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Abstract: The design of an integrated sensing and communication (ISAC) waveform compatible
with the 5G new radio (NR) system is crucial in enabling ISAC by utilizing the hardware of existing
base stations (BSs). In this paper, we design an inner-frame time division multiplexed sensing
waveform in the frame structure of 5G NR to achieve ISAC. The designed waveform is computed by
the simulated annealing algorithm on an optimization cost function of a constrained combination of
the peak-to-sidelobe ratio (PSLR) and the integrated sidelobe ratio (ISLR) of the velocity ambiguity
function. Specifically, the constraints are the 5G communication protocol and 5G NR frame structure.
In addition, we conducted corresponding signal detection and estimation methods to illustrate the
performance of the sensing waveform. Both theoretical analysis and simulation experiments show
that the designed waveform can effectively achieve target detection and parameter estimation under
low sensing cost conditions.

Keywords: OFDM; 5G new radio (NR); integrated sensing and communication; waveform design

1. Introduction

The development of electronic technology has spurred increased interest and research
in radar and communication equipment. Radar and communication devices are similar
in terms of hardware architecture, channel characteristics, and signal processing [1]. In-
tegrated sensing and communication (ISAC) systems can greatly improve spectrum and
energy efficiency and reduce hardware and signal costs [2].

With the advent of 5G communication, the bandwidth of communication systems is
gradually widening, and the carrier frequency is becoming higher. This makes a common
radio frequency and baseband software radio platform for ISAC possible [3]. The most
straightforward way to achieve ISAC is to reuse communication infrastructure for sensing,
with a low-cost and fast-deployment footprint [4,5]. The key problem in ISAC lies in how
to design the ISAC waveforms.

The ISAC waveforms can be divided into two main categories: multiplexing wave-
forms and identical waveforms. The multiplexing waveform typically utilizes techniques
such as time division multiplexing [6,7], frequency division multiplexing [8,9], space di-
vision multiplexing [10], code division multiplexing [11,12], or their combinations. The
multiplexing waveform can avoid interference between radar and communication, making
waveform designs and signal processing relatively independent and simple. However,
it might prevent the sharing of resources. Identical waveforms can be classified into
sensing-centric waveforms and communication-centric waveforms [3,13]. Sensing-centric
waveforms are modified radar waveforms where the communication information is embed-
ded [14–17]. However, the sensing-centric waveform keeps the pulse regime of the radar
waveform, so the communication data rate of this waveform is low. The communication-
centric waveform is usually based on the traditional communication waveform. The
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most widely used communication-centric waveform is the orthogonal frequency division
multiplexing (OFDM)-integrated radar and communication waveform.

OFDM waveforms provide high communication data rates and the ability to efficiently
deal with frequency selective fading. Hence, many researchers have investigated the OFDM-
integrated radar and communications waveform [18–27]. In [18,19], the authors proposed
a waveform design method that maximizes the weighted sum of the communications data
information rate (DIR) and the conditional mutual information (MI) between the observed
signal and the random target impulse response over the entire uncertainty class. Moreover,
Ref. [20] proposed an adaptive waveform design method by maximizing the mutual infor-
mation (MI), subject to the subcarrier power ratio, energy constraints, and communication
channel capacity. Ref. [21] considered the MI between the frequency-dependent target
response and the transmit OFDM waveforms. Ref. [22] proposed minimizing the Cramer–
Rao bound (CRB) on the delay-Doppler estimation, subject to an integrated side-lobe level
(ISL). Ref. [23] transformed the optimal waveform design problem by designing subcarrier
coefficients for optimal power allocation and phase coding. The above methods add a coef-
ficient before the subcarrier of the OFDM waveform and use different optimization criteria
to achieve the optimal waveform design. In addition, [24] proposed maximizing the energy
efficiency (EE) and sum rate (SR) of the ISAC system. However, radar and communications
require the use of different transceiver antennas. In [25], the concept of shared and private
subcarriers is proposed, where shared subcarriers are used to realize the communication
function, and private subcarriers are used to assist sensing. When the number of private
subcarriers is increased, the sensing performance improves, but the communication rate
decreases. In [26], a sensing-integrated discrete Fourier transform spread OFDM system
is proposed for THz ISAC. The authors of [27] proposed a joint radar–communication
system with offset quadrature amplitude modulation-based orthogonal frequency division
multiplexing (OQAM-OFDM). Although communication-centric waveforms can achieve a
high data rate, the sensing performance suffers due to the random autocorrelation property
and the high peak-to-average-power ratio of the transmitted waveform.

With the advent of the 5G era, 5G base stations (BSs) have widely being deployed
around the world. The utilization of existing 5G BS hardware to achieve ISAC offers advan-
tages such as low cost and rapid deployment. Therefore, many researchers are looking at
how to utilize existing 5G BS hardware to achieve ISAC [28–30]. Ref. [28] optimized the
ISAC waveform by filling the empty subcarriers of a 5G BS working in downlink mode and
optimizing the transmission power of some of the communication subcarriers. However,
the communication waveform is random in nature, and the number of empty subcarriers
in the communication depends on the number of users served by the networks. The data
transmitted by the users exhibit bursts and discontinuity. Ref. [29] proposed a novel ISAC
scheme that constructs three adjacent BSs as a cooperative sensing system. This scheme
stipulates that only one of the three adjacent BSs can be working in downlink mode at any
time. However, this scheme would reduce the BS’s duration in downlink mode by one-
third, significantly reducing the communication data rate. Therefore, reusing the hardware
of existing, widely deployed 5G BSs to achieve ISAC, while minimizing the impact on the
existing communication data rate and avoiding the impact of the random autocorrelation
property of communication signals on sensing performance, poses a complex issue, which
is addressed in our proposed waveform design method.

In this paper, we propose an inner-frame time division multiplexing waveform design
method of ISAC in 5G NR systems, which achieves communication and sensing by reusing
the hardware of existing 5G BSs, characterized by its low cost, rapid deployment, and
minimal impact on the communication data rate. We transform the sensing waveform
design problem under 5G communication constraints into an optimization problem by
combining the advantages of time division multiplexed waveforms and communication-
centric waveforms. We use the simulated annealing algorithm to solve the optimization
problem and obtain the optimized sensing waveform. The designed waveform takes
into account the constraints on the BS communication signal in 5G systems and is fully
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compatible with existing hardware devices for 5G. For the designed waveform, we also
employ the corresponding signal detection and estimation methods to extract the target
information. The results of the theoretical analysis and numerous simulation experiments
show the effectiveness of the designed waveform.

The remainder of this paper is organized as follows. In Section 2, the signal model is
introduced in the 5G NR system. In Section 3, the sensing waveform is designed and the
corresponding signal processing methods are detailed. In Section 4, numerical examples
are presented to illustrate the performance of the designed waveform. In Section 5, the
conclusions are drawn.

Hereafter, (·)−1, (·)T, (·)∗, and (·)H stand for the inverse, transpose, conjugate, and
conjugate transpose of the argument, respectively; diag(A) and tr(A) represent the vector
consisting of the diagonal elements of matrix A and the trace of matrix A, respectively; b·c
represents rounding down, and the mod(a, b) represents the remainder of a divided by b.

2. Signal Model in the 5G NR System

In the 5G NR system, the communication information is transmitted into the wireless
frame, as shown in Figure 1, which contains 10 subframes. Each subframe consists of 2µ

slots, where µ is one of the parameters in the 5G NR system. It can take values of 0, 1, 2, 3,
or 4. For each slot, there are 14 completed OFDM symbols with lengths of Ts. Moreover, the
completed OFDM symbol can be divided into two parts, the effective OFDM symbol with
length T and the cyclic prefix (CP) with length Tcp. Specifically, Ts = Tcp + T, Tcp = 7%× T,
and T = 1/∆ f , where ∆ f = 2µ × 15 kHz is the subcarrier interval. Hence, there are totally
N = 10× 14× 2µ OFDM symbols within a wireless frame.

The baseband signal sn(t) of the nth OFDM symbol within a wireless frame can be
expressed as

sn(t) =
Nc−1

∑
m=0

αm,nej2πm∆ f (t−nTs)rect
(

t− nTs

Ts

)
, (1)

where αm,n is the communication information modulated on the mth subcarrier of the nth
OFDM symbol; n = 0, 1, . . . , N − 1, Nc is the number of subcarriers; and rect(t) is the
rectangular function, defined as

rect(t) =
{

1, 0 ≤ t ≤ 1
0, otherwise.

(2)

Figure 1. 5G NR frame structure.

Then, the final transmitted OFDM waveform can be given by

sn(t) = sn(t)ej2π f0t, (3)
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where f0 is the carrier frequency.
According to the 5G communication protocol [31], 5G communication supports the

time division duplex (TDD). The TDD is divided into the uplink mode and downlink mode.
When the 5G BS works in the uplink mode, it receives the OFDM communication signals
sent by the users. When the BS works in the downlink mode, it transmits OFDM communi-
cation signals to the users. The BS switches continuously between uplink and downlink
modes within one wireless frame. According to different communication demands, the
uplink and downlink modes have different time ratios. We assume that the time ratio of
the uplink and downlink modes is AS1, which is one of the time ratios specified in the 5G
communication protocol, to provide clear constraints for the subsequent waveform design.
Without loss of generality, the proposed method’s optimization approach is similar to other
cases.

Furthermore, there are common channels in the transmission of OFDM signals. The
common channels are used to transmit various communication-related important param-
eters, including downlink control information and achieving synchronization between
communication parties. The common channels include the synchronization signal/PBCH
block (SSB), physical downlink control channel (PDCCH), and physical downlink shared
channel (PDSCH), which are only distributed in the first half of a wireless frame with
different modes. For the same reason as the AS1, we assume that the distribution of the
common channel OFDM symbols is AS2, which is also derived from the 5G communication
protocol, to provide clear constraints for the subsequent waveform design. AS1 and AS2
are as follows:

AS1: Downlink constraint. The first four of every five consecutive slots are fixed as the
downlink, and the last slot is fixed as the uplink, as shown in Figure 2. Specifically, for the
nth OFDM symbol, if mod(bn/14c, 5) ∈ ε1, it means that the nth OFDM symbol belongs to
the downlink, otherwise it belongs to the uplink, where ε1 = {0, 1, 2, 3}.

AS2: Common channel constraint. The resource allocation for the common channel
is considered to be the < 120 kHz, 120 kHz > mode, as shown in Figure 3. Specifically,
for the nth OFDM symbol in the first half of a wireless frame, if mod(n, (N/2)) = 0 and
mod(n, 28) ∈ ε2, it means that it is a common channel symbol, otherwise, it is not, where
ε2 = {4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23}.

Figure 2. Downlink constraint.

Figure 3. One of the common channel constraints.

3. Proposed Sensing Waveform

In this section, we detail the proposed sensing waveform in terms of design strategy,
optimization solution, and signal detection and estimation.

3.1. Proposed Waveform Design Strategy

Due to the shared hardware of the existing 5G BSs for ISAC, the 5G BSs are required
to work in downlink mode. To minimize the impact on communication, waveform design
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methods need to avoid modifications to common channel symbols. In this paper, the above
requirements are assumed to be AS1 and AS2, respectively. This will result in the sensing
waveform being nonuniform. Additionally, to avoid the interference of communication
signals on sensing and ensure minimal impacts on the communication, we focus on the
inner-frame time division multiplexing of ISAC to exploit the millimeter-wave bands in
5G NR systems. Specifically, we extracted a few OFDM symbols for sensing within the
wireless frame, and would like the sensing waveform to be as sparse as possible while
ensuring acceptable sensing performance.

Regarding sensing performance, range resolution and Doppler resolution are two basic
metrics. Since we use the inner-frame time division multiplexing, it is easy to obtain a high-
range resolution by selecting a large bandwidth. But for the Doppler resolution, it relies
on the slow-time sampling and observation time. The uniformly spaced intervals cannot
be realized, which is a major challenge when designing sensing waveforms within the 5G
NR frame structure. Therefore, this paper focuses on designing a sparse and nonuniform
sensing waveform with acceptable detection and estimation performance.

Generally, the usual waveform design methods include detection probability-based,
signal-to-noise ratio (SNR)-based, signal-to-interference-plus-noise ratio (SINR)-based,
ambiguity function-based, and Kullback–Leibler scatter-based methods [32]. The ambiguity
function is an important tool for evaluating the sensing parameters in the radar system. In
order to remove the interference of modulation information on sensing, we set αm,n = 1 in
(1) and propose the sensing symbolic baseband model, given by

s′n(t) =
Nc−1

∑
m=0

ej2πm∆ f (t−nTs)rect
(

t− nTs

Ts

)
. (4)

Thus, the sparse and nonuniform sensing waveform can be expressed as

St = Ust, (5)

where U is an L× N sparse matrix whose lth row and nth column element ul,n ∈ {0, 1},
and st = [s′0(t), s′1(t), . . . , s′N−1(t)]

T is an N × 1 vector. Specifically, each row of the U has
one and only one ul,n = 1, and each column of the U has, at most, one ul,n = 1. For
convenience, we define the column numbers of the non-zero elements in the lth row of U
as nl , for l = 0, 1, . . . , L− 1.

Hence, we compute the ambiguity function, expressed by

χU(τ, fd) =
∫ ∞

−∞
SH

t−τStej2π fdtdt

=
L−1

∑
l=0

Nc−1

∑
m=0

Nc−1

∑
m′=0

(Ts − |τ|)ejπ[(m−m′)∆ f+ fd ](Ts+τ)

ej2πm′∆ f τ sinc{π[(m−m′)∆ f + fd](Ts − |τ|)}ej2π fdnl Ts .

(6)

where τ is the round-trip propagation time, |τ| ≤ Ts, and fd is the Doppler frequency
shift. Moreover, χU(τ) represents the range ambiguity function when fd is fixed to 0 in
(6), and ∆ f and Nc are important parameters affecting the range estimation performance.
Similarly, χU( fd) represents the velocity ambiguity function when τ is fixed to 0 in (6),
and U is an important parameter affecting the velocity estimation performance. Since
we use inner-frame time division multiplexing, we can easily obtain an acceptable range
estimation performance by picking appropriate parameters, but it is not easy to obtain
an acceptable velocity estimation performance because of the nonuniform and sparse
waveform. Therefore, the main problem of the sensing waveform design is how to design
the proper parameter U to achieve acceptable velocity estimation performance. Two metrics
can be used to characterize the velocity ambiguity function. They are the peak-to-sidelobe
ratio (PSLR) and the integrated sidelobe ratio (ISLR), i.e., the ratio of the peak of the sidelobe
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to the peak of the main lobe and the ratio of the energy of the sidelobe to the main lobe,
respectively. They are defined as

PSLRU =
max[χU( fdi)|2fdi /∈[ fa , fb ]

]

max[χU( fdi)|2fdi∈[ fa , fb ]
]
, (7)

ISLRU =
∑ fdi

χU( fdi)|2fdi /∈[ fa , fb ]

∑ fdi
χU( fdi)|2fdi∈[ fa , fb ]

, (8)

where [ fa, fb] stands for the range of the main lobe.
Thus, under the constraints of AS1 and AS2, the proposed waveform design strat-

egy employing inner-frame time division multiplexing can be described as the following
optimization problem:

min
U

F(U)

s.t.


mod(bnl/14c, 5) ∈ ε1
mod(nl , 28) /∈ ε2, ∀mod(nl , (N/2)) = 0
bni/14c 6=

⌊
nj/14

⌋
, ∀i 6= j

L ≤ KsN

(9)

where F(U) is the cost function, defined as

F(U) = ηPSLRU + (1− η)ISLRU . (10)

Here, η is the scaling factor that determines the trade-off between the PSLR and ISLR.
It should be noted that in (9), the first constraint is the downlink constraint in AS1, the
second constraint is the common channel constraint in AS2, the third constraint consists of
(at most) one OFDM sensing symbol in each slot, and the fourth constraint is the sparsity
constraint. Ks denotes the sparsity of the sensing waveform, defined as

Ks =
Ls

N
× 100%, (11)

where Ls denotes the number of symbols used when the sparsity is Ks.

3.2. Waveform Solution Based on the Simulated Annealing Algorithm

For the optimization problem (9), the solution is NP-hard. However, we do not need
to find the optimal solution. We only need to find a solution that satisfies the constraints
and meets the requirements of the sensing scenario. Therefore, we can use a suboptimal
solution as a substitute for the optimal one. Traditional solving algorithms include simu-
lated annealing [33], genetic algorithms, ant colony algorithms, and so on. For simulated
annealing, it is easy to consider each sensing OFDM symbol as a particle inside an object.
As the temperature decreases, the particles tend to stabilize. Eventually, the internal energy
reaches a minimum, resulting in an optimal solution. In theory, the other algorithms men-
tioned above are also feasible, but encoding the solving process of the optimization problem
(9) into the corresponding physical processes of other algorithms is difficult. Therefore, we
use the simulated annealing algorithm to solve the optimization problem (9). A summary
of the simulated annealing algorithm is shown in Algorithm 1.

Step 1: Initialize the temperature of the system as Ttemp = Tmax, generate a U randomly,
according to (9), and obtain the sensing waveform St according to (5).

Step 2: Calculate the number of fluctuation symbols Nr and the fluctuation range
based on Ttemp. Select Nr non-zero elements in U to exchange with zero elements in the
fluctuation range and judge whether (9) is satisfied. If not, repeat Step 2, and if satisfied,
generate a new U ′. Then, obtain a new sensing waveform S′t according to (5).
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Step 3: Calculate the cost functions F(U), F(U ′) according to (6)–(10) and ∆F =
F(U ′)− F(U).

Step 4: If ∆F ≤ 0, the new solution U = U ′ and St = S′t is obtained. If ∆F > 0, the
new solution is received when e−∆F/(TkTtemp) > δ, where δ takes a uniform distribution of
[0, 1]. If the value of ∆F is smaller and the value of Ttemp is larger, the probability of the
new solution being accepted is higher.

Step 5: Reduce system temperature Ttemp = βTtemp, where β represents the tempera-
ture fading factor.

Step 6: Determine if the current temperature of the system Ttemp is less than the
minimum temperature Tmin. If Ttemp < Tmin, the algorithm terminates and outputs the
optimal sensing waveform St. Otherwise, repeat steps 2 to 5 until Ttemp < Tmin.

Algorithm 1 The simulated annealing algorithm.
Initialization:

Generate a U randomly according to (10) to obtain St;
Ttemp = Tmax;

Repeat:
Generate a new U ′ according to (9), U and Ttemp to
obtain S′t;
∆F = F(U ′)− F(U);

If ∆F ≤ 0 Then U = U ′, St = S′t;
Else Accept U ′ and S′t with a probability e−∆F/(TkTtemp);

Ttemp = βTtemp;
Until Ttemp < Tmin;
Output: St;

After the above algorithm optimization, the designed sensing waveform is St. Con-
sidering a point target, the received signal yl(t) of the lth sensing symbol of the sensing
waveform can be described as

yl(t) =σs′nl
(t− τ)ej2π f0(t−τ)ej2π fdt nl Ts + cl(t) + nl(t)

=
Nc−1

∑
m=0

σej2π f0(t−τ)ej2πm∆ f (t−τ−nl Ts)

ej2π fdt nl Ts rect
[

t− τ − nlTs

Ts

]
+ cl(t) + nl(t),

(12)

where τ is the round-trip propagation time of the target. When subcarrier separation is
performed, τ is required to be smaller than Tcp. fdt is the Doppler frequency shift, cl(t)
denotes the clutter of the lth sensing symbol, nl(t) is the thermal noise of the lth sensing
symbol, and σ is the attenuation factor caused by propagation loss, scattering, and the
radar cross-section of the target.

After performing the operations of carrier frequency removal, sampling, and subcarrier
separation [18] on yl(t), the resulting signal of lth sensing symbol is expressed as

ŷl(m) =Ncσej2π fdt nl Ts e−j2π f0τe−j2πm∆ f τ + ĉl(m) + n̂l(m), (13)

where m = 0, 1, . . . , Nc− 1. Therefore, the received sensing signal can be expressed in terms
of a matrix by

Y = aω fd
ωτ + C + N (14)

where ym = [ŷ0(m), ŷ1(m), . . . , ŷL−1(m)]T , Y = [y0, y1, . . . , yNc−1], ω fd
= [ej2π fdn0Ts ,

ej2π fdn1Ts , . . . , ej2π fdnL−1Ts ]T , a = Ncσe−j2π f0τ , ωτ = [1, e−j2π1∆ f τ , . . . , e−j2π(Nc−1)∆ f τ ],
cl = [ĉl(0), ĉl(1), . . . , ĉl(Nc − 1)]T , C = [c0, c1, . . . , cL−1]

T , nl = [n̂l(0), n̂l(1), . . . ,
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n̂l(Nc − 1)]T , N = [n0, n1, . . . , nL−1]
T . In the next section, we will perform the detec-

tion and estimation of the received sensing signal based on Y in (14).

3.3. Signal Detection and Estimation

In this section, we detail the sensing signal detection and estimation using the designed
waveform. The specific workflow is illustrated in Figure 4. After preprocessing the received
signal to obtain Y as shown in (14), we perform the corresponding signal processing on Y
to achieve target detection and parameter estimation. First, we perform an inverse discrete
Fourier transform (IDFT) on the fast-time dimension of Y to obtain range data. We then
apply static clutter suppression on the slow-time dimension. Sparse recovery or a non-
uniform discrete Fourier transform (NUDFT) is performed on the slow-time dimension
to obtain Doppler data. Subsequently, the ordered-statistic constant false-alarm rate (OS-
CFAR) is applied to each range-Doppler cell. Once a target is detected, frequency-time
phase regression (FTPR) is conducted to obtain the target’s range and velocity. Specific
details are as follows.

Figure 4. Signal processing flowchart.

We calculate the range spectrum by IDFT along the fast-time dimension of Y .

Y̌ = YW , (15)

where W is the inverse discrete Fourier transform matrix, given by

W =


1 1 · · · 1
1 ej2π1/Nc · · · ej2π(Nc−1)/Nc

...
...

. . .
...

1 ej2π(Nc−1)/Nc · · · ej2π(Nc−1)(Nc−1)/Nc

 (16)

Let Y̌ = [y̌0, y̌1, . . . , y̌Nc−1], where y̌m is the received data of the mth range cell. We
then perform the static clutter suppression on y̌m along the slow-time dimension, as given by

ŷm = y̌m − ȳmvL, (17)

where ȳm = 1/L ∑L−1
l=0 y̌m(l), and vL is the L× 1 vector, with all elements equal to one. It

is clear that ŷm is sparsely sampled in the Doppler dimension. According to compressed
sensing (CS) theory, if a signal is sparse or compressible in a certain transform domain, it
may be reconstructed using nonlinear methods by solving an optimization problem with
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high probability. Furthermore, the problem can be abstracted as recovering the vector
ỹm from data ŷm = Aỹm, where A is required to satisfy the restricted isometry property
(RIP) [34]. Specifically, A = [a( f1), a( f2), . . . , a( fK)] is the temporal steering vector dictio-
nary, where a( fk) = [ej2π fkn0Ts , . . . , ej2π fknL−1Ts ]T is the steering vector. From [35,36], it is
known that A satisfies RIP with high probability if the eigenvalues of the Gram matrix
AH

Γ AΓ are bounded near 1 for every Γ (Γ is a subset of {1 . . . K}). Since it is difficult to prove
the temporal steering vector dictionary A satisfying the RIP, we compare the eigenvalues
of its Gram matrices to that of a matrix with Gaussian entries of zero mean and variance
1/L after scaling A, so that its columns have unit norm [34]. According to the CS theory,
the Gaussian random matrix satisfies the RIP with high probability [37].

As shown in Figure 5, the maximum and minimum eigenvalues of the Gram matrix
AH

Γ AΓ are close to 1, and are similar to the eigenvalues of the Gaussian random matrix.
Therefore, A satisfies the RIP with high probability, and ỹm can be reconstructed with high
probability in the dictionary A.

Figure 5. Maximum and minimum eigenvalues of the Gram matrix against sparsity k.

Here, we introduce two sparse recovery algorithms, namely the iterative adaptive
approach (IAA) and the orthogonal matching pursuit (OMP) to reconstruct ỹm.

As for the IAA algorithm, it transforms the solving of the Doppler frequency of the
target in ŷm into solving the following optimization problem:

min ||ŷm − γka( fk)||2Q−1
k

(18)

where ||x||2
Q−1

k
= xHQ−1

k x, Qk denotes the covariance matrix of the clutter and noise, and

|γk|2 is the power of the Doppler spectrum with frequency fk.
The IAA algorithm operates in an iterative way and the power of the Doppler fre-

quency points Pk,k is calculated for each range of interest in each iteration, and then the
IAA covariance matrix RIAA is updated. The derivation details can be seen in reference [38].
A summary of the IAA algorithm is shown in Algorithm 2.

As for the OMP algorithm, it operates in an iterative way and computes the maximum
inner product via the matrix–vector multiplication Arp for each iteration, where rp is the
residual vector at the pth iteration. Moreover, the solution estimated at each iteration
requires the solution of a least-squares problem, given by

min
∥∥∥AΩ(p+1)yΩ(p+1) − ŷm

∥∥∥2

2
(19)

where Ω(p + 1) = {b(pi + 1)|pi = 1, 2, . . . , p} denotes the set consisting of b(p + 1) for
each iteration. The derivation details can be seen in reference [39]. A summary of the OMP
algorithm is shown in Algorithm 3.
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Algorithm 2 The IAA algorithm.
Initialization:

A = [a( f1), ..., a( fK)],
IAA covariance matrix RIAA = I,
Pk,k =

1
L2 |aH( fk)ŷm|2, k = 1, ..., K.

Repeat:
RIAA = APAH ,
For k = 1, ..., K,

Pk,k = |γk|2 = | aH( fk)R−1
IAAŷm

aH( fk)R−1
IAAa( fk)

|2,

End
Until a certain number of iterations is reached.
Output: ỹm = diag(P).

Algorithm 3 The OMP algorithm.
Initialization:

ŷm, A = [a( f1), ..., a( fK)], p = 0,
Residual vector r0 = ŷm,
Stopping parameter ε,
Selected index subset Ω(0) = ∅.

While ||rp||22 > ε

b(p + 1) = argmaxb|aH( fb)r(p)|,
Ω(p + 1) = Ω(p) ∪ b(p + 1),
G = (AH

Ω(p+1)AΩ(p+1))
−1 AH

Ω(p+1),
yΩ(p+1) = Gŷm,
Update the residual vector rp+1 = ŷm − AΩ(p+1)yΩ(p+1),
p = p + 1,

End
Compute the Doppler profile ỹm = BsyΩ(p+1).

After applying the sparse recovery algorithm to ŷm, we obtained the Doppler dimen-
sion data ỹm for the mth range cell. Then, the location of the target is detected on the
range-Doppler map by the OS-CFAR [40] detector. The specific process of OS-CFAR is as
follows: First, for the detection cell zm,k in the range-Doppler map, we select some cells
around the detection cell as the protection cell. We then select some cells that are not in
the scope of the protection cells as reference cells. Moreover, we sort the reference cells
according to their power, and then select the middle NCFAR cells of the reference cells
to estimate the power of clutter and noise PCN. Subsequently, we obtain the detection
threshold TCFAR by multiplying PCN by a factor ζ. If the power of zm,k is greater than TCFAR,
it means that the target exists, otherwise, it means that the target does not exist.

Finally, we propose using the FTPR algorithm [41] to estimate the distance and velocity
of the target. Specifically, we assume that the target is detected at the mtth distance cell and
the ktth Doppler cell. We then obtain the φ′mt by taking the Doppler spectrum φmt of the
mtth range cell and setting the values of Doppler cells outside [kt − 1, kt + 1] to zero, as
given by

φ′mt =

{
φmt , k ∈ [kt − 1, kt + 1]
0 , k /∈ [kt − 1, kt + 1]

(20)

An inverse fast Fourier transform (IFFT) is performed on φ′mt and the Doppler fre-
quency fdt is obtained by finding the phase slope, given by

fdt =
Slope(∠IFFT[φ′mt ])

2π
, (21)
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where IFFT[x] denotes the IFFT of x, ∠x stands for the phase of x, and Slope(x) represents
the slope of x. The speed of the target v̂t is estimated by

v̂t =
fdt λ

2
, (22)

where λ is the wavelength. Similarly, the distance of the target r̂t is as follows:

r̂t =
frt c

2∆ f B
, (23)

where c is the propagation velocity, B is the bandwidth.
Regarding complexity, this paper focuses on analyzing the computational complexity

of the NUDFT, DFT, IAA, and OMP. Since the number of iterations is difficult to predict,
we consider the complexity per iteration, and study the convergence of the algorithms in
terms of iterations, numerically, in our results. In all the computations, we only consider
the highest-order terms and omit the low-order ones. For the NUDFT, there exists a fast al-
gorithm NUFFT, which reduces the complexity of the method from O(LK) to O(L log (K)).
Similarly, DFT also has a fast Fourier transform (FFT) with a computational complexity of
O(L log (L)). For IAA, its complexity is O(L3K3). Reference [38] suggests that after more
than 10 iterations of IAA, its performance does not significantly improve. For OMP, its
complexity is O(L2K). The number of iterations of OMP is affected by the sparsity of the
target, and in the simulation experiments of this paper, the number of iterations is generally
no more than 10 times.

4. Numerical Examples

In this section, several numerical examples are given to verify the performance of the
designed waveform. We demonstrate the performance of the designed waveforms through
three aspects, namely waveform parameter impacts, detection performance, and estimation
performance. In the following experiments, we consider a 5G BS mounted on a gantry (with
height denoted as h) to detect and estimate the parameters of a vehicle that is underneath.
The simulation of traffic scenarios is shown in Figure 6, where v denotes the forward
velocity of the vehicle, vt denotes the radial velocity of the vehicle, and rt denotes the radial
range of the vehicle. Therefore, the clutter is modeled as a Gaussian clutter model [42], and
the thermal noise is complex Gaussian noise with zero mean. The mounting height of 5G BS
is h = 7 m, the wind velocity in the clutter model is vw = 2 m/s, the 5G system parameter
is µ = 3, the subcarrier interval is ∆ f = 120 KHz, the bandwidth is B = 400 MHz, and the
carrier frequency is f0 = 26 GHz. Therefore, T = 8.33 µs, Tcp = 0.58 µs, and the maximum
range of detection is Rmax = Tcpc/2 = 87.5 m.

Figure 6. Simulation of traffic scenarios.
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4.1. Waveform Parameters Impacts

First, we evaluate the PSLR and the ISLR of the velocity ambiguity functions of the
designed waveforms in terms of different sparsity Ks and scaling η factors. The results
are shown in Figure 7. It can be seen from the figure that the PSLR and the ISLR of the
velocity ambiguity function of the designed waveform gradually decrease as the sparsity
increases, which illustrates that the sidelobe leakage decreases as the number of OFDM
symbols increases.

(a) (b)

Figure 7. Sidelobe intensity vs. sparsity. (a) PSLR vs. sparsity for different η factors. (b) ISLR vs.
sparsity for different η factors.

In Figure 7a, we can see that the PSLR decreases as η increases. Moreover, when
Ks ≥ 4.28% and η ≥ 0.5, the PSLR remains relatively stable. In addition, when η ≤ 0.2, the
PSLR appears to fluctuate as Ks increases. The reason for this is that the weight of PSLR
in the cost function is too small, which makes the PSLR not well-optimized. In Figure 7b,
the ISLR of the velocity ambiguity function of the designed waveform does not fluctuate
significantly as η increases, except for η = 1. The reason for this is that the optimization of
the ISLR is not considered in the optimization algorithm when η = 1.

Next, we compare the performance of the velocity ambiguity function for the designed
waveform between Ks = 4.28%, η = 0.6 and that of the uniform waveform, which has a
total of 80 OFDM symbols, each equally spaced within a wireless frame. The timings of the
designed waveform and the uniform waveform are shown in Table 1. The row where the
designed waveform and the uniform waveform are located indicates that the ith OFDM
symbol within a slot is extracted as the sensing symbol. There are 80 slots within a wireless
frame when the 5G system parameter µ = 3. And ‘null’ indicates that there is no sensing
symbol in the corresponding slot. We note that the uniform waveform does not satisfy the
constraint in (9). The velocity ambiguity functions are shown in Figure 8. It can be seen from
the figure that the velocity resolution is 2.08 km/h for both the designed waveform and
uniform waveform, and the maximum unambiguous velocity is ±83.09 km/h. Moreover,
the PSLR of the designed waveform’s velocity ambiguity function is −13.37 dB, which is
close to the PSLR of the uniform waveform. However, it should be noted that the ISLR is
−0.35 dB, which is much higher than the ISLR of −9.92 dB for the uniform waveform. This
means that the designed waveform has a sidelobe leakage problem, but the peaks of the
sidelobe are all low.
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Table 1. Designed Waveform Timing.

Slot 0 1 2 3 4 5 6 7

Designed waveform 3 0 null 13 null null 13 13

Uniform waveform 0 0 0 0 0 0 0 0

Slot 8 9 10 11 12 13 14 15

Designed waveform 12 null null 0 13 11 null null

Uniform waveform 0 0 0 0 0 0 0 0

Slot 16 17 18 19 20 21 22 23

Designed waveform 3 1 0 null null 1 0 0

Uniform waveform 0 0 0 0 0 0 0 0

Slot 24 25 26 27 28 29 30 31

Designed waveform null 1 null 13 12 null 0 null

Uniform waveform 0 0 0 0 0 0 0 0

Slot 32 33 34 35 36 37 38 39

Designed waveform 13 13 null 0 null 1 0 null

Uniform waveform 0 0 0 0 0 0 0 0

Slot 40 41 42 43 44 45 46 47

Designed waveform 1 0 null 0 null null 3 1

Uniform waveform 0 0 0 0 0 0 0 0

Slot 48 49 50 51 52 53 54 55

Designed waveform 0 null null 5 3 3 null null

Uniform waveform 0 0 0 0 0 0 0 0

Slot 56 57 58 59 60 61 62 63

Designed waveform 5 4 3 null 3 2 null 0

Uniform waveform 0 0 0 0 0 0 0 0

Slot 64 65 66 67 68 69 70 71

Designed waveform null null 11 12 10 null 12 11

Uniform waveform 0 0 0 0 0 0 0 0

Slot 72 73 74 75 76 77 78 79

Designed waveform null 11 null 11 null 13 10 null

Uniform waveform 0 0 0 0 0 0 0 0

In the next experiment, we analyze the sparse recovery performance of the designed
waveform for different target numbers. We set SCNR = −10 dB, the number of Doppler
cells is set to 320, and the target numbers are set to Nt = 4, 8, and 12, respectively. And the
signal-to-clutter-plus-noise ratio (SCNR) is expressed by (24), according to (14).



Sensors 2023, 23, 6855 14 of 19

SCNR = 10lg
tr[(aω fd

ωτ)Haω fd
ωτ ]

tr(CHC) + tr(NH N)
(24)

The results are shown in Figure 9. Figure 9a,d represent the velocity dimension for
Nt = 4 targets and the results for Nt = 8 and Nt = 12 targets are shown in Figure 9b,
Figure 9e, Figure 9c, and Figure 9f, respectively. It can be seen from the figure that when
the number of targets is not too large, the OMP and IAA methods can recover the velocity
of the targets accurately, with a good suppression effect on the sidelobe. As the number of
targets increases, the sparse recovery performance decreases. When the number of targets
increases to 12, a small number of targets cannot be well recovered, and some spurious
targets also appear. This is because the targets no longer satisfy the sparse characteristics
for the designed waveform with only 48 OFDM symbols.

Figure 8. Velocity ambiguity function.

(a) (b) (c)

(d) (e) (f)

Figure 9. Velocity dimension with OMP and IAA for targets of different numbers. (a,d) Nt = 4.
(b,e) Nt = 8. (c,f) Nt = 12.
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4.2. Detection Performance

Here, we illustrate the detection performance of the designed waveform and uniform
waveform. We apply NUDFT, IAA, and OMP to verify the detection performance of the
designed waveform, and the sparsity Ks = 4.28% among these algorithms. We apply the
DFT, IAA, and OMP to verify the detection performance of the uniform waveform. In order
to achieve the threshold of false alarm probability (Pfa), 30,000 Monte Carlo experiments
are performed. Moreover, 500 independent Monte Carlo experiments are performed per
SCNR in order to achieve the detection probability (Pd). In each Monte Carlo experiment,
the radial velocity of the target is vt = 45 km/h, the radial range is rt = 30 m, the CNR is
30 dB, and the Pfa is 0.001.

The results are shown in Figure 10. The figure illustrates that the Pd of the designed
waveform is over 95% when SCNR > −25 dB and Pfa = 0.001. It should be noted that
compared to the IAA, the OMP and NUDFT have a 3 dB loss in the detection performance
of the designed waveform when Pd = 90%. And the results also illustrate that the detec-
tion performance of the uniform waveform with DFT is optimal when SCNR < −25 dB.
However, we note that the Pd of the designed waveform is lower than that of the uniform
waveform when the SCNR < −25 dB. Specifically, for the IAA, the detection performance
of the designed waveform has a performance loss of less than 1 dB compared to the uni-
form waveform. For the OMP and NUDFT, the detection performance loss reaches more
than 3 dB, compared to the OMP and DFT with uniform waveform. This is due to the
non-sparsity of the clutter, and the noise distribution has an impact on the reconstruction
of the target information in the case of a low SCNR ratio, which leads to the decrease of Pd.
Moreover, the decrease in the number of sensing symbols similarly decreases Pd.

Figure 10. Pd vs. SCNR for different waveforms and algorithms.

In the next experiment, we evaluate the detection performance of the designed wave-
form and the uniform waveform in the case of a high SCNR. The SCNR = 0 dB, and the
other parameters are the same as in the last experiment. Since the Pd converges to 100%
for SCNR > −25 dB, we define the output of SCNR (SCNRout) to describe the intensity
contrast relationship between the signal, clutter, and noise after the signal processing. The
SCNRout can be defined as

SCNRout = 10lg
Pt

mean(Pre f )
(25)

where Pt is the power of the target, and Pre f is the power of the reference cell. The result is
shown in Figure 11. The figure illustrates that the detection performance of the designed
waveform using the IAA is better than that of applying the OMP and NUDFT, which
is similar to the results of the last experiment. Different from the last experiment, the
detection performance of the uniform waveform applying IAA is the best. Moreover, the
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detection performance of the designed waveform and the uniform waveform applying
IAA is close. This is because, as the SCNR increases, the non-sparsity of the clutter and
noise distribution has less influence on the target information. The information of the
target is more easily brought out, making the sparsity of the signal more obvious. Similar
to the conclusion in Figure 5, the sparser the signal is, the higher the probability that
the signal can be reconstructed by the sparse recovery algorithm. And the IAA employs
sparse prior knowledge so that the IAA is more robust to the reduction in the number
of sensing symbols compared to the OMP, DFT, or NUDFT. In addition, we note that the
SCNRout curve of the designed waveform applying NUDFT is not smooth. The reason for
this is the non-uniformity of the designed waveform. According to the second and third
experiments, we can see that the detection performance applying OMP decreases as the
waveform sparsity decreases.

Figure 11. SCNRout vs. velocity for different waveforms and algorithms.

4.3. Estimation Performance

In this experiment, we discuss the estimation accuracy of the designed waveform. In
order to achieve the root mean square errors (RMSEs) of range and velocity estimations,
500 independent Monte Carlo experiments are performed per SCNR. The RMSEs of the
range can be defined as follows:

Rrmse =

√
1

Ne
∑
Ne

|r̂t − rt|2, (26)

where Ne is the number of Monte Carlo experiments, r̂t is the estimated value of the range,
and rt is the actual value of the range. Similarly, we can obtain the RMSEs of the velocity
by replacing the estimated and actual values of the velocity into (26). In each Monte Carlo
experiment, the velocity of the target is generated randomly. The other parameters are the
same as the detection performance experiment. The results are shown in Figure 12. The
plots show that the RMSEs of velocity and range estimations decrease with an increase in
the SCNR. Moreover, the designed waveform and the uniform waveform applying IAA
have very close velocity and range estimation accuracies.

In Figure 12a, we notice that the RMSEs of the velocity of the designed waveform
using the same algorithm are slightly worse than the RMSEs of the velocity of the uniform
waveform when SCNR < −22 dB. The reason for this is that the ISLR of the velocity
ambiguity function of the uniform waveform is smaller, and the accuracy is higher when
FTPR is adopted. When SCNR > −22 dB, the RMSEs of the velocity of the designed
waveform and the uniform waveform are similar when applying the same algorithm. In
addition, the RMSEs of the velocity of the IAA method are better than that of the OMP
method, which are better than that of the DFT or NUDFT methods. The reason for this is
that the IAA and OMP methods are able to suppress the sidelobe.
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(a) (b)

Figure 12. RMSEs vs. SCNR. (a) RMSEs of velocity estimations vs. SCNR for different waveforms
and algorithms. (b) RMSEs of range estimations vs. SCNR for different waveforms and algorithms.

In Figure 12b, we notice that the RMSEs of range decrease as the SCNR increases. The
RMSEs of range for the designed waveform and the uniform waveform applying the IAA
are very similar to the results of the RMSEs of velocity. However, the difference is that the
RMSEs of the range of the designed waveform applying the OMP and NUDFT are slightly
worse than those of the uniform waveform applying the OMP and DFT. This is due to the
reduction in the number of sensing symbols, which reduces the performance of the range
estimation, applying the OMP and NUDFT methods.

5. Conclusions

In this paper, we propose an inner-frame time division multiplexing waveform design
method of ISAC in the 5G NR system, which achieves ISAC by reusing the hardware
of existing 5G BSs. The proposed waveform design strategy describes the inner-frame
time division multiplexing waveform design as an optimization problem of a constrained
combination of PSLR and ISLR. Specifically, the constraints are the 5G communication
protocol and 5G NR frame structure. This optimization problem is solved by the simulated
annealing algorithm, and the corresponding signal detection and estimation methods
based on sparse recovery techniques are developed to obtain the target information. The
experiments show that the designed waveform satisfies the downlink and common channel
constraints and has a 40% reduction in sensing costs compared to the uniform waveform. In
terms of theoretical performance, the PSLR of the velocity ambiguity function, the velocity
resolution, and the ambiguity-free velocity range are similar to those of the uniform
waveform. Additionally, the designed waveform using the IAA can achieve a detection and
estimation performance close to that of the uniform waveform in the case of high SCNR.

Author Contributions: Conceptualization, J.Z., P.C., X.W. and Z.Y.; methodology, J.Z., P.C., X.W. and
Z.Y.; software, J.Z.; validation, J.Z., P.C. and Z.Y.; formal analysis, J.Z., P.C. and Z.Y.; investigation,
J.Z., P.C. and Z.Y.; resources, Z.Y.; data curation, J.Z.; writing—original draft preparation, J.Z.;
writing—review and editing, J.Z., P.C. and Z.Y.; visualization, J.Z.; supervision, P.C. and Z.Y.; project
administration, P.C. and Z.Y.; funding acquisition, P.C. and Z.Y. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported in part by the Guangdong Basic and Applied Basic Research
Foundation under grant 2022A1515140014, in part by the Science and Technology Project of Shenzhen
under grant JCYJ20190808142803565, and in part by the National Natural Science Foundation of
China under grant 62101207.

Institutional Review Board Statement: Not applicable.



Sensors 2023, 23, 6855 18 of 19

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xiao, B.; Liu, Y.; Huo, K.; Zhao, J.; Zhang, Z. OFDM integration waveform design for radar and communication application. In

Proceedings of the International Conference on Radar Systems, Belfast, UK, 23–26 October 2017; pp. 1–5.
2. Liu, F.; Cui, Y.; Masouros, C.; Xu, J.; Han, T.X.; Eldar, Y.C.; Buzzi, S. Integrated sensing and communications: Towards dual-

functional wireless networks for 6G and beyond. IEEE J. Sel. Areas Commun. 2022, 40, 1728–1767.
3. Wei, Z.; Wang, Y.; Ma, L.; Yang, S.; Feng, Z.; Pan, C.; Zhang, Q.; Wang, Y.; Wu, H.; Zhang, P. 5G PRS-based sensing: A sensing

reference signal approach for joint sensing and communication system. IEEE Trans. Veh. Technol. 2023, 72, 3250–3263. [CrossRef]
4. Cui, Y.; Jing, X.; Mu, J. Integrated sensing and communications via 5G NR waveform: Performance analysis. In Proceedings of

the IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, 23–27 May 2022; pp. 8747–8751.
5. Cui, Y.; Liu, F.; Jing, X.; Mu, J. Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges.

IEEE Netw. 2021, 35, 158–167. [CrossRef]
6. Han, L.; Wu, K. Multifunctional transceiver for future intelligent transportation systems. IEEE Trans. Microw. Theory Tech. 2011,

59, 1879–1892. [CrossRef]
7. Moghaddasi, J.; Wu, K. Multifunctional transceiver for future radar sensing and radio communicating data-fusion platform. IEEE

Access 2016, 4, 818–838. [CrossRef]
8. Huang, T.; Shlezinger, N.; Xu, X.; Liu, Y.; Eldar, Y.C. MAJoRCom: A dual-function radar communication system using index

modulation. IEEE Trans. Signal Process. 2020, 68, 3423–3438. [CrossRef]
9. Wu, K.; Zhang, J.A.; Huang, X.; Guo, Y.J.; Heath, R.W. Waveform design and accurate channel estimation for frequency-hopping

MIMO radar-based communications. IEEE Trans. Commun. 2021, 69, 1244–1258. [CrossRef]
10. Hassanien, A.; Amin, M.G.; Zhang, Y.D.; Ahmad, F. Dual-function radar-communications: Information embedding using sidelobe

control and waveform diversity. IEEE Trans. Signal Process. 2016, 64, 2168–2181. [CrossRef]
11. Xu, S.; Chen, B.; Zhang, P. Radar-communication integration based on DSSS techniques. In Proceedings of the 8th International

Conference on Signal Processing, Guilin, China, 16–20 November 2006; pp. 2872–2875.
12. Hassanien, A.; Amin, M.G.; Zhang, Y.D.; Ahmad, F. Signaling strategies for dual-function radar communications: An overview.

IEEE Aerosp. Electron. Syst. Mag. 2016, 31, 36–45. [CrossRef]
13. Zhang, J.A.; Liu, F.; Masouros, C.; Heath, R.W.; Feng, Z.; Zheng, L.; Petropulu, A. An overview of signal processing techniques for

joint communication and radar sensing. IEEE J. Sel. Top. Signal Process. 2021, 15, 1295–1315. [CrossRef]
14. Mealey, R.M. A method for calculating error probabilities in a radar communication system. IEEE Trans. Space Electron. Telem.

1963, 9, 37–42. [CrossRef]
15. Cook, C.E. Linear FM signal formats for beacon and communication systems. IEEE Trans. Aerosp. Electron. Syst. 1974, AES-10,

471–478. [CrossRef]
16. Chen, X.; Wang, X.; Xu, S.; Zhang, J. A novel radar waveform compatible with communication. In Proceedings of the 2011

International Conference on Computational Problem-Solving, Chengdu, China, 21–23 October 2011; pp. 177–181.
17. Barrenechea, P.; Elferink, F.; Janssen, J. FMCW radar with broadband communication capability. In Proceedings of the 2007

European Radar Conference, Munich, Germany, 10–12 October 2007; pp. 130–133.
18. Liu, Y.; Liao, G.; Chen, Y.; Xu, J.; Yin, Y. Super-resolution range and velocity estimations with OFDM integrated radar and

communications waveform. IEEE Trans. Veh. Technol. 2020, 69, 11659–11672. [CrossRef]
19. Liu, Y.; Liao, G.; Yang, Z. Robust OFDM integrated radar and communications waveform design based on information theory.

Signal Process. 2019, 162, 317–329. [CrossRef]
20. Zhang, Z.; Du, Z.; Yu, W. Mutual-information-based OFDM waveform design for integrated radar-communication system in

Gaussian mixture clutter. IEEE Sens. Lett. 2020, 4, 7000204. [CrossRef]
21. Ahmed, A.; Zhang, Y.D.; Hassanien, A. Joint radar-communications exploiting optimized OFDM waveforms. Remote Sens. 2021,

13, 4376. [CrossRef]
22. Keskin, M.F.; Koivunen, V.; Wymeersch, H. Limited feedforward waveform design for OFDM dual-functional radar-

communications. IEEE Trans. Signal Process. 2021, 69, 2955–2970. [CrossRef]
23. Ozkaptan, C.D.; Ekici, E.; Altintas, O. Adaptive waveform design for communication-enabled automotive radars. IEEE Trans.

Wirel. Commun. 2022, 21, 3965–3978. [CrossRef]
24. Temiz, M.; Alsusa, E.; Baidas, M.W. Optimized precoders for massive MIMO OFDM dual radar-communication systems. IEEE

Trans. Commun. 2021, 69, 4781–4794. [CrossRef]
25. Xu, Z.; Petropulu, A. A bandwidth efficient dual-function radar communication system based on a MIMO radar using OFDM

waveforms. IEEE Trans. Signal Process. 2023, 71, 401–416. [CrossRef]
26. Wu, Y.; Lemic, F.; Han, C.; Chen, Z. Sensing integrated DFT-spread OFDM waveform and deep learning-powered receiver design

for terahertz integrated sensing and communication systems. IEEE Trans. Commun. 2023, 71, 595–610. [CrossRef]

http://doi.org/10.1109/TVT.2022.3215159
http://dx.doi.org/10.1109/MNET.010.2100152
http://dx.doi.org/10.1109/TMTT.2011.2138156
http://dx.doi.org/10.1109/ACCESS.2016.2530979
http://dx.doi.org/10.1109/TSP.2020.2994394
http://dx.doi.org/10.1109/TCOMM.2020.3034357
http://dx.doi.org/10.1109/TSP.2015.2505667
http://dx.doi.org/10.1109/MAES.2016.150225
http://dx.doi.org/10.1109/JSTSP.2021.3113120
http://dx.doi.org/10.1109/TSET.1963.4337601
http://dx.doi.org/10.1109/TAES.1974.307800
http://dx.doi.org/10.1109/TVT.2020.3016470
http://dx.doi.org/10.1016/j.sigpro.2019.05.001
http://dx.doi.org/10.1109/LSENS.2019.2946735
http://dx.doi.org/10.3390/rs13214376
http://dx.doi.org/10.1109/TSP.2021.3076894
http://dx.doi.org/10.1109/TWC.2021.3125924
http://dx.doi.org/10.1109/TCOMM.2021.3068485
http://dx.doi.org/10.1109/TSP.2023.3241779
http://dx.doi.org/10.1109/TCOMM.2022.3225920


Sensors 2023, 23, 6855 19 of 19

27. Shi, Q.; Zhang, T.; Yu, X.; Liu, X.; Lee, I. Waveform designs for joint radar-communication systems with OQAM-OFDM. Signal
Process. 2022, 195, 108462. [CrossRef]

28. Liyanaarachchi, S.D.; Riihonen, T.; Barneto, C.B.; Valkama, M. Optimized waveforms for 5G–6G communication with sensing:
Theory, simulations and experiments. IEEE Trans. Wirel. Commun. 2021, 20, 8301–8315. [CrossRef]

29. Shi, S.; Cheng, Z.; Wu, L.; He, Z.; Shankar, B. Distributed 5G NR-based integrated sensing and communication systems: Frame
structure and performance analysis. In Proceedings of the 2022 30th European Signal Processing Conference, Belgrade, Serbia, 29
August–2 September 2022; pp. 1062–1066.

30. Liu, F.; Masouros, C.; Li, A.; Sun, H.; Hanzo, L. MU-MIMO communications with MIMO radar: From co-existence to joint
transmission. IEEE Trans. Wirel. Commun. 2018, 17, 2755–2770. [CrossRef]

31. 3GPP. 5G New Radio-Physical Channels and Modulation (V17.4.0). Available online: https://www.3gpp.org/ftp/Specs/archive/
38_series/38.211/38211-h40.zip (accessed on 10 June 2022).

32. Wang, L.; Wang, H.; Wang, M.; Li, X. An overview of radar waveform optimization for target detection. J. Radars 2016, 5, 487–498.
33. Bertsimas, D.; Tsitsiklis, J. Simulated annealing. Stat. Sci. 1993, 8, 10–15. [CrossRef]
34. Liu, Z.; Wei, X.; Li, X. Aliasing-free moving target detection in random pulse repetition interval radar based on compressed

sensing. IEEE Sens. J. 2013, 13, 2523–2534. [CrossRef]
35. Quan, G.; Yang, Z.; Huang, J.; Huang, J. Sparsity-based space-time adaptive processing in random pulse repetition frequency and

random arrays radar. In Proceedings of the 2016 IEEE 13th International Conference on Signal Processing, Chengdu, China, 6–10
November 2016; pp. 1642–1646.

36. Applebaum, L.; Howard, S.D.; Searle, S.; Calderbank, R. Chirp sensing codes: Deterministic compressed sensing measurements
for fast recovery. Appl. Comput. Harmon. Anal. 2009, 26, 283–290. [CrossRef]

37. Candes, E.J.; Tao, T. Decoding by linear programming. IEEE Trans. Inf. Theory 2005, 51, 4203–4215. [CrossRef]
38. Yang, Z.; Li, X.; Wang, H.; Jiang, W. Adaptive clutter suppression based on iterative adaptive approach for airborne radar. Signal

Process. 2013, 93, 3567–3577. [CrossRef]
39. Davis, G.; Mallat, S.; Avellaneda, M. Adaptive greedy approximations. Constr. Approx. 1997, 13, 57–98. [CrossRef]
40. Blake, S. OS-CFAR theory for multiple targets and nonuniform clutter. IEEE Trans. Aerosp. Electron. Syst. 1988, 24, 785–790.

[CrossRef]
41. Nosrati, M.; Tavassolian, N. High-accuracy heart rate variability monitoring using Doppler radar based on Gaussian pulse train

modeling and FTPR algorithm. IEEE Trans. Microw. Theory Tech. 2017, 66, 556–567. [CrossRef]
42. Ward, J. Space-time adaptive processing for airborne radar. In Proceedings of the International Conference on Acoustics, Speech,

and Signal Processing, London, UK, 6 April 1998; pp. 2809–2812.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.sigpro.2022.108462
http://dx.doi.org/10.1109/TWC.2021.3091806
http://dx.doi.org/10.1109/TWC.2018.2803045
https://www.3gpp.org/ftp/Specs/archive/ 38_series/38.211/38211-h40.zip
https://www.3gpp.org/ftp/Specs/archive/ 38_series/38.211/38211-h40.zip
http://dx.doi.org/10.1214/ss/1177011077
http://dx.doi.org/10.1109/JSEN.2013.2249762
http://dx.doi.org/10.1016/j.acha.2008.08.002
http://dx.doi.org/10.1109/TIT.2005.858979
http://dx.doi.org/10.1016/j.sigpro.2013.03.033
http://dx.doi.org/10.1007/BF02678430
http://dx.doi.org/10.1109/7.18645
http://dx.doi.org/10.1109/TMTT.2017.2721407

	Introduction
	Signal Model in the 5G NR System
	Proposed Sensing Waveform
	Proposed Waveform Design Strategy
	Waveform Solution Based on the Simulated Annealing Algorithm
	Signal Detection and Estimation

	Numerical Examples
	Waveform Parameters Impacts
	Detection Performance
	Estimation Performance

	Conclusions
	References

