion” in
which nodes send their local decision outcomes to a fusion center, where a final decision
is made. It is important to note that another fusion technique exists called “value fusion”
where nodes transmit raw energy data to the fusion center.

The final decision in a sensor network is typically based on measurements gathered
from multiple nodes. However, the authors of [19] developed a wireless sensor network
specifically designed for the early detection of mine fires. This system incorporates subsys-
tems for data collection, data processing, and fusion monitoring. The research emphasized
the network’s structure, scheduling mechanisms, and communication protocols, ensuring
that they are suitable for this specific application. The authors of [20] introduced rapid
algorithms for placing sensors in optimal positions based on a probabilistic data fusion
model to enhance detection performance. In this approach, sensors transmit energy mea-
surements to the CH, which compares the averages of all measurements against a present
threshold. If the average is higher than the threshold, the CH concludes that a target is
present; otherwise, it decides that no target is present. This research focused on the devel-
opment of algorithms for sensor placement, ensuring maximum detection performance.
The authors of [21] proposed a collaborative detection mechanism that relies on a unique
data fusion approach to ensure the accurate deployment of sensors. They employed a
“density first” clustering algorithm that organizes pre-selected surveillance locations into
deployment units and places sensors to cover those locations. The algorithm uses a similar
data fusion mechanism to make detection decisions. The focus of the research conducted
in [22] was on the issue of barrier information coverage. The study proposed a solution
that applied collaboration and information fusion between neighboring sensors to enhance
intrusion detection while minimizing the number of active sensors needed to cover a barrier.
To achieve this, a practical approach was suggested that only required a small number
of active sensors to identify the coverage set. A virtual sensor was used to integrate the
sensor readings, which led to a decision based on value fusion [23]. However, the value
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fusion approach has faced certain challenges, such as determining the threshold value.
The majority of researchers who have used this method have not addressed these issues
and have relied on an experiential value for the threshold. In [19], the majority rule was
simplified to its most fundamental level where each sensor sends its individual decision to
the CH, which then employs the majority rule to reach a final decision. Meanwhile, the
previous fusion works have utilized a cluster-based network structure to enhance network
performance and reduce communication expenses.

In contrast, the authors of [14] suggested a fuzzy logic-based collaborative approach
to robustly detect events. The researchers found that utilizing fuzzy values can enhance
detection accuracy compared to the classification algorithms. However, the authors also
noted that the limited memory of the nodes makes it challenging to store and distribute
the growing number of rule bases. The authors of [1] reached a similar conclusion when
they assessed their collaborative event detection mechanism utilizing clustered WSNs.
The authors of [24] developed D-FLER, a distributed fuzzy inference engine, to detect
fire events in residential settings using smoke and temperature sensors. By integrating
individual sensor inputs with neighborhood observations via a distributed fuzzy logic
engine, D-FLER was able to improve the accuracy of fire detection. The proposed sensor
network technique used a temperature sensor and a maximum likelihood algorithm to
fuse sensory information and detect the early signs of fire outbreaks in open areas such as
forests and urban areas, as previously presented in [25].

The architecture of the proposed system comprises three subsystems, namely, sensing,
computing, and localized alerting. The results of the study indicate that this system has
been successfully implemented for early fire detection purposes.

This paper proposes a method for event detection using sensors that employ a realistic
attenuation signal model. The approach uses a probabilistic decision model for heteroge-
neous sensors to make more accurate decisions about event occurrence. The sensor data
will be collected through clustering with the utilization of a weighting factor to facilitate
decision making. Finally, a fuzzy logic method will be applied at the fusion center to
produce a final decision.

3. Defining the Problem and Formulating the System

In this paper, an event detection system designed for indoor settings is proposed, with
the purpose of environmental monitoring utilizing a variety of features such as gas, smoke,
temperature, and light. In the PCED method, a group of heterogeneous sensors is utilized
and spread uniformly all over the monitored domain to detect events such as fire blasts. By
performing different types of measurements from their respective locations, these sensors
generate a rich data stream that is aggregated and processed using a probabilistic model to
provide accurate information. This information can be used to make informed decisions
about safety measures, thus enabling swift and effective responses in emergency situations.

Let us consider a scenario in which the monitored region is partitioned into sub-areas,
with each sub-area being monitored by a group of sensor nodes. Additionally, assume that
the system administrator has organized these sensor groups into clusters.

In this approach, the sensor nodes within a monitored region are organized into
clusters, each consisting of different types of sensors and led by a cluster head (CH)
possessing advanced computation and communication capabilities beyond that of a typical
sensor node. Instead of transmitting data directly to the sink, the sensor nodes send local
decisions to their respective CH, which is responsible for collecting measurements from
its associated sensors, making cluster-level decisions, and aggregating data for fusion at
the central data fusion point. The input data are further refined at the fusion center using
a weighting factor to enhance the performance of the fuzzy logic and aid in making the
final decision. The proposed event detection system (PCED) utilizes a hybrid approach that
combines probabilistic and fuzzy logic methods to enhance detection performance in terms
of both probability and accuracy. The PCED design is comprised of three stages, which are
illustrated in Figure 1.
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3.1. Local Detection Process

The local detection process depends on sensor detection, which can depend on any
number of heterogenous sensors that will be integrated for local detection. PCED considers
the case of fire, for which it proposes the use of four types of sensors (temperature, gas,
light, and smoke sensors) to monitor and detect events based on adopting a probabilistic
decision model. The sensors detect an event using a realistic attenuation signal model and
can make a more reasonable decision about the presence of events based on the adoption
of a probabilistic decision model as well. In the decision model, the measurement of
values at each sensor is represented using the modified version of a probabilistic model
developed in [11]. The event itself emits a signal, for example, a fire. A sensor can detect
an event by measuring its energy. Meanwhile, the measurements obtained by sensors can
also sometimes be contaminated by background noise [11]. In PCED, this observation
is modeled as additive Gaussian noise. Assume that H0 represents the hypothesis that
the target is absent, and H1 represents the other hypothesis that the target is present. In
this paper, the methodology presented in Figure 1 is followed utilizing the following
equations [11]. Thus, the energy measurement ei of sensor i is given by

H0 : ei = en (1a)

H1 : ei = en + es(di) (1b)

In this scenario, we have two hypotheses: H0, which assumes that the target is absent,
and H1, which proposes that the target is present. Additionally, we define en as the energy
of the background noise, ei as the energy measurement obtained by sensor I, and es(di) as
the energy of the attenuated signal at the position of sensor i.

The energy of the attenuated signal received by each sensor, es(di), can be computed as
follows for each sensor:

es(di) =


s0

(d i/d0)
k , di > d0

s0, di ≤ d0

(2)

where d0 is a constant serving as the reference distance factor; s0 is the signal energy
measured at a distance of d0; k is the attenuation factor, which typically ranges from 2 to 5;
di is the Euclidean distance between the target and sensor i; and en approximately follows a
Gaussian distribution, with a mean µ and a variance σ2.
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Therefore, the total signal energy value of sensor i can be modeled as a Gaussian
distribution, which is expressed as follows:

H0 : en ∼ N(µ, σ2) (3a)

H1 : en ∼ N(µ + es(di), σ2) (3b)

Consequently, each sensor generates a local decision based on a decision rule typically
derived from the Likelihood Ratio Test [26]. This involves comparing the sensor’s signal en-
ergy measurement to a threshold λ determined by the measured value. If the measurement
exceeds λ, the sensor returns a positive detection signal of 1, indicating that it has detected
an event. If the measurement is below λ, the sensor returns a negative detection signal
of 0, indicating that it has not detected an event. The probability of generating a positive
detection signal when an event is truly present is known as the detection probability, while
the probability of generating a false positive signal when an event is not present is referred
to as the false alarm probability. Figure 2 is an overview of the sensor detection system.
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3.2. Process of Decision Making in Clusters

The CH of each sub-region makes the decision regarding the presence or absence of
an event within that sub-region based on the local decisions communicated by the sensor
nodes in the cluster, as shown in Figure 3. The binary decision from sensor node i in cluster
j is denoted as Ij,i, where 1 ≤ j ≤ k. If an event is detected, Ij,i is set to 1; otherwise, it
is set to 0. At the head of each cluster, the cluster decision is made based on the Nj local
decisions Ij,1, Ij,2, . . . , Ij,N j

from Nj local sensor nodes in the cluster. The variable Ij indicates
the number of 1 s among these local decisions:

Ij = ∑Nj
i=1 Ij,i (3c)

To arrive at a cluster decision at the CH, it is assumed that all local sensor nodes
in cluster j have the same SNR and local detection probability, which is denoted as pdj

.
The prior probability is represented as p = P[H = H1]. The optimal decision fusion rule
utilized in this scenario is as follows:

H =

{
H1, IF IJ ≥ thj

H0, IF Ij < thj
(3d)
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3.3. Fusion Center Process and Making the Final Decision

All decisions made by the CHs, along with their respective detection performances,
are transmitted to the fusion center. The fusion center considers the credibility of each
cluster to make the final decision, which is determined based on the distance from the event
and the presence of concealed nodes and shadowing effects. Therefore, the final decision is
made at the fusion center through the following three steps:

Step 1: Pre-processing using a weighting factor, as shown in Figure 4. The weighting
factor can give more confidence to a cluster that has a high detection probability and can
result in minimal false alarms. In addition, the significance factor is used to eliminate some
insignificant reading nodes by giving this cluster a lower weighting value, which may help
to improve the overall performance and reduce the computation cost.
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Step 2: Fuzzy comprehensive credibility evaluation. Using fuzzy values (a set of
values) instead of crisp ones (specific values) significantly improves the accuracy of event
detection. Also, the fuzzy logic approach provides a higher degree of detection precision
than other algorithms [9,14]. In this work, the credibility of a cluster is evaluated by a fuzzy
comprehensive evaluator. This evaluator has two inputs: the probability of detection Pd
and the probability of false alarm Pf. The output of the evaluator, Cre, is the credibility
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of the cluster that is being evaluated. The inputs and the output are characterized by the
following term for the three fuzzy sets:

T(Pd) = T(P f ) = T(Cre) = {Low, Medium, high}

The membership functions are illustrated in Figure 5.
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The fuzzy inference rule set is proposed as follows:

• IF (WPD is Low) THEN (Cre is Low);
• IF (WPD is Medium AND WPF is Low) THEN (Cre is Medium);
• IF (WPD is Medium AND WPF is Medium) THEN (Cre is Medium);
• IF (WPF is High) THEN (Cre is Low);
• IF (WPD is High AND WPF is Low) THEN (Cre is High);
• IF (WPD is High AND WPF is Medium) THEN (Cre is Medium).

The defuzzification procedure used in this evaluator is the center of area method. The
output of the defuzzification procedure is the credibility of the evaluated cluster, as shown
in Figure 6.
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Step 3. Final decision fusion. The final decision will be made based on the cluster
decisions and their corresponding weight values. The decision from a cluster with a higher
credibility receives a greater weight and vice versa. From this aspect, the weight wj of the
j-th cluster is obtained by normalizing the credibility as follows:

wj =
Crej

Cremax
(3e)
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In conclusion, the final decision is made based on the simple weighted OR rule, as
shown in Figure 7.
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4. PCED Mechanism: Proposed Design

This study utilizes the advantages of existing related works by using a hyper proba-
bilistic approach to convert the measured value at the sensors into a probability instead of
directly using the value for the final decision in the fusion center. The CH plays a key role in
gathering the measured values from sensors that are in the cluster to perform cluster-level
decisions and aggregate the data to be sent to the fusion center. At the fusion center, the
input data are improved by proposing weighting factors based on the performance of
fuzzy logic. In terms of network topology, a cluster-based WSN structure was considered
in this study in which the monitored area is divided into sub-areas and groups of sensor
nodes monitor these sub-areas. The designed approach suggests adopting the probabilistic
approach and modifying it to be suitable for event detection. Heterogeneous sensors are
used in this research to achieve the designed objective which require different design re-
quirements such as mean, variance, and threshold values. Using different types of sensors
can help the detection mechanism in terms of detection accuracy and the confidence in an
event being present or absent.

4.1. Probabilistic Model for Local Detection Design

Following the design methodology described in Section 3, due to the advantages of
using probabilistic models in event detection, this subsection describes the probabilistic
model in a heterogeneous WSN in which different types of sensors can be used to improve
the event detection mechanism in terms of accuracy and detection efficiency. The use of
different types of sensors is inspired from the hypothesis that using heterogeneous sensors
in many event detection mechanisms is advantageous because more than one type of sensor
can detect the same event and thus corroborate it. For example, a fire event usually occurs
with a combination of a high temperature, i.e., detected by temperature sensors, a high level
of smoke, i.e., detected by smoke sensors, and a high light intensity, i.e., detected by light
sensors. This study proposes that all different sensor modalities should be located close
to each other so that they are approximately the same distance d from the event. Indeed,
sensors perform detection by measuring energy emitted from the source of an event, and
this energy attenuates with distance from that source. Thus, the signal energy received by
sensor i at a distance di from the source of an event is computed using Equation (4a) [11]:

ej
i(di) = S0 + wj(di) (4a)

where S0 is the energy measured at a distance d0, and wj(di) is the attenuation factor of the
emitted energy from source of the event with a distance di for sensors of type j. The formula
of wj(di) mainly depends on the propagation behavior. The PCED mechanism is mainly
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proposed for indoor environments and, to the best of our knowledge, Equation (4a) has
been used in several existing studies in the field of event detection in indoor environments;
thus, Equation (4a) should use the same attenuation factor values for all types of sensors,
and the received energy as the signal attenuation is a function of distance. In addition,
further study should be conducted to study the behaviors of different sensing modalities.
Sensor measurements in a normal situation (the absence of an event) are contaminated by
thermal noise (additive random noise) from the environment and the sensor itself. Thus,
for each sensor of type j, based on the hypothesis of the absence of an event H j

0 or the

hypothesis of the presence of an event H j
1 and according to Section 3.1, the energy at a

sensor follows a Gaussian distribution, with a mean value equal to µ and a variance equal
to σ2. Therefore, for different types of sensor nodes used in the monitoring area, the total
measured value of the sensing signal at sensor i for sensing type j can be represented by
adopting Equations (4b) and (4c) as follows:

H j
0 : ej

i ∼ N( µ, σ2) (4b)

H j
1 : ej

i ∼ N( ej
s + µ, σ2) (4c)

In this paper, (H j
0) indicates the values of a situation in which an event is absent,

and it also represents a normal range of values such the temperature for an indoor room.
Equations (4b) and (4c) can be applied in the probability density function (PDF) formula of
a Gaussian distribution. Thus, the PDF of the sensing measurements at sensor ej

i can be
expressed as follows:

H j
0 : Pf ( ej

i ) =
1√

2πσ
e
( e j

i−µ )

2σ2 (4d)

H j
1 : Pf ( ej

i ) =
1√

2πσ
e
( e j

i−µ−e j
i (d) )2

2σ2 (4e)

In traditional event detection, sensors compare their signal energies to a fixed threshold
λ to determine the presence or absence of an event. If the signal energy exceeds λ, the
sensor outputs a value of 1 to indicate the presence of an event; otherwise, it outputs 0 to
indicate the absence of an event. However, to make event detection more accurate and
realistic, probabilistic techniques are used. With this technique, sensor nodes convert their
detection results into probabilities that indicate the likelihood of an event being present
or absent. These probabilities are then sent to the corresponding CH. To accomplish this,
two probability distributions (H0, H1, (P f , Pd)) are employed. The likelihood of making a
positive determination regarding the existence of an event in the absence of one is referred
to as the false alarm probability. On the other hand, a true alarm (detection probability) is
the probability of making a positive determination when an event is present.

We can express the probabilities of false alarm detection and true detection for
a sensor i, denoted by Pi, j

F and Pi, j
D , respectively, for a sensing type j, by utilizing

Equations (4d) and (4e) as follows:

Pi, j
F = Pr(e

j
i ≥ λj |H0) =

∫ ∞

λj

Pf ( ej
i )dej

i (4f)

Pi, j
D = Pr(e

j
i ≥ λj |H1) =

∫ ∞

λj

Pd( ej
i )dej

i (4g)

Equations (4f) and (4g) indicate that a measurement value closer to the event for a
sensor type j can lead to a higher probability of detection and a lower likelihood of a false
alarm. In these equations, the symbol λj represents the threshold value for a sensor type j,
while Pr (·) denotes the probability formula.
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Through the substitution of Equations (4d) and (4e) into Equations (4f) and (4g),
respectively, we obtain the following:

Pi, j
F = Pr(e

j
i ≥ λj |H0) =

∫ ∞

λj

1√
2πσ

e−
( e j

i−µ )
2

2σ2 dej
i (4h)

Pi, j
D = Pr(e

j
i ≥ λj |H1) =

∫ ∞

λj

1√
2πσ

e−
( e j

i−µ−e j
i (d))

2

2σ2 dej
i (4i)

Each sensor transmits this information to its corresponding cluster head to facilitate
the subsequent decision-making process.

The following pseudo-code (Figure 8) is performed at every sensor node in the network
according to the operational description of the probabilistic approach to convert the sensing
value into a probability. Each sensor sends this information to its corresponding cluster
head for further decision process.
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C: Cluster  
CH: Cluster head 
m: Number of nodes in cluster 
SN: Sensor node 
 
Input:  Sensing value of event;  

 
Output: Probability distribution of H0 & H1 

        
1. For each SN i C∈  do  
2.     Data accusation from environment es  
3.     Compute  
4.       H0 according to Equation (4j) 
5.       H1 according to Equation (4m) 
6.    Send H0 & H1 to CH 
7. End for 
8. # At operation at Cluster Head  
9.   Return to step 1  

Figure 8. Pseudo-code of procedures in sensor node. 

4.2. Cluster Head Decision Making and Data Aggregation 
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4.2. Cluster Head Decision Making and Data Aggregation

The CH receives the computed detection probability (Pi, j
D ) and false alarm probability

(Pi, j
F ) for each sensor from all its member sensor nodes. Most of these probabilities received

from the sensor nodes within cluster k are used to make a decision at the kth cluster head.
The node deployment is uniformly distributed across all clusters so that each cluster head
node receives m detection probability values (Ik,1, Ik,2, . . ., Ik,m), where m represents the
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number of sensor nodes participating in the cluster. At the cluster heads, the received
probabilities of H0 and H1 can be expressed as follows:

Hk
0 =



H1
0 : Pi, 1

F =
∫ ∞

λ1
1√

2πσ2 e−
( e 1

i −µ )
2

2σ2 de1
i

H2
0 : Pi, 2

F =
∫ ∞

λ2
1√

2πσ2 e−
( e 2

i −µ )
2

2σ2 de2
i

.

.

Hm
0 : Pi, m

F =
∫ ∞

λm
1√

2πσ2 e−
( e m

i −µ )2

2σ2 dem
i

(4j)

Hk
1 =



H1
1 : Pi, 1

F =
∫ ∞

λ1
1√

2πσ2 e−
( e 1

i −µ−e 1
i (d) )

2

2σ2 de1
i

H2
1 : Pi, 2

F =
∫ ∞

λ2
1√

2πσ2 e−
( e 2

i −µ−e 2
i (d) )

2

2σ2 de2
i

.

.

Hm
1 : Pi, m

F =
∫ ∞

λm
1√

2πσ2 e−
( e m

i −µ−em
i (d) )2

2σ2 dem
i

(4k)

In reference [10], a theorem is presented that states that if the attenuated signal energy
(di) from the target received by a sensor i is greater than six times the noise variance σ,
then its local false alarm probability will be no greater than approximately 0.1%, and its
local detection probability will be no less than approximately 99.9%. This theorem can be
quite useful in determining the relationship between the two probability density functions
(PDFs) of H0 and H1 for single-sensor detection, as illustrated in Figure 9. In this figure, x
represents the intersection point between the two PDF curves, and ei(x) is the measured
value at x. As a general trend, the probability of a false alarm decreases as ei increases until
it reaches x (which is approximately 0.1%). Conversely, the detection probability increases
proportionally to ei for all values greater than x. If any of the ei values are less than x, then
an event is considered absent, and the decision of event (1) is considered a false alarm.
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Based on the characteristics of the Gaussian distribution, if the false alarm probability
is expressed as the probability of ei being greater than x, then it would be less than ap-
proximately 0.1% if x is larger than µ + 3σ [9] for Pf(ei(d) > ei(x)). Here, µ and σ represent
the mean and the standard deviation of the noise, respectively. Conversely, if an event is
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present, Pd(ei(d) > ei(x)) can be greater than approximately 99.9% under the same condition
of x.

Based on the correlation between the PDFs, the connection between x and di can be
expressed as follows:

µ + es(di)− µ = 2(ex − µ)

x = ex
2 + µ

(4l)

To ensure that the probability of false alarms is kept below 0.1% at position x, the
value of ei(x) needs to be adjusted to be higher than µ + 3σ.

ex ≥ µ + 3σ,

ex ≥ 6σ

It should be emphasized that in an event detection system, an increase in the measured
value at the sensor leads to a higher probability of detecting an event. Consequently, the
probability of detection PD(ei) at position x is roughly equivalent to the probability of a
false alarm PF(ei).

PF(ex) = PD(ex)

Nevertheless, the condition mentioned above is not evident in Equation (4l), which
indicates that PD(ex) exceeds 99.9% for all values of ei less than ex but declines for values
greater than ex. Consequently, it is necessary to revise Equation (4l) to comply with the
design specifications that require the detection probability to increase with the sensing
value. As a result, the equation for H1 should be written as follows:

Hk
1 =



H1
1 : Pi, 1

F = 1−
∫ ∞

λ1
1√

2πσ2 e−
( e 1

i −µ−e 1
i (d) )

2

2σ2 de1
i

H2
1 : Pi, 2

F = 1−
∫ ∞

λ2
1√

2πσ2 e−
( e 2

i −µ−e 2
i (d) )

2

2σ2 de2
i

.

.

Hm
1 : Pi, m

F = 1−
∫ ∞

λm
1√

2πσ2 e−
( e m

i −µ−em
i (d) )2

2σ2 dem
i

(4m)

Consequently, Figure 10 portrays the false alarm and detection probabilities at the
sensor level, which are derived from Equations (4j) and (4m).
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Figure 10. Analysis of probability distributions and false alarm detection.

The decision-making process at cluster CH employs probability information from the
sensor readings to arrive at accurate decisions. To design the decision-making mechanism
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at CHk, a rule-based approach was utilized. Typically, the likelihood of an event occurrence
is strengthened when multiple nodes report elevated readings from the same sub-area. As
a result, this supports the hypothesis that various sensors detecting high values indicate
the presence of an event. This study proposed a rule-based approach for event detection
at CHs.

Indeed, increasing the number of granularity levels (such as very low, low, . . ., high,
and very high) may potentially enhance the accuracy of a system. However, in a resource-
constrained environment like a WSN, the designer of an event detection system must reduce
the number of membership sets to maintain accuracy while minimizing the complexity of
rules and memory usage. To implement these rules, the probability values received from
the sensors are translated into two levels: high and low. The range of values (0–1) in the
distribution is split into two levels using the following approach:

Ik,i =

{
Low H j

1 < 0.5
High otherwise

(4n)

As each cluster employs distinct types of sensors, the decision at a CH can be based on
the majority rule. If m denotes the number of sensors in each cluster, a CH requires at least
half (m/2) of the sensors reporting high values to confidently confirm the occurrence of an
event. This can be expressed as follows:

CHdecision =

{
H1 No. of High ≥ m

2
H0 otherwise

(4o)

where CH decision refers to the decision made at the CH.
If A indicates the presence of an event and Bj

i represents the present measurement
value obtained by a sensor i, the value is computed for each value in the r-level set that
includes N different values for both H0 and H1. Here, i = 1, 2, . . ., m, as there are m sensors in
the cluster. Assuming an event is absent under the hypothesis H0, the estimated probability
Q0 represents the likelihood of the cluster receiving readings from its m sensors (false
alarm). Assuming the hypothesis H1 is true and an event is present, Q1 denotes the cluster
probability of sensors collecting their own data. The aim of this method is to determine a
shared detection probability and false alarm probability for all sensors in the cluster. Hence,
the detection probability and false probability for a cluster k can be determined through the
following computation:

QK
0 =

∑m
i=1 H0

m
(4p)

QK
1 =

∑m
i=1 H1

m
(4q)

The following pseudo-code (Figure 11) is executed at every CH node in the network
according to the operational description of the probabilistic approach of the sensor node to
convert the measured value into a probability.

The CHs send their Q0 and Q1 estimates to the fusion center for further detection and
final decision making. The data from the clusters are gathered at the fusion center and
fuzzy logic are employed to make the final decision. However, it should be noted that
different clusters may have varying data values depending on their distance from the event
source. As such, this factor should be considered during the development of the fusion
center and in the final decision-making process.

4.3. Pre-Processing and Aggregation of Data

The distance from the source of the event greatly affects the decisions made by the
sensor nodes and their corresponding CHs such that clusters located closer to the source
of the event have higher detection probabilities with a greater confidence and weight.
To account for this, this study proposed the use of a weighting factor for each cluster
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that reflects the significance of its data readings in the final event detection decision. The
weighting factor can be obtained through the following formula.
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Identify the detection probability with the highest value:

Q1,max = arg max (Q1
1, Q2

1, . . . Qk
1..QNC

1 ) (4r)

where NC represents the total count of clusters.
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The weighting factor for each cluster can be calculated based on the mean distance
vector for a cluster k using the following formula:

∆k
1 = Q1,max −Qk

1 (4s)

The weighting factor can be expressed as follows:

Wk
1 =

1− ∆k
1

Qmax
(4t)

By examining the equation above, we can see that the highest weight that can be
allocated to a cluster is determined as follows:

W1,max =
1

Q1,max
(4u)

The minimum weight can be determined in cases in which the sensor nodes in a cluster
are far from the event and cannot measure any data, resulting in an approximate detection
probability Qk

1 of 0. This can be expressed as follows:

W1,min =
1−Q1,max

Q1,max
(4v)

Hence, the range of weighting factors Wk
1 can be defined as follows:

1−Q1,max

Q1,max
≤Wk

1 ≤
1

Q1,max
(4w)

The same procedure can be applied to obtain the weighting factor for the false alarm
probability, which can be expressed as follows:

Wk
0 =

1−Q0,max + Qk
0

Q0,max
(4x)

The range of the weighting factor Wk
0 for the false alarm probability can be expressed

as follows:
1−Q0,max

Q0,max
≤Wk

0 ≤
1

Q0,max
(4y)

The utilization of weighting factors Wk
0 and Wk

1 can enhance the effectiveness of fuzzy
logic by limiting the number of inputs to just two, which in turn reduces the complexity,
particularly during the fuzzification process while applying the membership function and
set of fuzzy rules. The proposed modification can potentially improve the accuracy of
event detection by considering the decision made by each cluster, which is weighted by the
assigned factor, in combination with the decisions from all other clusters in the monitored
area.

The fusion center receives inputs consisting of the detection probability Qk
1 and false

alarm probability Qk
0, along with the CH decision. These inputs are then processed to obtain

the weighted detection probability (WDP) and weighted false alarm probability (WFP).
The equations for calculating WDP and WFP are as follows:

WDP =

{
1 CHdecision = H1
Wk

1. Qk
1 otherwise

(4z)

WFP =

{
1 CHdecision = H0

Wk
0. Qk

0 otherwise
(4A)

The weighting factor can provide a greater weight to the cluster with a higher detection
probability, ultimately leading to fewer false alarms.
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4.4. Process of Applying Fuzzy Logic

The selected fuzzy logic system (FLS) for the proposed event detection mechanism
is illustrated in Figure 12. The FLS uses the WDP and WFP as inputs. Each fuzzy cluster
is evaluated using fuzzy logic, and the final decision is based on the results from all
fuzzy clusters. A set of predetermined rules for event detection is created using if–then
expressions, which are then used to process the fuzzified values. The inference mechanism
is responsible for mapping input fuzzy sets to output fuzzy sets based on a predefined rule.
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In the end, the DE fuzzifier computes the crisp output value as the final result. These
crisp output values indicate the cluster’s detection results as well as the corresponding
control action that needs to be taken.

4.4.1. Fuzzification

The membership functions were created with triangular shapes to determine the
certainty of how a crisp value relates to a specific linguistic term. These linguistic terms are
represented in fuzzy logic, and Figure 13 shows the membership function for weighted
detection and weighted false alarm probability. Each crisp input value is transformed
into three levels, such as Low (0.0), Medium (0.8), and High (0.2), based on the detection
probability membership function. For instance, if the weighted detection probability is
0.6, it will be transformed accordingly. One should give more weight to a cluster that
has a higher chance of detection and a lower probability of false alarms. Therefore, to
evaluate the credibility of each cluster, a fuzzy evaluator takes two inputs representing
the probability of detection and false alarms (WDP and WFP) and produces an output
representing the credibility (Cre) of the cluster under consideration.

4.4.2. Fuzzy Inference System

The Fuzzy Inference System (FIS) maps a fuzzy set of two inputs, WDP and WFP,
to an output representing credibility. The Mamdani method is widely used in FIS, and it
is the chosen technique for the proposed research. The subsequent paragraphs explain
the process of designing the FIS for detecting the proposed event. The input values fall
between 0 and 1 and indicate the extent to which they belong to the appropriate fuzzy sets,
as illustrated in Figure 13a,b. Subsequently, a set of linguistic statements is established as a
set of rules to translate the fuzzy input set into credibility levels, which are also expressed
using linguistic terms such as Low, Medium, and High. Table 1 shows all the potential
rules for the devised fuzzy logic.

As the number of linguistic variables and inputs increases, the size of the rule base
set grows exponentially, making it essential to minimize the number of rules in the fuzzy
rule base during the design process to prevent complex scenarios and memory limitations.
Consequently, Table 1 can be simplified and updated to Table 2.
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Table 1. Rule set for fuzzy inference.

Rule WDP WFP Cre

1 L L L
2 L M L
3 L H L
4 M L M
5 M M M
6 M H L
7 H L H
8 H M M
9 H H L

Table 2. Fuzzy inference rule set with exclusion of rules 1, 3, and 6.

Rule WDP WFP Cre

1 L - L
2 M L M
3 M M M
4 - H L
5 H L H
6 H M M

Subsequently, the OR method (maximum) is employed as the fuzzy operator to
compute the credibility level (tipping calculations) for the rules. For instance, if WDP = 0.4
and WFP = 0.6, rule 2 is utilized, and the fuzzy membership values of the rule are Medium
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(0.6) for WDP and Low (0.2) for WFP. As a result, the fuzzy operator selects the maximum
value from the two membership values, which is 0.6, as demonstrated in Figure 14.
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Figure 14. Application of rule 2 on Table 2 as an example.

The output of each rule needs to be linked with a value, which is achieved by applying
the implication method to the results from the fuzzy operator (as in the previous example
where the output was 0.6). Once the implication procedure is completed for each rule, an
aggregation process is carried out to enable efficient decision making, as the decision is
based on all the tested rules. The maximum aggregation method is utilized to combine the
outputs in an appropriate manner for optimal results.

4.4.3. Defuzzification

The process of defuzzification takes a fuzzy set as input, specifically the aggregate
output fuzzy set, and generates a single numerical value as output. Although fuzziness
is advantageous during the intermediate stages of rule assessment, a singular numerical
value is typically the desired outcome for each variable. However, since an aggregate fuzzy
set can have a broad range of output values, it must be DE fuzzified to obtain a single
output value from the set. Once the set of rules has been designed, the output indicates
the likelihood that an event detection will yield the following percentages: Low (56%),
Medium (31%), and High (13%). To obtain a single, precise value, a defuzzification process
is employed at this stage. Defuzzification techniques such as center of gravity, center of
singleton, and maximal methods are commonly used. For this study, the defuzzification
process was inspired by [1] and is used to obtain the credibility (Cre) of the analyzed cluster
k. The process of using the complete set of rules for a particular case with assumed inputs
of WDP = 0.4 and WFP = 0.7 is illustrated in Figure 15. This example demonstrates how
fuzzy logic works and outlines the steps for determining the credibility and output result.

4.5. Final Decision

The final decision is determined based on the output of each cluster, represented
by Crej, and the corresponding weight values, denoted as Wj. A cluster with a higher
credibility holds more weight in the decision-making process, while clusters with a lower
credibility contribute less to the final decision computation. When a cluster is too far from
the event source to detect it and its credibility is poor, it is given less weight. In this scenario,
only the clusters with High and Medium levels of credibility are considered for the final
decision. Suppose there are NC clusters, and m represents the cluster associated with a low
credibility. In that case, the weight of the j-th cluster (wj) is computed by normalizing the
credibility as mentioned in Equation (3e).
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The final decision is determined based on the readability of each cluster (j-th cluster),
represented by Crej, and the maximum credibility among m clusters, represented by Cremax.
The following simple weighted OR rule is used to make the final decision:

H =

{
H1 if ∑k

j=1 wjDj ≥ 1
H0 otherwise

(4B)

4.6. Design of Event Detection for Fire: A Case Study

This section describes a case study of fire detection for indoor scenarios and considers
a uniformly deployed sensor network to monitor the targeted area and trigger an alarm
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if a fire starts. In fact, fire can be defined as a sequence of exothermic chemical reactions
between fuel and an oxidant accompanied by the by-products of combustion, which may
result heat, smoke, and electromagnetic radiation (light) [9] in addition to gas. Therefore,
different types of sensors could be used in fire detection to sense fire events such as
temperature, smoke, light, and gas sensors.

4.7. Fire Detection Procedures and Numerical Example

According to the proposed event detection structure, the detection mechanism consists
of three major parts: (i) sensor-level detection; (ii) cluster head detection; and (iii) fusion
center. For sensor-level detection, four types of sensors (smoke (S), temperature (T), light
(L), and gas (G)) were deployed in each sub-region. The following procedures were used in
the case study according to the designed event detection mechanism.

Sensor nodes send their measured data to their corresponding cluster head. Thus, the
detection probability H1 and false alarm probability H0 information at the cluster head
(after solving the Q Function and its equivalent error function as a complementary CDF
using Equations (4j) and (4m)) can be presented as follows:
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Table 3 illustrates the mean values and variances of different types of sensors according
to data presented in the NIST dataset [26].

Table 3. Statistical values for different types of sensors.

Sensing Type Mean Value (µ) Standard Deviation (σ) Threshold Value

Temperature 28 ◦C 4.7 ◦C 55 ◦C
Smoke 0.0474/m 0.0822/m 0.15/m

Gas (Carbon Monoxide) 0.016 0.0245 -

The PDFs of the three sensor values (shown in Figure 16), which were obtained from
the Test 5 datasheet from NIST, illustrate the designed PDF for detection probability and
false alarm probability.

For instance, two reading values (one before the fire event and the other after the
ignition of the fire) can be used to understand the behavior of the designed model. For this
example, Maple software was used to solve the equations and obtain the following results.

Case 1 (no fire): Temperature (22.4 ◦C), smoke obstruction (0.0205%/m), and CO
(0.0151). By applying Equations (4B) and (4C):

Temperature: (H0 = 0.703456810, H1 = 6.140 × 10−7);
Smoke: (H0 = 0.8026330517, H1 = 6.784 × 10−7);
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Carbon Monoxide (CO): (H0= 0.5179463455, H1 = 0.261616 × 10−4).
Case 2 (fire): Temperature (51.9 ◦C), smoke obstruction (0.482%/m), CO (0.0235).
Temperature: (H0 = 1.837 × 10−7, H1 = 0.8610627296);
Smoke: (H0 = 2.70 × 10−8, H1 = 0.9247120136);
Carbon Monoxide (CO): (H0 = 0.1444808 × 103, H1 = 0.3538302334).
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At the second phase, a decision is made at the CH such that a positive detection of an
event is signaled as soon as enough sensors have a high detection probability; at this phase,
the decision mainly depends on high detection values that are received from the majority of
local sensors. Accordingly, in the proposed model, every sensor type will send PD and PF
values to its corresponding CH. Hence, the CH converts these values into linguistic terms
(Low or High) based on Equation (4n). Then, the decision at the CH is positive if two out
of three sensors have a detection probability that is High, for instance, temperature and
smoke or CO and smoke. Thus, the decision will be as follows:

Case 1: All three sensors are determined to have a High false alarm and a Low
detection probability, so the decision at the CH is H0 (no fire).

Case 2: Two sensors (temperature and smoke) have High detection, so the decision at
the CH is H1 (fire).

• Every cluster consists of three different types of sensors; the average detection proba-
bility Q1 and average false alarm probability Q0 can be computed for cluster k, using
Equations (4p) and (4q) as follows:



Sensors 2023, 23, 6918 24 of 31

Case 1:
Q0 =

HS
0 +HT

0 +HCO
0

3 = 0.650

Q1 =
HS

1 +HT
1 +HCO

1
3 = 0.000011

Case 2:
Q0 =

HS
0 +HT

0 +HCO
0

3 = 0.118

Q1 =
HS

1 +HT
1 +HCO

1
3 = 0.595

Fusion Centre: the level is applied in the fusion center as described below.

• At this stage, the WDP and WFP are computed by applying Equations (4z) and (4A); for
this numerical example, only one cluster is considered, so W is equal 1 and therefore,
WDF = Q1 and WFP = Q0.

• WDF = Q1 and WFP = Q0 were used as inputs to the fuzzy logic to determine the final
decision for the cluster.

Case 1: After applying the fuzzy process and the processes of fuzzification and
defuzzification (Figure 17), the output was equal to 0.13, which indicates that there is
no fire.
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Case 2: In this case, the output was equal to 0.513, which indicates the presence of fire
(Figure 18).
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In brief, this numerical example illustrates the operation of the proposed models
for event detection and validates that the models and designed mathematical models are
working properly in the cases of absence of fire and presence of fire.

5. Analysis and Findings from Experimental Study

This study’s proposed work consists of two phases: firstly, gathering the event environ-
ment dataset, and secondly, implementing the proposed design using MATLAB software.
To illustrate the effectiveness of the proposed approach, a case study of fire event detection
was conducted.

5.1. Dataset

The NIST website (“Home Smoke Alarm Tests|NIST”, Ref. [26]) provides a real fire
dataset that was obtained through sensor measurements from various real fires. This
study focused on a factory building and selected two primary scenarios from the available
options, namely, fire caused by a burning mattress and fire caused by a burning chair.

5.2. Experiment

A simulated home was constructed with a variety of heterogeneous sensors deployed
in two locations. The geometry of the simulated home was representative of a range of
residential layouts, including apartments. The home was partitioned into one living room,
three bedrooms (each bedroom also containing a small closet), one full bathroom, one
kitchen/dining area, and two hallways. The collected data were divided based on the
most frequent fires and those that resulted in the highest number of fatalities. It was found
that fires involving flaming and smoldering upholstered furniture and mattresses were
among the top four deadliest fire scenarios [27]. In line with [28], the simulation time for
all experiments was set at 600 s. The parameter settings for the evaluation experiments are
summarized in Table 4.

Table 4. Distribution of cluster heads in monitoring area.

Parameters
Values

Simulated Home

Simulation Time (s) 600
Location of fire Bedroom, Living Room
Sensor types Optical Density, Smoke, Temperature, Gas
Topology Network Cluster-based
Distribution types Gaussian Normal Distribution
Heat Release Rate Per Unit Area
(HRRPUA) (kw/m2) 745.25

5.3. Metrics for Evaluation

In order to assess the PCED mechanism’s reliability, efficiency, and performance, three
metrics (or criteria) were utilized to analyze the simulation results:

• Accuracy

“Accuracy” is a widely used measure of how closely a measurement aligns with the
true value. In the context of the proposed PCED mechanism, accuracy was calculated by
assessing the number of correctly detected events, based on detection probability, number
of sensors, and clustering. As explained in reference [29,30], the general formula for
calculating accuracy is as follows:

Accuracy =
Total Number o f True Alarms

Total Number o f Event Detection
∗ 100% (5)

• Detection Delay
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The delay of an event is the duration between the occurrence of a physical event and
its detection [31]. In the context of fire monitoring, timely reporting to the fusion center
is crucial. Hence, one of the primary performance metrics for monitoring event-based
Wireless Sensor Networks (WSNs) is the detection delay [32]. This metric measures the
time elapsed between the physical occurrence of an event and the delivery of a sufficient
number of packets to the fusion center.

• False Alarms

An event behavior that is mistakenly classified as abnormal by the fusion center can
occur due to inaccurate data from sensor nodes and the potential evolution of the event
relative to the number of detecting nodes [33]. The fusion center depends on the accuracy
of the data collected from the sensor nodes to produce the classification decision [34], which
may be affected by the arrangement of the nodes detecting the event and their function.

5.4. Results and Performance Evaluation

In this section, we compared the performance of the proposed event detection method,
PCED, and an existing method named REDF. The comparison was based on the detection
output from fuzzy logic, the detection delay, and false alarm rate. The NIST dataset was
utilized to simulate the monitoring environment of a home. To ensure a fair comparison,
only one cluster was considered, following the scenario of REDF. REDF was implemented
in MATLAB using fuzzy logic, as described in [14].

5.4.1. Probability of Final Decision Detection

In Figures 19 and 20, the fuzzy output results in the fusion center are presented as
percentages. The x-axis represents the time in seconds relative to the ignition of a fire,
while the y-axis shows the fire credibility as a percentage. Figure 19 shows the results for
a burning mattress in bedroom 1, comparing the proposed PCED mechanism to REDF.
Negative time values indicate the period before the fire ignition. In both mechanisms, a
credibility threshold of 50% was used to trigger the detection of a fire. Credibility values
above 50% indicate the presence of a fire, while values below 50% indicate the absence
of fire.
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The results shown in Figure 19 demonstrate the superiority of the proposed PCED
mechanism over the existing REDF method in terms of system output stability during the
absence of events, detection delay, and false alarms for events prior to fire ignition. The
proposed PCED mechanism detected the presence of fire at 57 s, whereas REDF detected
it at 67 s, indicating a 10 s delay. This performance improvement can be attributed to the
proposed PCED model’s use of different types of sensor nodes, allowing it to gather more
event information than REDF, which relies solely on temperature and requires more time
to detect an increase in heat.

An important observation is that the credibility behavior in the proposed PCED
method was more stable during the absence of fire and after the fire was detected. This
stability can be attributed to the probability design at the sensor nodes, which ensures that
the detection probability and false alarm values are determined in a way that minimizes
their interference. This observation indicates that there was an increase in the credibility of
PCED after fire ignition, but it did not reach the threshold value of 50% which is necessary
for fire detection. Consequently, PCED did not consider it a fire. However, at certain points
or sometime after the fire started, the credibility of PCED decreased to a lower level of
around 15%, which is referred to as a negative alarm. Comparatively, REDF experienced
eight negative alarms, while PCED encountered only two. These negative alarms were
triggered by unexpected changes in sensor readings. The output result of the burning chair
credibility in the living room is depicted in Figure 20. It is evident from the results that the
detection delay in this case was higher than the previous case presented in Figure 10, with
values of 112 s and 124 s for PCED and REDF, respectively. The delay in detecting a fire
can be assigned to many factors such as the kind of material being burnt, the area’s size,
and the adjacent environmental situations, which may influence the sensor readings and
result in fluctuations. Consequently, it is essential for the event detection mechanism to be
resilient against these variables to improve the accuracy of the final decision. Although
the PCED’s credibility score began to rise at the 92 s mark, it decreased multiple times,
resulting in further delay in detecting the fire.

Table 5 displays the detection delay for both the proposed PCED and REDF mech-
anisms, with the results indicating that the former detected the fire 10 s earlier for the
mattress case and 12 s earlier for the burning chair case compared to REDF. This improve-
ment resulted in a delay reduction of 17.5% for the burning mattress and 10.7% for the
burning chair scenarios. Table 5 also presents the detection probability, which is calculated
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by dividing the detection time by the experiment time from the ignition of the fire. The
proposed PCED method outperformed REDF in terms of detection probability as well.

Table 5. Summary of detection delay results for manufactured homes using NIST dataset.

Detection Delay (Seconds) Detection Probability
Burning Material

PCED REDF PCED REDF

Mattress (Bedroom 1) 57 67 87.8% 84.7%

Chair (Living Room) 112 124 74.5% 71.8%

5.4.2. Detection of False Alarms

In Table 6, a summary of the false alarms detected prior to fire ignition is presented and
indicates that REDF exhibited a higher false alarm rate than PCED. Possible reasons for this
disparity include issues related to the design of the detection mechanism and the selection
of sensing value ranges. One of the key parameters for fire detection is the change in values
such as smoke levels. For instance, a smoke value that is initially close to zero but then
changes significantly can indicate the presence of fire. Additionally, a probabilistic approach
can help the system manage the sensing data by converting the values into probabilities
that determine the detection probability and false alarm rates for all values. The selection of
probability parameters and probability design, particularly mean values, can significantly
improve the accuracy of fire detection mechanisms in distinguishing between detection and
false alarm probabilities. However, the design of REDF may encounter issues with fuzzy
logic membership functions that incorporate negative values, resulting in erroneous output
credibility values. The high false alarm rate associated with REDF is due to the fact that
it often produced false positives for zero smoke and temperature values that experience
negative changes. Consequently, REDF yielded values that are close to 50% just prior
to fire ignition, thereby elevating the false alarm rate. Conversely, the proposed PCED
maintained low credibility values when no fire detection occurred and increased them
to the highest level once a fire was detected. Moreover, PCED incorporates a weighting
factor that assigns higher detection probabilities to clusters that detect events and lower
probabilities to clusters that do not. As demonstrated in Table 5, PCED significantly reduced
false alarms from 37 to 3 instances in the case of the burning mattress and eliminated them
altogether in the case of the burning chair.

Table 6. False alarm summary for manufactured homes using NIST dataset.

Burning Material
False Alarm

PCED REDF

Mattress (Bedroom 1) 03 37
Chair (Living Room) 0 45

Based on the results presented above, we can calculate the detection accuracy by
dividing the total number of true detections, including both fire and no fire, by the sum of
all types of detections, including true detections, false alarms, and negative alarms. Table 7
compares the detection accuracy of the proposed PCED with the related REDF based on the
NIST dataset results. In the scenario of the burning mattress, PCED demonstrated superior
accuracy, with an accuracy of 94.4%, while REDF achieved only 79%. REDF’s inferior
performance was due to its high rates of false alarms and negative alarms. However, for
the case of the burning chair, PCED’s accuracy was slightly lower, which can be attributed
to detection delay. Overall, the performance of PCED surpassed that of REDF in both
scenarios. The accuracy enhancement achieved by PCED over REDF was 19.4% for the
burning mattress case and 8.1% for the burning chair case. These results indicate that the
proposed PCED was superior to REDF in terms of performance.
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Table 7. Assessing detection accuracy in a manufactured home using NIST dataset.

Burning Material
Accuracy of Detection

PCED REDF

Mattress (Bedroom 1) 94.4% 79%
Chair (Living Room) 93% 86%

6. Conclusions

The objective of this study was to propose a probabilistic collaborative event detection
mechanism (PCED) that can efficiently and effectively reveal events in indoor environments
using WSNs while decreasing false event probability and detection delay. This study
focused on achieving high levels of performance and accuracy in event detection. The
proposed PCED mechanism involves three levels: local detection, cluster decision, and final
fusion decision. The obtained results from several scenarios were analyzed and discussed.
The performance of the PCED mechanism was assessed based on detection accuracy, event
detection delay, and false alarms in whole experimental evaluations. The evaluations
help to prove the PCED mechanism’s effective execution in challenging scenarios of event
detection using WSNs. The results revealed that the PCED mechanism performs well in
terms of detection accuracy, with an increase in detection probability and a decrease in
detection delay and false alarms. It is worth noting that event detection systems in practical
applications should typically generate alarms or notifications as part of their outputs. In
this study, the PCED mechanism accurately detects events, but the notification method and
type of reactions are not specified at the application level. This is because it depends on the
specific application’s purpose, deployment, and system applicability.

As a result, it is worthwhile to investigate appropriate methods for responding to
events as they occur. This could involve developing an effective communication system
that alerts the emergency team with sufficient information or implementing an intelligent
system capable of mitigating the impact of combustion gases, regulating oxygen levels
around the fire event, and preventing the transfer of glowing heat.
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