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Abstract: The Internet of Things is rapidly growing with the demand for low-power, long-range
wireless communication technologies. Long Range Wide Area Network (LoRaWAN) is one such
technology that has gained significant attention in recent years due to its ability to provide long-range
communication with low power consumption. One of the main issues in LoRaWAN is the efficient
utilization of radio resources (e.g., spreading factor and transmission power) by the end devices. To
solve the resource allocation issue, machine learning (ML) methods have been used to improve the
LoRaWAN network performance. The primary aim of this survey paper is to study and examine
the issue of resource management in LoRaWAN that has been resolved through state-of-the-art ML
methods. Further, this survey presents the publicly available LoRaWAN frameworks that could be
utilized for dataset collection, discusses the required features for efficient resource management with
suggested ML methods, and highlights the existing publicly available datasets. The survey also
explores and evaluates the Network Simulator-3-based ML frameworks that can be leveraged for
efficient resource management. Finally, future recommendations regarding the applicability of the
ML applications for resource management in LoRaWAN are illustrated, providing a comprehensive
guide for researchers and practitioners interested in applying ML to improve the performance of the
LoRaWAN network.

Keywords: LoRa; LoRaWAN; Internet of Things (IoT); machine learning (ML); resource management;
spreading factor (SF); transmission power (TP); simulation; artificial intelligence; deep learning;
reinforcement learning; dataset

1. Introduction

The Internet of Things (IoT) is a rapidly growing field that involves connecting a
wide range of devices to the Internet to enable communication and data exchange between
them. IoT enables seamless integration of the physical and digital worlds, revolutionizing
various domains such as healthcare, transportation, agriculture, and industrial automa-
tion [1–4]. In IoT connectivity, several technologies have emerged to address the diverse
requirements of IoT applications. These technologies comprise Long-Range Wide Area
Networks (LoRaWAN), SigFox, Narrowband (NB)-IoT, Weightless, and Long Term Evolu-
tion for Machines (LTE-M) [5–8]. The key features of these IoT technologies are illustrated
in Table 1. Sigfox offers a simple and low-cost deployment, while NB-IoT leverages the
existing cellular infrastructure and provides higher data rates. The Weightless protocol
provides flexibility and scalability, and LTE-M supports enhanced mobility and coverage.
LoRaWAN [9] is among the leading low-power wide area network (LPWAN) technologies
that have gained significant attention recently due to its ability to provide long-range
communication with low power consumption. As a result, it has been extensively adopted
by academia and industries for the IoT.
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Table 1. Key features of widely adopted IoT technologies [10,11].

Feature LoRaWAN Sigfox NB-IoT Weightless LTE-M

Spectrum ISM band
(region-specific) 868 MHz, 915 MHz 1800 MHz,

2100 MHz
915 MHz,
2400 MHz

1800 MHz,
2100 MHz

Bandwidth 125, 250, and
500 kHz 100 Hz Narrowband,

typically 200 kHz

LTE bandwidth,
typically up to
several MHz

Typically
several MHz

Modulation Chirped spread
spectrum

Ultra
Narrowband) GMSK

various (depends
on the variant
(GFSK)

OFDM

Payload size Up to 243 bytes Up to 128 bytes Up to 1600 bytes Up to 255 bytes Up to 1500 bytes
Data rate Up to 100 kbps Up to 100 bps Up to 200 kbps Up to 1 Mbps Up to 1 Mbps

Range [km] Urban = 5,
Rural = 20

Urban = 10,
Rural = 40

Urban = 1,
Rural = 10 Up to 10 km Up to 10 km

Adaptive data rate Yes No Yes Yes Yes
Energy
consumption Very low Very low Low to moderate Low Low to moderate

Mobility support Yes (without ADR) No Limited Limited Limited

Localization RSSI and
TDoA [12,13] No No Yes Varies

Private network Yes No Yes Yes Yes
Bidirectional
communication Yes No Yes Yes Yes

Deployment Public Closed Public Public Public

Simulators [public] Yes [14–30] Yes [31–33] Yes [34,35] Not publicly
available Yes [35–38]

Long Range (LoRa) is the physical layer (PHY) primarily based on chirp spread
spectrum (CSS) modulation, making it capable of achieving long-range and low power
consumption [39]. LoRaWAN is the medium access control layer (MAC) responsible for
efficiently managing communication between LoRa end devices (ED) and gateways (GW).
In addition, LoRaWAN offers features such as adaptive data rate (ADR) for efficient re-
source management, bi-directional communication, and strong security, making it a robust
and scalable solution for IoT deployments [40]. With their long range, ultra-low power
consumption, and efficient network management, LoRa and LoRaWAN are revolutionizing
the IoT landscape, empowering businesses and industries with seamless connectivity and
enabling innovative IoT applications across various sectors [41].

1.1. Existing Surveys on LoRa/LoRaWAN and Motivation

The specification of LoRa provides a detailed overview of the PHY and LoRaWAN
features along with the ADR, retransmission procedures, and other features [42]. However,
the decision-making of resource parameters configuration and optimal allocation to EDs
[e.g., SF, bandwidth (BW), coding rate (CR), and transmission power (TP)] is left open to
developers and academic researchers, allowing them to create and develop solutions for
IoT applications.

In recent years, the LoRa/LoRaWAN has been surveyed in various aspects, such
as ADR optimizations, mobility management, simulation tools, routing, security, etc.,
highlighting advantages, disadvantages, and future recommendations, as illustrated in
Table 2. Table 2 presents the existing surveys and tutorials with the main focus and brief
description of the topics covered on LoRa/LoRaWAN. In addition, the current surveys
and tutorials in Table 2 are not focusing on the resource allocation issue addressed using
machine learning (ML) methods for the LoRa/LoRaWAN. Therefore, this survey fills the
stated gap by presenting a constructive and comprehensive review of the use of ML in
LoRa/LoRaWAN.
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Table 2. Overview of surveys and tutorials on LoRa and LoRaWAN from 2018 to July 2023.

Ref. Year Main Focus of Survey Brief Description of Main Topics Covered

[43] 2018 Pros and Cons of LoRaWAN Compared existing solutions along with pros and cons and highlighted challenges and solutions.
[44] 2018 Security risks of LoRaWAN Discussed and analyzed the impact and likelihood of each security threat in LoRaWAN.
[45] 2018 LoRa and its applications Presented a comprehensive review regarding LoRa and its applications.
[46] 2019 advantages and disadvantages Compared NB-IoT, LoRa, and Wi-Fi HaLow in terms of their main characteristics.
[47] 2019 Comparative study Studied LoRaWAN, NB-IoT, LTE-M, and Sigfox and their use in WSN scenarios.
[48] 2019 Edge and Fog computing Discussed LoRa-based edge and fog computing paradigms, highlighted pros and cons.
[49] 2019 LoRa/LoRaWAN challenges Reviewed challenges of LoRa in scalability, capacity, and signal collision.
[50] 2019 Overview of LoRaWAN, DASH7,

and NB-IoT
Reviewed the architectures and addressed the mobility management issues, and presented a comparative
study of LoRaWAN, DASH7, and NB-IoT.

[51] 2019 Overview LPWA technologies Provided an overview of the existing solutions and identified key research challenges to be addressed in LPWA
technologies.

[52] 2019 LoRaWAN simulators Reviewed several existing available simulators for LoRa/LoRaWAN along with design requirements and their
limitations and how to improve simulators.

[53] 2019 Security and energy Overviewed LoRaWAN in terms of security and energy based on existing state-of-the-art.
[54] 2019 Capacity of LoRaWAN Studied the capacity of LoRaWAN in terms of ADR, channels, SF, RF, and ED density, along with challenges

and future research opportunities.
[55] 2019 LoRaWAN simulators Provided an overview of existing simulators for LoRa/LoRaWAN with requirements and limitations.
[56,57] 2020 ADR optimization Reviewed the existing ADR solutions, discussed the impact on the performance of LoRaWAN networks, iden-

tified challenges and future optimization techniques for improving the ADR.
[58] 2020 LoRa networking challenges Investigated the challenges in terms of networking faced during deployment, presented recent solutions,

and discussed open issues considering practical large-scale deployment of LoRa networks.
[59] 2020 Feasibility of adapting UDN Carried the feasibility of adapting an ultra-dense network (UDN) within LoRaWAN and provided details of

Mesh-LoRaWAN topology for UDN.
[60] 2020 Visual data transmission Evaluated existing techniques regarding the image transmission over LoRa networks, presented challenges,

and solutions to overcome them.
[61] 2020 LoRaWAN mesh networks Presented a review and comparative analysis on the classification of multihop communication solutions, dis-

cussed issues and highlighted future research directions.
[62] 2020 Security in LoRaWAN Analyzed security issues and possible network attacks in LoRaWAN and presented countermeasures prevent-

ing LoRaWAN from attacks.
[63] 2020 Routing in LoRaWAN Discussed related approaches concerning multihop communication and routing protocols.
[64] 2020 Confirmed traffic in LoRaWAN Highlighted use cases, examined several aspects of confirmed traffic along with existing solutions.
[65] 2020 Performance review of LoRa Discussed the LoRa technology and reviewed performance.
[66] 2021 Use of ML in LoRa Surveyed the general issues related to LoRaWAN, overviewed the ML solutions, and highlighted key future

research directions.
[67] 2021 LoRaWAN optimizations Presented existing solutions in five aspects: coexistence, resource allocation, MAC layer, network planning,

and mobility support.
[68] 2021 UAV-Based LoRa communication Studied deployments of UAV-based LoRa network and reviewed systematically focusing on the communica-

tion setup and its performance.
[69] 2021 ADR enhancements Reviewed the existing ADR solutions with regard to mobility.
[70] 2021 Routing in LoRaWAN Investigated routing approaches in multi-hop networks.
[71] 2021 Comparative analysis LoRaWAN

and NB-IoT
Compared LoRaWAN and NB-IoT in terms of power consumption, security, latency, and throughput perspec-
tives.

[72] 2021 Performance evaluation Studied the factors affecting the capacity of the LoRa networks and its performance.
[73] 2021 Simulation tools Presented the available simulation tools utilized for LoRaWAN performance assessment in ns-3.
[74] 2022 Resource allocation (e.g., SF) Presented a concise overview of the traditional SF assignment methods to IoT end devices.
[75] 2022 LoRaWAN optimizations Discussed various aspects, including bandwidth, modulation, data rate, coverage, link budget, payload, power

efficiency, security, ADR optimizations, and localization concerning LoRaWAN.
[76] 2022 LoRa networking techniques Surveyed the LoRa network techniques in LoRa (PHY layer), LoRaMAC layer (WAN), and application layers

along with challenges and future trends.
[77] 2022 LoRaWAN protocols Provided an extensive survey on the existing LoRaWAN communication protocols focusing on the energy

efficiency at both LoRa (PHY layer) and LoRaMAC layer (WAN).
[78] 2022 Energy efficiency Surveyed the existing works on energy efficiency at LoRa and LoRaWAN.
[79,80] 2022 LoRa simulators Presented a comparative study simulation tool for the simulation of LoRa/LoRaWAN networks.
[81] 2022 LoRaWAN security Highlighted vulnerabilities and security attacks, discussed their systematic mitigation approaches.
[82] 2022 Recent advancement in LoRa Reviewed LoRa concerning analysis, communication, security, and applications.
[83] 2023 Scalability in LoRaWAN Discussed scalability challenges with existing state-of-the-art solutions to assist LoRaWAN deployment in mas-

sive IoT networks.
[84] 2023 Artificial Intelligence of Medical

Things (AIoMT)
Explored the current literature in the AIoMT, emphasized the powerful association between AI and IoT tech-
nologies.

Our survey ML for resource management
(e.g., SF, TP, BW)

This survey presents an in-depth review of resource management issues with state-of-the-art ML solutions,
discussing the LoRaWAN frameworks for dataset collection, providing a constructive review on the ns-3-based
ML frameworks, and presents future recommendations.

1.2. Methodology

We started with a systematic literature review methodology for this survey on im-
proving LoRaWAN performance with ML, as illustrated in [85]. We first comprehensively
searched the abstracts of all papers on IEEE Xplore, ACM, Elsevier, Wiley, and MDPI
databases for LoRa/LoRaWAN and AI/ML/DL/RL. The search yielded approximately
148 papers, which include all aspects of LoRa/LoRaWAN resolved through ML techniques,
as illustrated in Figure 1.
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Figure 1. Number of published articles found in the existing literature for improving the performance
of LoRaWAN using ML applications.

However, this survey only focuses on the performance improvement of LoRaWAN
achieved using efficient resource management (e.g., channel allocation, SF, TP, and BW)
through ML. Out of 148 papers, we found 36 papers dealing with resource management
issues. This number also includes manually adding a small number of papers not found by
our initial search, using backward reference searching and cross-citation techniques.

1.3. Scope and Contribution of the Survey

In contrast to published surveys and tutorials highlighted with a brief description
of the main topics covered in Table 2, which present many characteristics or provide a
comprehensive evaluation of the LoRa and LoRaWAN communication systems, where a
comparison with other LWPAN technologies, potentials of both LoRa and LoRaWAN, ADR
optimization/enhancement techniques, interference/collision mitigation, and available
simulators for LoRa/LoRaWAN are the major topics, our survey mainly focuses on resource
allocation issue addressed through ML for improving LoRaWAN performance.

The contribution of this survey, compared to the surveys and tutorials presented in
Table 2, is as follows:

1. We provide a systematic overview of the different areas of LoRaWAN performance
where ML/DL/RL has been applied. We discuss the core LoRaWAN issues that can
be addressed with ML/DL/RL and provide examples of how ML/DL/RL has been
used to address these issues;

2. We discuss the publicly available LoRaWAN frameworks, which can potentially be
applied for dataset collection. A comprehensive study has been carried out to high-
light the best features for efficient resource allocation and the ML/DL/RL methods
for improving LoRaWAN performance;

3. We extensively provide a discussion on the Network Simulator-3-based ML/DL/RL
frameworks that could be utilized for efficient resource allocation with comprehen-
sive scenarios;
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4. We identify open challenges in each area of LoRaWAN performance, discuss future
research directions concerning resource allocation, and highlight potential benefits of
ML for improving LoRaWAN performance.

1.4. Structure of the Survey

Section 2 highlights the core features of LoRa and LoRaWAN. Section 3 presents
state-of-the-art methods for improving LoRaWAN performance using ML, DL, and RL.
Section 4 elaborates on the existing LoRaWAN frameworks that could be utilized for dataset
collection, discusses the required features, and highlights the best suitable ML methods
for resource allocation concerning the features. Section 5 discusses the publicly available
datasets utilized for various LoRaWAN deployments and IoT applications. Section 6
presents the existing publicly available ns-3-based ML frameworks and discusses how to
utilize them for improving the performance of LoRaWAN. Section 7 presents a detailed
discussion and highlights the potentials and limitations of the resource management ML
methods applied on EDs and NS sides. Section 8 elaborates on the open research oppor-
tunities regarding efficient resource management, whereas Section 9 provides concluding
remarks on this survey paper.

2. Core Features of LoRa and LoRaWAN

This section briefly presents the core features of LoRa and LoRaWAN.

2.1. LoRa-Long Range

LoRa [86] is a radio frequency (RF) modulation technology that defines the PHY layer
features for long-range communications. LoRa is a proprietary PHY layer modulation
based on CSS modulation to achieve long-range communication [87]. CSS is a subset of
Direct-Sequence Spread Spectrum (DSSS), helping the GW to recover a weak signal and
achieve high sensitivity, enabling increased coverage at a lower data rate (DR) [88,89]. In ad-
dition, LoRa utilizes five configurable resource parameters, i.e., SF, TP, CR, BW, and carrier
frequency (CF), to fine-tune the link performance and energy consumption [56,74,79,90,91].
These configurable resource parameters of LoRa communication are discussed here.

2.1.1. Spreading Factor (SF)

The number of bits encoded in a symbol by LoRa is an adjustable resource parameter
known as the SF. LoRa operates in six SFs (i.e., SF7∼SF12), utilized by the ED during uplink
(UL) transmission. To transmit a UL packet, the EDs select a random channel using ALOHA
channel access mechanism [92]. Furthermore, the choice of SF an ED utilizes during the
communication plays a significant role for different reasons: a higher SF (e.g., 11, 12)
complies with a high distance coverage; however, it indicates a low DR and high time-on-
air (ToA) [67,93,94]. For example, the ToA for a packet size of 51B and 1% duty cycle (DC),
considering the EU region (i.e., 868 MHz), is illustrated in Table 3. Table 3 is computed using
The Things Network (TTN) community network platform, where the TTN has utilized the
LoRaWAN regional parameters [9], consisting of the duty-cycled limited transmissions
to comply with the European Telecommunications Standards Institute (ETSI) regulations.
In the EU region, the ETSI imposes DC limitations, where LoRaWAN complies with a
maximum DC of 1%. The TTN uses a fair access policy (FAP) [95], allowing ED to send data
to GW for at most 30 s of ToA and ten downlink messages (including acknowledgments for
confirmed packets) per ED per 24 h [96,97]. Based on the TTN network, SF11 and SF12 are
only allowed when ADR is enabled. Increasing the SF by one step doubles the ToA (for the
same BW). It also indicates that a single transmission on SF10 takes more time than 6 on SF7,
or may need about the same ToA as 3 on SF7, SF8, and SF9 combined. As a consequence of
this behavior, the use of ADR or blind ADR is suggested for SF and TP adjustment [98–100].
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Table 3. Time-on-air, duty cycle, and fair access policy (FAP) conditions at 125 kHz and packet
size of 51B [101,102].

Conditions SF7 SF8 SF9 SF10 SF11 SF12

ToA [ms] 118.0 215.6 390.1 698.4 1478.7 2793.5
1% DC [s] 11.8 21.6 39.0 69.8 147.9 279.3
1% DC [msg/h] 305 167 92 51 24 12
FAP [avg · s] 339.9 620.8 1123.6 2011.3 4258.5 8045.2
FAP [avg/h] 10.6 5.8 3.2 1.8 0.8 0.4
FAP [msg/h] 254 139 76 42 20 10

2.1.2. Transmission Power (TP)

In LoRa, TP is an adjustable parameter with a step of 2, ranging from 2 to 14 dBm.
TP is controlled by the ADR, implemented at the ED and NS sides to control the energy
consumption of EDs [103,104].

2.1.3. Coding Rate (CR)

LoRa uses forward error correction (FEC) to improve the reliability of wireless trans-
missions. FEC adds redundant bits to the data, which can be used to correct errors occurring
during transmission. The CR determines the redundancy added to the data. The smaller
the CR, the more redundant bits are added, and the more reliable the transmission will
be. However, a smaller CR will also increase the time it takes to transmit the data. The CR
can be chosen among 4/5, 4/6, 4/7, and 4/8. The smallest CR, 4/8, provides the best
reliability but takes the longest ToA to transmit the data. The largest CR, 4/5, provides the
least reliability but sends the data the fastest. The choice of CR depends on the application
that requires high reliability, such as industrial automation. A large CR should be used for
applications that require fast data transmission, such as asset tracking.

2.1.4. Carrier Frequency (CF)

CF in LoRaWAN is the frequency at which a LoRa ED transmits data toward GW. It
is typically selected from a range of frequencies in a particular region. The CF affects the
capacity and power consumption of ED. For example, the LoRa CF can be programmed
in steps of 61 Hz between 137 MHz to 1020 MHz. However, depending on the particular
LoRa chip, this range may be limited to 860 MHz to 1020 MHz [103]. LoRa supports differ-
ent ISM frequencies (in MHz), namely EU863-870 (Europe), US902-928 (North America),
EU433 (Asia), CN470-510, CN779-787 (China), AU915-928 (Australia), KR920-923 (Korea),
and IN865-867 (India) [9].

2.1.5. Bandwidth (BW)

LoRa operates in three BW: 125, 250, and 500 kHz. The BW is determined by the
regional parameters, as specified in the LoRaWAN specifications [9]. A LoRa-modulated
signal comprises 2SF chips spread over the available BW. The SF parameter controls the
spreading BW and the signal sensitivity to noise. A larger SF value results in a wider
spreading of BW and lower sensitivity to noise. However, it reduces the DR.

2.2. Long Range Wide Area Network (LoRaWAN)

LoRaWAN defines MAC layer features as consisting of a star-of-stars topology com-
prising many EDs, GW, NS, and application servers, as shown in Figure 2. The EDs in
LoRaWAN network are classified as Class A, Class B, and Class C [105]. Class A EDs are
battery-powered and consume ultra-low energy. These EDs are bi-directional and receive
acknowledgment (ACK) from NS with two available receive windows (RXs). Class B EDs
are also battery-powered and provide bi-directional communication. These EDs support
unicast and multicast transmission, though they have more RXs and are synchronized
with a beacon frame transmitted by the GW after a certain time. Finally, Class C EDs use
more power and listen all the time, excluding the transmission time. Among these EDs
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classes, Class A EDs deal with sensors and are implemented in IoT applications, owing to
their energy efficiency and bi-directional communications [79]. Furthermore, LoRaWAN
supports two communication modes: confirmed and unconfirmed.

Cloud network server

trash 

container

pet

tracking

End devices Application server

LTE/LTE-M/Ethernet

Gateway

LTE/LTE-M/Ethernet

Figure 2. LoRaWAN network.

2.2.1. Confirmed Mode

In LoRaWAN, the ED initiates data transmission with an SF and TP. The SF and TP
are allocated by the NS using the ADR mechanism, as defined in [99,106–113]. The ADR
determines the values of SF and TP based on the highest SNR value of the last 20 packets
received at the NS. The NS reduces the SF and increases or decreases the value of TP by 2 to
reduce energy consumption. However, the newly adapted SF and TP might not successfully
deliver the packet to the NS. Therefore, in confirmed mode, the ED utilizes a recovery ADR
based on the retransmission procedure on the ED side. When the retransmission counter
is a multiple of two, the ED increases its SF, and a TP of 14 dBm is adopted at the time of
packet transmission [114]. It increases the chances of successfully delivering a packet to the
NS with increased energy consumption costs.

2.2.2. Unconfirmed Mode

The unconfirmed mode does not require a downlink ACK from the NS. However,
to determine the connectivity loss between the ED and GW, the ED enables ADR ACK bit by
sending a MAC command ADRACKReq in the LoRa frame header (FHDR) after 64 (default)
UL packets [9]. In such a case, the NS must send an ACK, but not immediately. Furthermore,
LoRaWAN utilizes ADR for SF and TP management in confirmed and unconfirmed modes.

3. LoRaWAN Meets ML

This section mainly focuses on existing ML methods applied to LoRa and LoRaWAN
for efficient resource management (e.g., SF, TP, BW, and CR) for improving LoRaWAN
network performance and efficiency. In the remainder of this section, we present the
existing ML, DL, and Reinforcement Learning (RL) methods applied to LoRaWAN.

3.1. Improving LoRaWAN Performance Using ML

Here, we identify the need for ML and present state-of-the-art methods for enhancing
LoRaWAN performance through efficient resource management. These ML methods
applied for improving the performance of LoRa and LoRaWAN are shown in Table 4.

3.1.1. Need for Machine Learning

ML is a rapidly growing field with many applications, including wireless communica-
tions [115–119]. ML can be utilized to improve the performance, efficiency, and security
of wireless networks [120,121]. However, ML is applied in a mathematical model deficit
and algorithm deficit cases in IoT scenarios [122]. In LoRaWAN, resource management
decision-making is left open to developers and researchers, allowing them to develop intel-
ligent solutions for demanding IoT applications. One approach is to utilize ML for resource
management, revolutionizing the optimization of SF, TP, BW, and other important param-
eters. ML algorithms empower LoRaWAN networks to dynamically allocate resources,
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predict network traffic, mitigate interference, and optimize energy consumption, thereby
enhancing network capacity, reliability, and battery life. With ML-driven insights, operators
can proactively plan network expansions, ensure the quality of service (QoS), and achieve
self-optimizing networks that autonomously adapt to changing conditions [123,124]. This
cutting-edge technology releases the full potential of LoRaWAN, transforming it into an
intelligent, adaptive, and efficient IoT infrastructure for a wide range of applications.

3.1.2. Machine Learning: The State-of-the-Art

The existing state-of-the-art ML methods can be classified into supervised and unsu-
pervised.

Supervised Approaches

A load-balancing method for dense heterogeneous IoT networks, such as smart city
scenarios, was proposed in [125]. The dataset was gathered from a TTN Mapper (mapping
the coverage of TTN GWs based on user data) [126] of frequency, DR, latitude, longitude,
RSSI, and SNR. These features describe the successful UL packet transmission from ED to
the GW. The authors trained different ML techniques, such as Multiple Linear Regression
(MLR), Gaussian Naive Bayes (GNB), Linear Discriminant Analysis (LDA), Quadratic
Discriminant Analysis (QDA), Decision Tree (DT), Random Forest (RF), Extremely Ran-
domized Trees (ET), and Voting (Ensemble Learning). The classifiers were applied to an
urban IoT network, where the simulation results showed an improved packet success ratio
(PSR) and reduced energy consumption of a LoRaWAN network.

In [127], an SF allocation scheme using a support vector machine (SVM) and DT to
resolve the collision issue in the LoRaWAN network has been proposed. The training
dataset was generated using Simulator for LoRa SimLoRaSF [128] (SF), a custom simulator
designed for LoRaWAN using Python. The dataset contains the X and Y coordinates of the
ED along with successful SF. The input is labeled as successful (if the packet was successfully
received at the GW), interfered (when a packet was unsuccessful due to Co-SF interference),
and under sensitivity (when a packet is arriving under the required sensitivity threshold
at a specific SF). The SVM and DT classifiers are trained for optimal SF allocation. Their
simulation results showed that the SVM and DT could efficiently classify the SF, improving
the PSR and transmission energy consumption compared to the random SF allocation
method. However, the SimLoRaSF does not consider the downlink communication, which
is an essential part of the LoRaWAN.

The authors in [129] solve the resource classification problem (e.g., TP) for static EDs
in LoRaWAN through various ML techniques, such as RF, SVM, logistic regression (LR), K-
nearest neighbor (KNN), LDA, and GNB. The authors used LoRaSim [30,130,131] network
simulator for dataset collection, which is designed for LoRaWAN IoT networks based on
Python. The ML algorithms were trained on data from previous packet transmissions, such
as SF, CR, Nakagami path loss, and the distance between the ED and GW. As a result, every
combination of SF and CR pairs has one optimal TP associated with it. The dataset was
split into training and testing by 70% and 30%, respectively. From classification results, it
was observed that the RF method achieved the highest accuracy of 92.96% compared to
other ML techniques. Their simulation results revealed that suitable TP classification leads
to a higher PSR than other non-ML methods, such as ADR.

The authors in [132] proposed a combined path loss and shadowing (CPLS) technique,
where ML methods such as LR, SVM, RF, and Artificial Neural Network (ANN) were
trained on RSSI, ToA, SF, and SNR. The dataset was collected through a testbed utilizing
four static EDs in a line-of-sight (LoS) scenario. After removing the outliers and wrong data
collected from the sensors, they divided the dataset into training (80%) and testing (20%).
To this end, the authors suggested an enhanced ADR for SF and TP allocation to static
EDs. The ML methods were evaluated with root-mean-square error (RMSE), achieving
up to 1.566 dB and R2 up to 0.94. The enhanced ADR results revealed reduced energy
consumption by 43% compared to the ADR of LoRaWAN.
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The paper [133] proposed an ML approach based on a learning-automata mechanism
to extend the lifetime of IoT EDs utilized for forest monitoring. Their proposed approach
selects the most energy-efficient ED to act as a cluster head. The simulation results showed
that the proposed learning-automata mechanism increased the lifetime of IoT EDs by up to
6.7 times. Their proposed approach has empirically proven that the learning automaton
consistently converges on the most suitable ED to serve as the cluster head based on
energy consumption metrics, proving their proposed approach is scalable and can easily be
adapted to different IoT applications.

Unsupervised Approaches

One of the challenges of LoRaWAN is the collision occurring between the packets of
EDs when transmitted at the same time with the same SF over the same channel. A K-
means clustering algorithm was proposed for reducing collision probabilities [134]. Their
proposed K-means are responsible for grouping EDs with similar traffic patterns. EDs
belonging to different groups have different priorities, and the channel access for the UL
packet transmission is determined by the given priority. Their method showed improved
performance in terms of collision probability for class A and B devices. Their proposed
method is simple, scalable, and efficient for reducing collision probabilities in LoRaWAN.
Similarly, ED profiling using K-means was utilized in [135] to predict the behavior of Lo-
RaWAN traffic. The authors grouped the EDs using the same SF and packet size and trained
DT and Long Short-Term Memory (LSTM) using unsupervised traffic pattern classification
methods. Their simulation results showed improved performance in terms of PSR by reduc-
ing the impact of interference. However, in a dynamic LoRaWAN network, ED profiling
can be time-consuming because resources (e.g., SF and TP) are application-dependent.
Therefore, their proposed method is applicable to static LoRaWAN network environments.

A learning-automaton-based ML approach was proposed on the NS in [136] to select
between two MAC protocols: TDMA and Slotted ALOHA. The selection of each MAC
protocol depends on the network traffic load. If the network traffic load is high, TDMA is
chosen for packet transmission to avoid collisions. If the network traffic load is low, Slotted
ALOHA is utilized for communication to reduce packet delay. The learning automaton
adapts the MAC protocol selection based on the feedback received from the environment.
The proposed learning automaton-based ML approach has been evaluated in simulation,
showing improved performance in the presence of event traffic.

Table 4. ML methods applied for improving the performance of LoRa and LoRaWAN.

Ref. Year ML Model(s) ML Approach Features Deployment
Platform Dataset Tool Application(s)

[125] 2018 MLR, GNB, LDA, QDA,
DT, RF, ET, Voting

Supervised RSSI, SNR Python tool TTN Mapper [126] Smart city

[127] 2019 SVM, DT Supervised X and Y coordinates, SF SimLoRaSF
simula-
tor [128]

SimLoRaSF sim-
ulator [128]

[129] 2023 RF, SVM, LR, KNN, LDA,
GNB

Supervised SF, CR, path loss, and distance LoRaSim LoRaSim Smart parking

[132] 2023 LR, SVM, RF, ANN Supervised RSSI, ToA, SF, SNR Testbed
[133] 2023 Learning-automata Supervised RSSI, ToA, SF, SNR Testbed Forest monitor-

ing

[134] 2019 K-means Unsupervised Traffic patterns and priority Simulation
[135] 2020 DT, LSTM Unsupervised SF and packet size Tested Water metering
[136] 2022 Learning-automata Unsupervised Traffic pattern Simulation Environmental

monitoring
[136] 2022 AR, TFT Unsupervised Time-stamp, SNR, duty cycle,

number of transitions, SF, fre-
quency, ADR, successful trans-
mission, and failed transmis-
sion

ns-3 simulator Smart
home/city

= not mentioned in the referenced paper.
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The authors in [137] proposed two AI methods, an autoregressor (AR) model and a
temporal fusion transformer (TFT) model, for classifying and detecting LoRaWAN traffic
to optimize the LoRaWAN network performance. The authors collected a dataset using
the ns-3 simulator, where the EDs are placed in an 8 km circle with a centered GW. They
considered all possible criteria as features for EDs, including the inter packets time, SNR,
DC, number of UL transmissions, SF, frequency, ADR, successful transmission at the GW,
and failed transmission. The simulation was executed for 365 days, resulting in a 100 GB
database. The TFT method was utilized to forecast the behavior of the LoRaWAN network,
and the AR method to detect the surge in traffic with overall classification precision between
94.50 and 99%. However, the suggested AI methods have not been utilized in the ns-3 for
online testing.

3.2. Improving LoRaWAN Performance Using DL

We begin by highlighting the importance of DL in the LoRaWAN network. We then
delve into the cutting-edge DL methods currently employed for solving the resource
management issue to enhance the performance of LoRaWAN networks. These DL methods
applied for improving the performance of LoRa and LoRaWAN are illustrated in Table 5.

3.2.1. Need for Deep Learning

DL can improve the performance of LoRaWAN networks by optimizing resource
parameters, predicting network traffic, mitigating inter- and intra-interferences, and op-
timizing energy consumption [138–148]. Furthermore, to dynamically allocate resources
to EDs, such as BW, SF, and TP, a DL method can be trained on a large dataset generated
using simulation tools (e.g., ns-3 or Matlab) or testbeds. Finally, the trained DL method can
be deployed on EDs or network servers (ns-3 or testbed deployments) for efficient resource
allocation, improving the performance of the LoRaWAN network.

3.2.2. Deep Learning: The State-of-the-Art

An Extended Kalman Filter (EKF)-based LSTM method based on regression method
for predicting collision in LoRaWAN network was proposed in [141]. They generated the
dataset for a number of collisions for each 20 min interval using the LoRaSim simulator [131].
For training the LSTM, the dataset was split into 70% and 30% into training and testing and
scaled to [0, 1]. They utilized the pre-trained LSTM along with EKF for collision analysis.
Their results showed an improved RMSE of 0.9863 compared to other approaches, such
as Gated Recurrent Unit (GRU) and Recurrent Neural Network (RNN). Hence, with low
RMSE, the LSTM-EKF has reduced the number of collisions in online simulation and
yielded better performance. The collision in the LoRa network is directly linked with the SF;
hence, SF has not been considered for adaptive configuration. As a result, their proposed
LSTM-EKF can lead to underperformance when utilized in a dynamic LoRaWAN network.

The study in [146] proposed DeepLoRa, an environment-aware path loss model,
utilizing satellite photos to categorize a land cover using Bi-LSTM accurately. In DeepLoRa,
first, each pixel of the picture map was class-labeled, which divided the land cover into two
classes, non-line of sight (NLoS, buildings, trees) and LoS (no attenuation), to reflect the
actual land-cover type. Second, they divided LoRa lines from an ED to GW into identically
sized micro-links. Each was then embedded into a different sequence element based on a
land cover map. To determine the Estimated Signal Power (ESP) received by GW, the model
integrated the sequences with specific input parameters and anticipated related path loss.
For all land cover categories, the accuracy of land cover classification was 97.4% (which
can be regarded as a true environment reflection). Furthermore, DeepLoRa performed at
least 50% better than other models.

A neural-enhanced LoRa demodulation method (NELoRa) was proposed in [143].
A Deep Neural Network (DNN) was trained on a spectrogram of amplitude and phase.
The authors conducted indoor and outdoor experiments, and three metrics, i.e., Symbol
Error Rate (SER), SNR Gains, and Battery Life Gain (BLG), were used for the performance
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evaluation of NELoRa. The evaluations showed that NELoRa could obtain much lower
SERs. As a result, the proposed NELoRa brought significant gains in the SNR thresholds
compared to the dechirp process, and the highest SNR gain observed was 5.94 dB under
SF7 and 500 kHz of BW. NELoRa resulted in consistent and higher BLG of 27% compared
to the baseline.

The paper proposed a DL method [149] for managing the transmission interval of IoT
devices in LoRa networks by utilizing Intel Berkeley Research Lab Data [150]. Using an
autoencoder, the proposed method first clusters the IoT EDs concerning their data patterns.
Second, a local LSTM prediction model is trained using the Intel lab IoT dataset for each
cluster to predict the next transmission interval of each ED involved in communication.
The Monte Carlo simulation with the Intel lab IoT dataset showed 31% improved scalability.

The paper [147] proposed a DL method for joint collision detection and resource
management (e.g., SF). The proposed work utilizes two DL methods: fully connected neural
networks (FCNNs) for collision detection and CNN for SF management. The dataset used
to train the DL methods was generated using the SimLoRaSF simulator [127], containing
the X and Y coordinates of the ED along with SF. The results showed improved prediction
accuracy and energy consumption compared to traditional ML methods such as SVM, DT,
and RF.

Recently, the authors in [148] proposed an AI framework for SF classification using
GRU. To train the GRU model, the dataset was generated in ns-3 and labeled in two ways:

1. Group-based SF labeling: the 6 UL packets, represented with UL1, UL2, . . ., UL6 trans-
mitted with SF7 to SF12 were organized into one group (g). From each g, the lowest
SF was chosen among successful ACK receptions;

2. Input sequence labeled with SF: once the SF labeling of each g was completed, the authors
generated an input sequence of 20 groups with a corresponding labeled SF.

Their proposed AI framework is comprised of two modes: offline and online. The GRU
model is trained based on one-time generated data in the offline mode. After training, a pre-
trained (i.e., inference model) is utilized in the online mode, which yields the best SF during
real-time simulation. The inference model was utilized on the ED side, where the new data
with 20 UL sequences for determining the best SF was generated. Once the UL sequence
reached a size of 20, the input was fed into the inference model to predict a suitable SF
for the next UL packet transmission. Simulation results showed improved PSR compared
to the typical ADR approach. However, the GRU model with two layers comprised
990.71k parameters (i.e., space complexity) and 249.67 Mega Floating-point Operations Per
Second (MMac FLOPs, representing time complexity); the proposed model deployed on
LoRa devices would be computationally costly. To address this issue, the authors in [114]
proposed a DNN with reduced computational 13.54 MMac FLOPs and space complexity
52.9k parameters with the use of six sequences of UL packets during the online mode to
lower the convergence period and energy consumption.

3.3. Improving LoRaWAN Performance Using RL

Here, we discuss the advanced RL methods utilized to address the resource man-
agement challenge and further enhance the overall performance of LoRaWAN networks.
The cutting-edge RL techniques are designed to intelligently manage network resources
like BW, SF, and TP to maximize efficiency and deliver optimal results. These RL methods
improving the performance of LoRaWAN are highlighted in Table 6.
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Table 5. DL methods applied for improving the performance of LoRa and LoRaWAN.

Ref. Year DL Model(s) DL
Approach Features Deployment

Platform
Dataset Tool Application(s)

[141] 2020 LSTM,
LSTM-EKF

Regression Collisions LoRaSim LoRaSim Smart city

[146] 2021 Bi-LSTM Supervised Pathloss Testbed Testbed Localization
[143] 2021 DNN Supervised RSSI and SNR Testbed Testbed Smart parking
[149] 2021 Autoencoder,

LSTM
Supervised Sensory data (temperature,

humidity, light, voltage)
Monte Carlo
simulation

Intel Lab
Data [150]

[147] 2022 SVM, DT, FCNN,
CNN, RF

Supervised X and Y coordinates of the ED, SF SimLoRaSF
simula-
tor [127,128]

SimLoRaSF
simula-
tor [127,128]

[148] 2022 GRU Supervised ED position, SNR, received power LoRaWAN
ns-3 [151]

LoRaWAN
ns-3 [151]

Metering

[114] 2023 DNN, LSTM,
GRU, SVM

Supervised ED position, SNR, received power LoRaWAN
ns-3 [151]

LoRaWAN
ns-3 [151]

Pet-tracking and
metering

= not mentioned in the referenced paper.

3.3.1. Need for Reinforcement Learning

RL approach has several advantages over traditional methods of optimizing Lo-
RaWAN networks [129,152–155].

1. RL is a data-driven approach, learning rules and policies from experience by interact-
ing with the network and observing the results;

2. RL is a dynamic approach, adapting itself to environmental changes. LoRaWAN
networks are constantly changing owing to ED mobility and the underlying propaga-
tion environment. As a result, RL can be used to learn how to optimize the network
parameters for these changes, ensuring that the network remains reliable and efficient;

3. RL is a scalable approach; thereby, it can be used to optimize large and complex networks.

RL has been utilized in different IoT applications, such as robotics, game-playing,
network policy control, and resource optimization [156–159]. For example, in LoRaWAN,
RL could be used to optimize the resources (e.g., SF and TP) by training agents (i.e., EDs)
for making decisions to maximize the overall network efficiency and minimize interference
and energy consumption [160,161].

3.3.2. Reinforcement Learning: The State-of-the-Art

Paper [162] proposed an RL approach for optimizing and updating LoRa communica-
tion parameters. The authors mathematically modeled the average per-node throughput of
LoRaWAN networks by considering the heterogeneity of IoT deployments. The authors
utilized the RL method to derive optimal disseminating policies by aiming to maximize
the accumulated average per-node throughput. The authors compared their approach
to the LoRaWAN ADR mechanism. The authors showed that their approach achieved a
remarkable increase in the accumulated average per-node throughput of 147%.

Paper [163] proposed a novel method for resource allocation in LoRaWAN networks.
The method used Q-learning, an RL technique, to learn the optimal resource allocation
policy for each ED in the network. In the proposed method, the GW acts as an agent of
Q-learning, where the Q-reward is based on the weighted sum of the number of successfully
received packets in the proposed method. The Q-learning method was evaluated using
simulation, and it has improved the average PSR by about 20% compared to a random
resource allocation scheme.
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Table 6. RL methods for improving the performance of LoRa and LoRaWAN.

Ref. Year RL Model(s) Reward Feature(s) Platform Application(s)

[162] 2019 Evolution strategies (ES)
algorithm

Channel conditions Simpy [164]

[163] 2019 UCB Q-learning Gas and water meters
[165] 2019 UCB ACK Matlab Smart metering
[166] 2020 DQN PDR, ToA, and power usage
[167] 2020 DQN Network reliability and the power effi-

ciency
Simulation

[168] 2020 DQN Mobility, channel conditions, traffic load Simulation
[159] 2021 Q-learning
[169] 2021 RL SF Sensitivity LoRa-MAB [21,170] Monitoring
[154] 2021 RL-ADR ToA and energy consumption ns-3
[152] 2021 RL DER and SNR LoRaEnergySim [171] Industrial monitoring
[153] 2021 DRL Energy cost Monte Carlo simulations Real-time application
[172] 2022 MAB ACK LoRa-MAB [21,170] Metering
[155] 2022 DRL Number of ED, reliability, energy effi-

ciency
Testbed

[173] 2022 DRL Collision rate and the packet loss rate of
EDs

LoRaSim simulator [131]

[174] 2023 Q-Learning, Boltzmann ex-
ploration algorithm

Success probability MULANE [175]

[176] 2023 Multi-arm bandit Energy ns-3 module [151]
[177] 2023 DRL Collision or packet lost LoRaSim simulator [131]
[178] 2023 Multi-agent regression

model
Number of EDs, distribution of EDs,
the traffic pattern of EDs

Simulation

= not mentioned in the referenced paper.

To improve the PSR, the authors in [165] proposed a retransmission method based on
an Upper Confidence Bound (UCB) algorithm that is used to solve the multi-armed bandit
problem. In [165], first, the ED retransmits a packet with random channel selection and
learns the quality of each channel based on a positive ACK reception. Then, after learning
the best channel for retransmission, the EDs can retransmit on the highest-rewarded
channel. Hence, improving the PSR. Their results showed improved PSR compared to
random channel selection schemes.

A deep RL (DRL) method was proposed for the dynamic adjustment of SF and TP to
mitigate the collision problem in LoRaWAN [166]. The authors considered the PSR, ToA,
and TP of an ED as a reward function. To mitigate the collision behavior of the LoRaWAN
network, a deep Q-network (DQN) was deployed at the GW for SF and TP management.
As a result, their proposed method improved the PSR by 500% under 100 EDs deployed in
a 4.5 km region.

The authors in [167] proposed a multi-agent Q-learning algorithm to dynamically
allocate TP and SF to EDs during UL packet transmission in a LoRa network. In a LoRa
multi-agent system, each agent represents one LoRa ED, where the ED works together
with the environment to determine the best TP and SF allocation policies for every UL
transmission. The simulation results demonstrated that the suggested algorithm could
greatly enhance the energy efficiency and reliability of LoRa networks.

The authors in [168] proposed a DRL method called LoRaDRL-based on DQN for
intelligent resource allocation in dense LoRa networks. The primary aim of the proposed
LoRaDRL approach is to learn the optimal policy for allocating channels to LoRa EDs.
LoRaDRL assigns resources to the EDs by considering the mobility of EDs, the channel con-
ditions, and the traffic load in the network. LoRaDRL results showed improved PDR under
dense deployments and mobile EDs compared to the state-of-the-art resource allocation
algorithms, such as LoRaSim [131] and LoRa-MAB [21,170].

An RL algorithm was introduced in [169] for SF and TP optimization to improve
energy consumption and PSR. The SF and TP are optimized based on the required level of
SF sensitivity threshold of the GW. They implemented the RL algorithm in the LoRa–MAB
simulator [21,170], which is based on Exponential Weights for Exploration and Exploitation
(EXP3). The results showed an improved PSR and energy consumption compared to the
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LoRa-MAB algorithm [21]. Similarly, an RL-ADR was proposed in [154] to optimize the
SF allocation. The agent is trained using the LoRaWAN ns-3 module, considering the
variations in the SNR behavior. In addition, the reward function is based on the ToA and
energy consumption. Both ToA and energy consumption are measured from each last
received packet at the NS. The RL agent learns the efficient SF allocation policies based
on the ToA and energy consumption. The proposed RL-ADR is evaluated in comparison
with the traditional ADR mechanism of LoRaWAN, where it showed improved energy
consumption owing to the fast response of the trained RL agent for efficient SF allocation
during communication by the NS. Furthermore, [152] also proposed an RL-based optimized
ADR for SF and TP allocation to EDs. The authors of [152] utilized LoRaEnergySim simula-
tor [171], where the states are data extraction rate (DER) and SNR pairs. Moreover, [152]
considers SF and TP pair as actions. The results of [152] showed improved DER compared
to the traditional ADR mechanism. Another DRL approach has been proposed for optimal
channel and SF assignment to EDs in LoRa networks [153]. Their proposed DRL approach
utilizes a DQN to learn the optimal policy for channel and SF allocation. They trained the
DQN on a historical data dataset to minimize the grid power consumption while satisfying
the QoS requirements of the EDs. The proposed approach is evaluated in Monte Carlo and
RL simulations and showed improved performance in assigning a suitable channel to EDs,
thereby lowering the energy cost.

The authors of [172] proposed the MIX-MAB algorithm for suitable transmission
parameters (i.e., SF) allocation to EDs. In MIX-MAB, LoRa EDs interact with the environ-
ment, including GWs, to learn the best actions based on the successful reception of ACK
messages. In MIX-MAB, an ED always initiates a UL packet transmission towards GW
using an SF. In return, the ED receives an ACK upon the successful reception of the packet
on the NS. When the ED receives an ACK, it assigns a reward to that successful SF. As a
result, this SF is used for the next UL packet transmission. The MIX-MAB was evaluated in
LoRa–MAB simulator [21,170] with one GW located at the center of a disc-shaped cell with
a radius of 4.5 km, where 100 LoRa EDs were uniformly distributed, each ED transmits
15 packets/hour. The simulation results showed improved convergence time and PSR
compared to the LoRa-MAB algorithm.

The authors of [155] proposed a multi-agent DRL ADR mechanism at the NS side for
efficient SF and TP allocation to EDs. The proposed multi-agent DRL ADR mechanism
consists of three independent DRL algorithms, one for each slice, replacing the traditional
LoRaWAN ADR mechanism for assigning TP and SF to EDs. The SF and TP are allocated
to EDs based on the rewards such as the number of ED, reliability, and energy efficiency.
Their proposed multi-agent DRL ADR mechanism showed improved energy consumption
compared to the traditional ADR. Another approach based on DRL for optimizing the SF
allocation is studied to improve the GW capacity of the LoRa network [173]. The proposed
approach utilizes a DQN to learn the optimal SF assignment policy for a given network
state. The reward is computed based on the collision rate and the packet loss rate of EDs.
The authors of [131] performed simulation using the LoRaSim simulator, where the results
showed a reduced collision rate by up to 30% compared to the existing Min-airtime and
Min-distance based SF allocation approaches [130].

An algorithm called Low-Power LP-MAB (MAB) [179] was designed to configure
the transmission parameters (e.g., SF) of ED in a centralized manner to improve energy
consumption and PSR. The LP-MAB algorithm works on the NS side by interacting with
the ED. The NS transmits ACK upon successful packet reception to the ED, where the ED
learns the best SF for the subsequent UL packet transmission based on the received ACK
for the previous successful communication on a particular SF. As a result, the simulation
results of LP-MAB outperform other approaches in terms of energy consumption and PSR.

A Q-learning approach was proposed in [174], known as the score table-based eval-
uation and parameters surfing (STEPS) approach. STEPS is responsible for dynamically
allocating the required SF for UL transmission based on the success probability of the
packet and score table. The simulations were conducted using MULANE [175] simulator
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for different EDs (e.g., 50, 100, 250, 500, 600, and 750). Initially, during the deployment
phase, all EDs utilize the same SF. Their results revealed that their proposed STEPS ap-
proach could reduce energy consumption by 24% to 27%. Furthermore, it was realized
that this achievement was possible due to a reduction in collisions. In other experiments
regarding bi-directional communication, their proposed STEPS approach enhanced the
network throughput by 18% in a smaller network, while 33% in a relatively larger network
compared to ADR, BADR, and LoRaMAB [170].

The paper [176] proposed a lightweight RL approach for appropriate SF allocation to
EDs in a LoRaWAN network. The lightweight RL approach utilizes MAB to learn the trade-
off between energy consumption and DR. To ensure feasibility, the authors have integrated
explicit MAC commands into their proposed method and implemented them in the ns-3
module [151]. Their extensive simulation results showed that their lightweight RL approach
outperforms the traditional ADR in single and multi-GW scenarios regarding PSR and
energy consumption, owing to learning the optimal SF for each ED in a given environment.

The authors of [177] proposed an SF redistribution method under limited network
resources to improve the ED capacity of the LoRa GW. Their proposed method uses a DRL
technique to learn the optimal SF allocation for each node, minimizing the collision rate and
energy consumption. Simulation results using LoRaSim [131] showed improved capacity.

Paper [178] proposed a multi-agent regression model to improve network planning in
time-slotted communications for LoRaWAN. The proposed agent is based on multi-output
regression responsible for predicting the network scalability for a given set of joining
EDs. The dataset used for training the agent was generated using a series of simulations,
considering the features such as the number of EDs, the distribution of EDs, the traffic
pattern of EDs, and the channel conditions. The agent utilizes the dataset to train the
multi-output regression model. Once the model is trained, the agent predicts the network
scalability for a given joining EDs. The simulation results revealed a 3% reduction in the
mean absolute error, indicating that the agent can make accurate predictions.

4. Simulators and Frameworks for Dataset Collection

In the existing literature, few works have surveyed the publicly available LoRaWAN
network simulators [52,55,73,79,80,180]. Therefore, this section highlights a few LoRaWAN
frameworks that have been utilized or can be used for dataset collection to resolve collision
and resource management issues in the LoRaWAN network. Furthermore, Table 7 illustrates
a comparison of dataset collection frameworks and applicable ML methods based on
suggested features for resource classification.

4.1. LoRaSim: LoRa Simulator

LoRaSim is based on Python, designed to simulate LoRaWAN collision behavior,
and mainly consists of four configurations: (1) it simulates a single GW, (2) supports up
to 24 GWs, (3) simulates EDs and GWs with a directional antenna, (4) and comprised of
multiple networks [30,130,131].

LoRaSim [131] can be used to study the performance of different LoRaWAN net-
work configurations and to evaluate the impact of interference. The interference model
in LoRaSim is comprehensive, considering both co-SF and inter-SF interference. Co-SF
interference occurs when two or more packets are sent on the same SF. Inter-SF interference
occurs when a packet is sent on a different SF than another packet.

On the one hand, a packet is received correctly if it satisfies three thresholds: the
minimum co-SF, the minimum inter-SF, and the minimum SNR. On the other hand, a packet
is lost only if the overlap of packets is in the time-critical region of the considered packet.
The time-critical region is the part of the packet most important for correct reception.
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Table 7. Comparison of publicly available LoRaWAN frameworks for dataset collection and applica-
ble ML methods based on the required features for resource classification.

Dataset Collection Frameworks ML Techniques with Required Features for Learning
Features

LoRaSim SimLoRaSF LoRaWAN-
Sim

ns-3
Module Applicable ML Techniques Features for Resource

Classification (e.g., SF, TP)

Simulation plat-
form

Python Python Python ns-3

Frequency region EU-868 EU-868 EU-868 EU-868
Device type A A A A
ADR RL [21,154,170] ToA, energy consumption, ACK,

PSR [21,154,170]
Propagation loss
model

log-
distance

log-
distance

Okumura
Hata

log-
distance

RF, DT, SVM, DNN RSSI, SNR, distance, frequency,
LoS, NLoS, Antenna height.

Energy consump-
tion model

SVM, DNN, Ensemble,
Naive Bayes, DT

Payload Size, DR, TP, SNR, chan-
nel occupancy, distance from GW

Mobility environ-
ment

SVM, KNN, LSTM, DNN,
RL, Hybrid

RSSI, speed, acceleration, location,
trajectory, SNR, time-stamp

Buildings environ-
ment

ANN, SVM, GPs, DT Height, density, material, obstruc-
tions, RSSI, NLoS conditions

Interference
model

LR, DT, SVM, RF, KNN,
RNN

RSSI, CIR, SINR, interference
power, type of interference

Channel access
method

Aloha Aloha Aloha Aloha Logistic regression, SVM,
DT, KNN, Naive Bayes,
DNN, Ensemble

LBT, retransmission limit, DC,
channel type, no. of EDs

Confirmed mode
(ACK)

Logistic regression, SVM,
DT, KNN, DNN, Ensemble

Retransmission count, ACK, PSR,
DR, ToA, Link margin, history of
packets

Unconfirmed
mode (no-ACK)

SVM, DT, KNN, DNN, En-
semble

DR, SNR, RSSI, Link margin, his-
tory of packets, PER

= not mentioned in the referenced paper; = defined in the referenced paper.

LoRaSim is a valuable framework for understanding the behavior and performance of
LoRaWAN. It can be used to design and optimize LoRaWAN networks to ensure reliable
and efficient communication, as utilized in [29,30,70,141,173,181–196].

4.2. SimLoRaSF: Simulator for LoRa SF

SimLoRaSF is a LoRaWAN simulator that can be used to study the impact of different
SFs on network performance [127,128]. It is a Python-based framework that uses a discrete-
event simulation model. It works by creating a virtual LoRaWAN network and then
simulating the transmission of packets between EDs in the network by keeping a track
record of the packet transmission time, the SF, the transmitting source (e.g., ED), the packet
size, the duration (e.g., ToA), and status of each transmission (e.g., ACK).

The packet transmission is categorized into three statuses: transmitted, interfered with,
or under sensitivity. A packet is considered successful if it is received correctly by the GW.
A packet transmission is considered interfered with if it is corrupted by interference from
another transmission in the network. A packet transmission is considered under sensitivity
if the SNR is too low for the destination node to receive it correctly.

4.3. LoRaWANSim: LoRaWAN Simulator

The LoRaWANSim [197,198] is a powerful simulator framework that can be used to
study the behavior of LoRaWAN networks under PHY and MAC layer features. The frame-
work provides a flexible simulation environment, allowing users to control PHY and MAC
layer parameters. The PHY layer models the PHY transmission and reception of LoRa
signals. It implements a complete LoRa transceiver, including the ability to generate modu-
lated signals and perform demodulation tasks. It also considers factors such as interference
and multiple GW scenarios. The MAC layer models the data traffic on the LoRaWAN
network. It manages channel access, ensuring multiple EDs can share the same channel
without interfering. Furthermore, it considers UL and downlink interference occurring
over the same channel, DC limitations of 1%, and energy consumption.
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4.4. ns-3: Network Simulator-3

The LoRaWAN ns-3 module [151,199] is among the most widely used simulators for uti-
lizing ML, offering a wide range of LoRaWAN features, such as bi-directional communication,
confirmed and unconfirmed modes, support for the ADR on the ED and NS-sides, buildings,
DC limitations on the EU-868 MHz frequency, energy consumption module, etc. Further-
more, other promising features and modules, for instance, ADR in unconfirmed mode [7],
mobility patterns [200], blind ADR [113] and ML methods [114,148] have been added by other
researchers. However, they are not publicly available. Furthermore, this ns-3 module [151,199]
has been extensively utilized in the literature [7,10,27,100,113,114,148,199–203].

4.5. Remarks

These dataset collection frameworks offer valuable tools for researchers and practi-
tioners to analyze and optimize LoRaWAN networks. These frameworks enable the study
of collision behavior [30], performance evaluation under different SFs, and their impact
on the LoRaWAN network performance [127], investigation of PHY and MAC layer fea-
tures [197], and a complete ns-3 framework for LoRaWAN analysis. The frameworks have
been widely used in the literature, demonstrating their effectiveness in understanding and
improving LoRaWAN network performance. Among these simulators, the state-of-the-art
ns-3 module [151] has been utilized for intelligent SF allocation in the existing literature
using DNN and multi-arm bandits approaches in [114,176].

5. LoRaWAN Datasets

The LoRa research community lacks a large dataset that can be used to study the
resource allocation, interference, collision issues, and behavior of LoRaWAN networks in
various conditions. The existing datasets are typically small and specific to a particular
network or application owing to a few large-scale deployments of LoRaWAN. In addi-
tion, the data collected from LoRaWAN networks are not well-documented, making it
challenging to use for research purposes. Despite these limitations, the existing datasets
can be utilized to examine a variety of aspects of LoRaWAN networks. For example,
the LoRaWAN dataset can be used to study the performance of LoRaWAN networks under
different conditions, the impact of resource management on network performance, and the
traffic patterns of LoRaWAN EDs. The rest of this section discusses the available datasets
designed for different IoT applications.

5.1. Localization

A large dataset for LoRaWAN and Sigfox was collected in urban and rural areas
from 17 November 2017 to 5 February 2018, which contains the RSSI at each GW, latitude
and longitude of the ED, and the SF utilized during data transmission [204]. The authors
utilized the dataset in [205] for indoor localization, where the results showed that the mean
location estimation error for Sigfox was recorded as 214.58 m and 688.97 m in rural and
urban scenarios, respectively. In addition, the mean location estimation error for the urban
LoRaWAN dataset was 398.40 m. The datasets presented in [204,205] can be leveraged to
evaluate the performance of LoRaWAN-based indoor positioning systems by developing
new fingerprinting algorithms. The dataset has been extensively utilized for LoRaWAN-
based indoor positioning systems in [206–213]. Similarly, 100 RSSI values were collected for
a target node and for the 11 anchors at LoS and NLoS in indoor and outdoor environments
for improving the localization through LoRa measurements [214,215].

The authors in [216,217] generated a dataset called the “LoRaWAN at the Edge Dataset
(LoED).” The LoED dataset [218] was collected under an urban scenario for four months,
where nine GWs were utilized in central London. Among nine GWs, five were outdoor
(line-of-sight (LoS)), four GWS located indoors with limited LoS, and one had no-LoS on the
ground. The data was captured for a 2–4 month period generated by smart city applications.
Overall, 11,263,001 packets were collected from 8503 unique EDs, comprised of the features
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such as cyclic redundancy check (CRC), RSSI, SNR, SF, frequency, bandwidth, CR, packet
type, device address, etc.

The LoRa RF fingerprinting dataset was collected considering indoor and outdoor
scenarios comprising FFT and I/Q samples for indoor localization [219–221]. On the one
hand, the dataset was collected for five consecutive days for indoor scenarios. During in-
door dataset collection (e.g., room, outdoor, and office environments), 25 EDs were utilized,
where every ED transmits 10 UL packets with an interval of 20 s. On the other hand,
the outdoor dataset comprised four different scenarios regarding the distance: 5 m, 10 m,
15 m, and 20 m away from the GW.

The LoRaWAN performance mainly depends on several factors, including the distance
between the ED and the GW, the underlying propagation environment, and the network
traffic. To study the LoRaWAN network, the authors in [222] generated a dataset (publicly
available, [223]) using 311 outdoor tests for 39 GW, which contains data regarding the long-
term behavior of the LoRaWAN channel in Brno, Czech Republic. The dataset was collected
under different environments, including urban, suburban, and rural areas, for two months,
and included information about the SNR and RSSI concerning the closest GW distance.

The authors of [224] collected a fingerprinting dataset by conducting two studies on
indoor and outdoor environments. The first study was conducted at the Brno University
of Technology in Brno, Czech Republic, and the second was conducted at the University
Politechnica of Bucharest in Bucharest, Romania. The dataset [225] comprises the RSSI
information for various GWs using SF7, SF9, SF10, and SF12. The study showed reduced
positioning accuracy in indoor and outdoor experiments. However, the SF dataset is limited
since the authors have used only SF7, SF9, SF10, and SF12.

5.2. Weather Forecast

Owing to the long range of LoRaWAN, it can often be utilized in outdoor environments.
However, the performance of LoRaWAN is greatly affected by weather conditions, such as
humidity, temperature, and atmospheric pressure. Therefore, the authors in [226] generated
a dataset about the correlation between RSSI and SNR conditions from 8 LoRaWAN EDs
and a weather station. The dataset [215] was collected for more than 80 days in a vineyard in
Italy, including more than 190,000 records of RSSI, GPS coordinates, temperature, humidity,
and pressure data. Researchers can use the dataset to develop new algorithms for studying
and improving the performance of LoRaWAN under different weather conditions.

5.3. Security Attacks

LoRaWAN networks can be vulnerable to security attacks. Therefore, the study in [227]
investigated the use of LoRa metadata to detect the presence of security flaws within the
network. The authors in [227] collected a dataset of LoRaWAN transmissions for two
months with SNR and RSSI measurements. The data collected included normal, collided,
and jammed metadata, where normal values are annotated as CRCOK and DoS attacks
were denoted as CRCBAD. They utilized various ML methods (e.g., logistic regression, DT,
RF, and XGBoost) to predict the presence of jamming and security attacks. Among the ML
methods, XGBoost was the most accurate ML method for predicting security attacks, since
it was found that SNR and RSSI can be used to pinpoint normal versus anomalous signals.

5.4. Signal Quality/Path Loss

When designing a LoRaWAN network, it is essential to consider the path loss between
the EDs and the GWs. Several factors, including distance, frequency, and weather, can affect
path loss. The authors in [228] presented a LoRaWAN measurement dataset collected in
Medellin, Colombia. The dataset [229] was collected for about four months by considering
only four EDs, which include information about path loss, the distance between ED and
GW, frequency, temperature, relative humidity, barometric pressure, particulate matter,
and energy consumption. Furthermore, the authors claimed that leveraging the dataset
would enable the estimation of weather-induced variations in path loss for LoRaWAN



Sensors 2023, 23, 6851 19 of 36

deployments, leading to enhanced precision in tracking and positioning data and the
development of more efficient energy reduction strategies.

The dataset in [230,231] was generated using two GW and six mobile EDs in a
6 × 6 km2 urban area in Tsinghua University, Beijing, China. The dataset [232] was col-
lected over four months comprising RSSI, PDR of the transmitted packets, locations of the
ED and GW, and timestamps of each measurement.

The dataset [233,234] was collected in indoor and outdoor environments where, during
the indoor data collection, the distance between the EDs and the GW varied from 5 to 50 m.
The floor map illustrated the walls, doors, and windows between the EDs and the GW.
In the outdoor environment, railway stations were used without considering obstacles
between the EDs and the GW. The dataset includes features such as the timestamp, the SNR,
and the RSSI of the received packet at the GW.

5.5. Smart City

The dataset [235,236] is divided into two parts: LoRa parameters and sensor readings.
The LoRa parameters dataset contains the timestamp of packet transmission, the channel
used in packet transmission, the device extended unique identifier (DevEUI), the SNR,
the RSSI, and the frame counter (FCNT). In comparison, the sensor dataset includes data
about the measured quantities, such as CO2, sound average, sound peak, motion, light,
temperature, humidity, and battery levels. The Smart Campus dataset can be used for
various applications, including time-series forecasting and number of people prediction.

5.6. Resource Allocation

Mainly, the SF allocation is dependent on the underlying propagation environment,
mobility, ED position, and sensitivity. Therefore, in our previous work [114,148], we gener-
ated a dataset using the state-of-the-art ns-3 module [151], which is publicly available [237].
The dataset was generated for 10 days with a UL period of 10 min, which mainly comprises
ED locations (i.e., X and Y coordinates), RSSI, SNR, the distance between ED and GW,
and the ACK status of every UL packet transmitted with each SF. The dataset in [237] can
be utilized for resource management (e.g., SF) for static and mobile EDs.

5.7. Remarks

In addition to existing datasets, few datasets are publicly available with limited documen-
tation. For example, LoRaWAN traffic analysis dataset [238], outdoor experiments conducted
for LoRa RSSI [239,240], LoRaWAN dataset using SF [241], and LoRa time series dataset [242].
Furthermore, apart from [237] dataset, these datasets [205,215,218,221,223,225] are not de-
signed for resource management. However, they can be tested for resource allocation since
most datasets include RSSI, SNR, and device location information, which are efficient features
for resource management. In conclusion, Table 8 provides additional information regarding
the datasets discussed in this section.

Table 8. Summary of existing datasets utilized for different applications of LoRaWAN.

Year Paper
Ref.

Tool
Used Dataset Variables Size of Dataset Purpose ML Method

2018 [205] Testbed SF, RSSI, ED positions [204] 123,5229 Localization KNN
2019 [215] Testbed RSSI [214] Localization Least squares
2020 [218] Testbed CRC, RSSI, SNR, SF, frequency, band-

width, coding rate, packet type [216]
11,263,001 Smart city, capacity

planning
2021 [221] Testbed IQ/FFT [220] Localization CNN
2021 [223] Testbed SNR, RSSI, Frequency [222]
2022 [225] Testbed RSSI [224] Outdoor = 16,054, in-

door = 7752
Localization KNN, LR, DT, SVM
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Table 8. Cont.

Year Paper
Ref.

Tool
Used Dataset Variables Size of Dataset Purpose ML Method

2022 [215] Testbed RSSI, GPS coordinates, along with
weather data [226]

190,000 Weather forecast

2022 [227] Testbed RSSI, SNR, CRC Security analysis Logistic regression,
DT, RF, and XGBoost

2022 [229] Testbed Timestamp, ED id, energy consumption,
SF, SNR, distance, frequency, and other
sensory data [228]

930,753 Positioning, energy
behavior of LoRa

Linear regression

2022 [232] Testbed Timestamp, RSSI, PDR, locations of ED
and GW [230,231]

Tracking

2023 [234] Testbed Timestamp, SNR, RSSI [233] Locomotion mode
recognition

Zero-Shot learning

2023 [236] Testbed Timestamp, SNR, RSSI, frame counter,
and other sensory data [235]

Smart city, people
counting

KNN, LSTM.

2023 [237] ns-3 [151] RSSI, SNR, ED positions [114] 108,401 SF management DNN, LSTM, GRU

= not mentioned in the referenced paper.

6. ns-3-Based ML Frameworks

The ns-3 frameworks, mainly designed for ML, can be utilized or integrated with
the LoRaWAN ns-3 module [151,199] to enhance the performance of LoRaWAN with ML.
These frameworks are discussed in the remainder of this section.

6.1. ns-3-AI Framework

Currently, researchers are interested in applying ML techniques to wireless com-
munication networks [115–117]. It is owing to most ML techniques heavily relying on
open-source TensorFlow and PyTorch ML frameworks. These two frameworks are de-
veloped independently and are extremely hard to merge. Moreover, connecting these
two frameworks with data interaction is more reasonable and convenient. Therefore,
the ns3-AI framework was proposed in [243,244]. The ns3-AI framework provides an effi-
cient workflow between ns-3 and Python-based modules, enabling seamless data transfer
and interaction between the two modules. As an example, using the ns-3-AI framework:
(a) LSTM has been utilized to predict the channel quality, and (b) RL method for controlling
the congestion occurring in TCP [244].

6.2. ns-3-gym Framework

The ns3-gym is an open-source RL framework, integrating OpenAI Gym and ns-3 [245].
The OpenAI Gym is a popular and open-source RL toolkit providing an interface for in-
teracting with RL environments. The OpenAI Gym offers predefined environments with
well-defined state and action spaces, making developing and comparing RL algorithms
easier. It supports various RL methods, allowing researchers from academia to focus on
developing new learning algorithms. The ns-3 Gym fills the gap between ns-3 and OpenAI
Gym by creating an interface. This interface allows researchers to leverage the capabil-
ities of ns-3 within the OpenAI Gym framework. As a result, such integration enables
researchers to apply RL techniques to network scenarios and train RL agents to make
intelligent decisions in complex networking environments.

For example, the authors in [246] present two use cases of cognitive radio (CR) trans-
mitters to solve the issue of radio channel selection in the IEEE 802.11 WLAN with external
interference [247]. In case 1, the transmitter senses the entire BW, while case 2 is related
to data transmission, where the transmitter monitors its channel to avoid collisions by
selecting a channel free of interference.

6.3. Open Neural Network Exchange (ONNX) Framework

ML could be computationally costly in LoRaWAN owing to its low computational
power. As a result, energy consumption increases and thereby reducing the network
lifetime. Therefore, DL models can be trained on one-time generated data (using ns-3 or
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testbed), and the pre-trained model (e.g., inference model) can be utilized in LoRaWAN ns-3
modules [199]. The pre-trained model can be configured using an Open Neural Network
Exchange (ONNX) [248]. ONNX is an open-source Application Programming Interface
(API) based on the C++ programming language for DL and ML techniques. To use ONNX
with ns-3, first, an ONNX-supported pre-trained model using TensorFlow and PyTorch
can be generated. Then, the pre-trained model can be imported into ns-3 with the help of
the ONNX API. The ONNX API will provide raw data during simulation (similar input
samples used during ML model training), which can be used for resource management
(e.g., SF or TP). One example of ONNX implementation in ns-3 can be found in [249],
where it has been utilized to simulate and model the behavior of an Open Radio Access
Network [250].

6.4. ns-3-FL: Federated Learning Framework

The ns-3-FL [251,252] is a new framework for simulating FL in a realistic network
environment. FL is an ML technique that allows multiple devices to train a shared model
without sharing their data. This is useful for privacy- and delay-sensitive applications like
healthcare and finance.

The ns-3-FL framework is built on two existing simulators: FLSim [253,254] and ns-3.
It provides a realistic and flexible way to simulate FL training and inference in various
network settings. FLSim [253] is responsible for data distribution between client–server
architecture and FL, whereas ns-3 simulates the network. As an example of ns-3-FL working,
(1) the FLSim [253] requests network simulation and selects the number of EDs for the
FL training round, (2) the ns-3 performs the simulation for the selected EDs, (3) the ns-3
transmits the latency and throughput of each ED to the FLSim [253], and (4) the FLSim
utilizes the received data from ns-3 during computing the convergence time of the global
model (using FedAvg and FedAsync algorithms [255,256]) and average throughput for this
specified training round, as illustrated in Figure 3.

NS-3 simulator

Network

Network Model
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List of Selected  

devices

Latency and throughput of 

each device

Requesting network 

simulation

Sending simulation 

results
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and 
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ServerDevices 

12

3

4

Socket 

communication

Figure 3. Working procedure of the ns-3-FL framework [252].

Furthermore, the ns-3-FL comprises three main components: the learning model,
the network model, and the power control.

6.4.1. Learning Model

FL is an ML paradigm that allows multiple clients to train a shared model without sharing
their data. The training is achieved by iteratively sending updates to a global model, which is
then aggregated by the server using FedAvg and FedAsync algorithms [255,256]. The ns-3-FL
supports two types of FL algorithms: synchronous and asynchronous. In synchronous FL, all
clients update the model simultaneously, while in asynchronous FL, clients can update the
model at different times.
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6.4.2. Network Model

The ns-3 network simulator was used to model the latency and throughput between
clients and the server, allowing to study of network conditions and their impact on the
performance of FL.

6.4.3. Power Model

A power model calculates the energy consumption of FL training. This model consid-
ers the number of multiply–accumulate operations performed by the clients and the energy
used to transmit the model to the server.

6.5. AI-ERA LoRaWAN Framework

Our previously published AI-Efficient Resource Allocation (AI-ERA) framework for
SF classification [114,237], designed using AI and ns-3 modules, is a powerful framework,
as illustrated in Figure 4. In the AI-ERA framework, the DNN model comprises five
fully connected layers, trained using X and Y coordinates, SNR, and received power
(Prx). After achieving the desired level of classification accuracy, the pre-trained model
is deployed on the ED side, where (1) a similar input sequence (utilized during training)
is used as input to the pre-trained model, (2) the pre-trained model processes the input
and classifies a suitable SF based on the learned knowledge, and (3) a mobile or static ED
adapts the classified SF and start transmitting data in UL direction, as shown in Figure 4.

GW

Mobile devices
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(pre-trained model)
Interface between 

ns-3 and AI module 

NS-3 Simulator

NS

Data collection (input sequence)

Classified SF

Artificial Intelligence Module

Static devices

1

2

3

LTE/LTE-M/

Ethernet

Python C++

Figure 4. Illustration of the AI-ERA classification framework for spreading factor: (1) inference model
deployed on the ED side, where ED prepares input sequence for the model, (2) SF classification by
the pre-trained model, and (3) SF adaptation by the ED for uplink packet transmission [114].

In addition, the AI-ERA framework [237] provides three major components: AI mod-
ule, dataset, and data labeling.

6.5.1. AI Module

As illustrated in Figure 4, the AI-ERA module is comprised of a pre-trained DNN
model, which is deployed on the ED side for efficient SF classification to EDs during
simulation.

6.5.2. Dataset

During the dataset generation, the AI-ERA framework utilized a regular ADR, where
EDs transmit a packet with SF7∼SF12 at a regular interval of 10 min, as shown in Figure 5.
Over a period of 10 days, a dataset was generated with a UL interval of 10 min. The dataset
mainly consists of the X and Y coordinates of the ED locations, along with RSSI, SNR,
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the distance between ED and GW, and the ACK status of each SF in every UL packet
transmitted.

SF 7 8 9 10 11 12

DR 5 4 3 2 1 0

10 min.

ED

GW

Figure 5. Regular ADR utilized for dataset collection in AI-ERA framework.

6.5.3. Data Labeling

To train the DNN model, the SF was labeled based on the successful ACK reception
by the ED. There could be multiple ACK responses for the same packet transmitted with
SF7 ∼ SF12. As a result, the lowest SF is chosen for labeling, and a sequence of six groups
as input is fed to the DNN model.

6.6. LoRaWAN Bandit Framework

LoRaWAN bandit provides an RL framework that can be utilized to allocate the
optimal SF to EDs by leveraging a MAB approach [176,257]. The LoRaWAN bandit frame-
work learns the trade-off between energy consumption for each SF. The framework is
designed to work in two phases: exploration and exploitation. During the exploration
phase, the framework utilizes all SF combinations and learns how the energy consumption
and DR is affected during simulation. In the exploitation phase, the framework selects the
optimal SF based on the learned information.

The framework utilizes delayed feedback, where it does not expect immediate feed-
back. However, it receives feedback after a delay caused by several factors, such as the
time it takes to reach the GW and the time it takes to process the packet. The framework is
implemented in the ns-3 simulator using the LoRaWAN module [151].

6.7. Remarks

The ns-3-based ML frameworks can be utilized by researchers and practitioners to
analyze, optimize, and improve the performance of the LoRaWAN networks by efficiently
managing the resource parameters. However, these ML frameworks [244,246,248,252]
are designed for a different purpose. In addition, the ML frameworks in [114,148,237]
and [176,257] are specifically designed for resource management utilizing the state-of-the-
art LoRaWAN module [151]. These ML frameworks [114,148,176,237,257] can be adapted
to improve the performance of LoRaWAN through resource management.

7. Discussion

In the current literature, ML-, DL-, and RL-based solutions have been extensively
studied to tackle the critical challenge of resource allocation in LoRaWAN networks, aiming
to enhance the performance of the LoRaWAN network. However, existing approaches
predominantly focus on resolving resource allocation at the ED level or on the NS, leading
to certain limitations and opportunities for improvement.

7.1. ML Methods at the ED Side

In the literature, several ML methods have been utilized at the ED side [114,127,148],
bringing several advantages. The EDs can make autonomous decisions locally regarding
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the SF selection without constant communication with the NS, thereby reducing commu-
nication overhead. In addition, latency is particularly advantageous in scenarios with
limited network bandwidth, unstable connections, and the availability of limited com-
munication channels. Moreover, utilizing ML methods for SF classification can efficiently
improve the convergence period under static and mobile IoT EDs, thus improving the
packet success ratio [114].

However, utilizing ML methods for resource management on the ED side can be
disadvantageous. For example, the primary concern is the computational load it places on
resource-constrained EDs. Low-power IoT devices with limited processing capabilities may
struggle to support ML models due to the significant computational power and memory
requirements. Therefore, extra computational power can lead to excessive energy con-
sumption. Moreover, training and maintaining the models on each ED can be challenging,
particularly when EDs have different hardware and software configurations, making it
difficult to ensure model consistency across the LoRa network.

7.2. ML Methods at the NS Side

When ML methods are utilized on the NS side, it can bring several advantages.
For instance, the NS generally has more computational resources, allowing more complex
and accurate models to be trained and deployed for resource management. Leveraging
a centralized dataset, potentially containing data from massive EDs, can lead to a more
comprehensive and accurate ML model for resource classification. Furthermore, updating
and maintaining the ML model can be efficiently performed from a centralized location,
ensuring consistency across the network.

However, implementing ML methods on the NS can have a negative impact on the
network performance. In terms of mobility, if an ED receives a downlink LinkADRReq
MAC command from the NS that contains a new SF, and when the ED transmits a packet
with the updated SF, it may not be delivered to the GW, resulting in packet loss. This is
because the underlying propagation environment changes significantly when the ED is
mobile [10,114]. In addition, communication between the EDs and the NS for resource
allocation decisions may introduce latency in a large-scale LoRaWAN deployment. Relying
on the NS for every resource allocation decision might lead to single points of failure and
reduce network performance in terms of increased convergence period.

7.3. Remarks

Resource allocation through ML-, DL-, and RL-based solutions has promising potential
to enhance the LoRaWAN network performance. However, addressing the challenges
associated with dataset quality and considering the trade-offs of implementing the ML
method on the EDs and the NS side is essential for developing effective and efficient
resource allocation mechanisms in LoRaWAN networks. The choice between the two
approaches must be made carefully, depending on the specific requirements and constraints
of the LoRaWAN network. Both options present unique advantages and disadvantages
that should be thoroughly evaluated for optimal performance and scalability.

8. Future Recommendations

This section presents future recommendations for SF and TP allocation to EDs using
ML to improve the overall performance of LoRaWAN.

8.1. Spreading Factor Classification

The allocation of SF is dependent on few parameters, such as GW sensitivity (SGW) [27]
and ED sensitivity (SED) [105] thresholds (illustrated in Table 9), the distance between
the GW and ED [7], path loss [129,146], ToA [133], interference/collision [201], ED posi-
tions with SNR [147,148], retransmission [10], the ratio of UL and downlink ACK [105],
and packet drop ratio [258]. However, to apply ML/DL for SF allocation to EDs, multiple
parameters have been adopted in the current literature, for example, the received power



Sensors 2023, 23, 6851 25 of 36

(i.e., RSSI), SNR, the distance between ED and GW, and ED position [114]. For mobile EDs,
the ML methods should be deployed on the ED side since the propagation environment
changes drastically. Therefore, the decision of efficient SF selection by ED will help to de-
liver a packet successfully, thereby improving the packet success ratio. However, deploying
the ML on the ED side will increase the computational cost as low-power devices with
limited processing capabilities may struggle to support ML models due to the significant
computational power and memory requirements. On the other hand, it is recommended
to utilize the ML method on the NS side for static EDs. In such a case, the propagation
environment remains unchanged [10].

Table 9. Sensitivity and required SNR of EDs and GW with 125-kHz mode [27,200].

SF GW Sensitivity (Sg)
[dBm]

ED Sensitivity (Se)
[dBm] SNR [dB]

12 −142.5 −137.0 −20
11 −140.0 −135.0 −17.5
10 −137.5 −133.0 −15
9 −135.0 −130.0 −12.5
8 −132.5 −127.0 −10
7 −130.0 −124.0 −7.5

8.2. Transmission Power Classification

In LoRaWAN, an ML model can be trained for efficient TP allocation to EDs in an
intelligent manner. The input features for TP classification might include RSSI, link quality
indicator (LQI), energy consumption, interference in the channel, and distance between the
GW and ED. The TP level in LoRaWAN ranges from 2 dBm to 14 dBm and can be divided
into five possible classes (2, 5, 8, 11, 14) dBm [152,155,167]. A packet successfully delivered
with any SF and TP level can be labeled with a particular TP. For example, a DNN model
can be trained to classify an appropriate TP level for the EDs based on the provided inputs.

8.3. Multiclass Multioutput Classification

Few existing works have investigated SF and TP classification problems individually.
However, both SF and TP classification can be achieved simultaneously, which can be
regarded as a multiclass multioutput classification problem, referred to as multi-resource
classification (MRC). In the case of SF classification, there are six possible classes (i.e., SF7,
SF8, SF9, SF10, SF11, and SF12). Similarly, the TP, ranging from 2 dBm to 14 dBm, can
be classified into five possible classes (2, 5, 8, 11, 14) dBm [152,155,167]. During dataset
collection, a packet would be transmitted with a pair of SF and TP. Based on the successful
ACK reception by the ED for the lowest SF and TP pair, the features such as RSSI, SNR,
the distance between ED and GW, ACK status, and X and Y coordinates will be labeled.
Based on the requirements of the application (e.g., mobile or static), the ML/DL method
can be implemented either on the ED side (in the case of mobile application) or on the NS
side (for static application). It is because the underlying propagation environment changes
drastically in the case of mobility, thereby the SF and TP selection decision should be taken
by ED rather than NS.

9. Conclusions

LoRaWAN is a promising IoT protocol for long-range and ultra-low power consump-
tion applications. However, a few challenges need to be addressed before LoRa and
LoRaWAN can be widely deployed, such as LoRa parameters configuration, interference,
and optimized ADR. One promising approach to overcoming these challenges and im-
proving the performance of LoRaWAN is ML. ML can be used to develop robust, efficient,
and intelligent ADRs responsible for resource parameter configurations (e.g., SF, TP, CR,
etc.). Furthermore, the field of ML in LoRa and LoRaWAN is growing fast, with recent
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research and development focusing on various areas such as SF and TP classification,
collision analysis, and interference mitigation.

In conclusion, this survey provides a detailed analysis of the state-of-the-art ML/DL/RL
applications utilized for improving the performance of LoRaWAN. Further, the survey dis-
cusses the publicly available dataset collection frameworks and publicly available datasets.
For the identified required features, the use of potential ML methods has been determined for
improving the performance of LoRaWAN. Furthermore, the ns-3-based ML frameworks have
been highlighted that can be integrated with the widely adopted LoRaWAN ns-3 module.
Finally, a discussion on current ML research efforts is highlighted with features utilized for ML,
DL, and RL, along with future recommendations that show how the LoRaWAN performance
can be further improved using ML techniques.
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