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Abstract: Plant diseases are a critical threat to the agricultural sector. Therefore, accurate plant
disease classification is important. In recent years, some researchers have used synthetic images
of GAN to enhance plant disease recognition accuracy. In this paper, we propose a generative
adversarial classified network (GACN) to further improve plant disease recognition accuracy. The
GACN comprises a generator, discriminator, and classifier. The proposed model can not only
enhance convolutional neural network performance by generating synthetic images to balance plant
disease datasets but the GACN classifier can also be directly applied to plant disease recognition
tasks. Experimental results on the PlantVillage and AI Challenger 2018 datasets show that the
contribution of the proposed method to improve the discriminability of the convolution neural
network is greater than that of the label-conditional methods of CGAN, ACGAN, BAGAN, and
MFC-GAN. The accuracy of the trained classifier for plant disease recognition is also better than
that of the plant disease recognition models studied on public plant disease datasets. In addition,
we conducted several experiments to observe the effects of different numbers and resolutions of
synthetic images on the discriminability of convolutional neural network.

Keywords: deep learning; generative adversarial network; data augmentation; plant disease recognition

1. Introduction

Agriculture is one of the most important food sources for human beings. With the
rapid growth of the global population, agriculture has become increasingly important.
Agricultural security has an important impact on people worldwide, especially in areas
where agricultural technology is underdeveloped. Plant diseases seriously hinder agricul-
tural production and affect food quality. Accurate plant disease recognition is crucial to
ensure food security, especially in less developed countries where agricultural experts are
scarce. With the spread of the internet and smartphones, agricultural practitioners can take
photos of plant diseases and use plant disease recognition software to correctly classify
disease types. This can reduce reliance on agricultural experts and increase productivity in
the agricultural sector.

With the rapid development of convolutional neural network (CNN), remarkable
progress has also been made in plant disease recognition tasks. Convolutional neural
networks make full use of the end-to-end learning mode and surpass machine learning
methods in plant disease recognition accuracy. Brahimi et al. [1] proposed a CNN model
for tomato disease classification. The tomato disease dataset contains nine diseases and
14,828 images. Fuentes et al. [2] adopted ResNet as the network backbone and proposed
a local and global class annotation method to improve recognition accuracy. Ma et al. [3]
designed a deep CNN model for cucumber disease image recognition. In this study, the
accuracy of identifying four diseases in cucumbers was 93.4%. Bhattacharya et al. [4] used
the CNN model to classify bacterial blight, blast, and brown mark diseases of rice with an
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accuracy of 78.44%. Huang et al. [5] proposed first separating leaves and background and
then using a pretrained universal classification model to classify diseases, with an accuracy
of 87.45% on the AI Challenger dataset. Sumita et al. [6] proposed a real-time recognition
method based on the deep convolution neural network of corn leaf disease, which reached
88.46% accuracy. Wang et al. [7] proposed a trilinear convolute on a neural network model,
which reached 84.1% accuracy. Chen et al. [8] added SE attention module on the basis of
YOLOv5 to enhance recognition accuracy, and the model identified powdery mildew and
anthracnose detection rates of 86.5% and 86.8%, respectively.

However, the accuracy of a deep learning model depends on the quality and quan-
tity of the dataset. Due to insufficient numbers or unbalanced classes of some datasets,
the accuracy of deep learning models is poor, so some researchers use transfer learning
techniques to classify plant diseases. Fang et al. [9] proposed an instance-based transfer
learning method to solve the problem of insufficient training samples of agricultural disease
images. Wang et al. [10] pretrained on the PlantVillage dataset using CNN and fine-tuned
their plant disease dataset. The experimental results show that combining CNN with
transfer learning can improve the classification accuracy of small datasets. Zhang et al. [11]
proposed using GoogLeNet to pretrain on the ImageNet dataset and then fine-tuned on
1200 cherry leaf disease datasets, achieving 99.6% accuracy. Verma et al. [12] used a pre-
trained ResNet18 network to fine-tune the grape leaf disease dataset to accurately identify
grape disease severity. Chen et al. [13] proposed a MobileNet that added SE attention
modules and increased plant disease recognition accuracy through twice-transfer learning.
Vallabhajosyula et al. [14] proposed a deep ensemble neural network method to detect
plant diseases and then fine-tuned pretrained models using transfer learning techniques.

The above work has made remarkable progress in plant disease recognition. However,
making a plant disease image dataset requires the participation of many agricultural experts
and is laborious and time-consuming. There is often a class imbalance problem in the data
collection process; that is, the number of samples in some classes is significantly less than
that in others. The use of class-imbalanced datasets biases the recognition model training
toward the sample class which has a majority. The problems of some plant disease datasets
are insufficient quantity and imbalance among classes.

Generative adversarial network (GAN) [15] has been used to synthesize images with
high visual fidelity. The high-quality samples synthesized by GAN models can now be
used as additional training data for tasks such as classification [16,17] and data augmen-
tation. Data augmentation is a common technique used to synthesize more training data,
which can enhance the universalization ability of the model. In image processing, data
augmentation techniques usually include image flipping [18], random cropping [19], and
color enhancement [20]. In image classification tasks, models trained on class-imbalanced
datasets are often biased toward the majority class. This problem can be ameliorated by
applying augmented dataset techniques to minority classes. Some works [21–26] use a
GAN to expand the dataset or solve the problem of class-imbalanced datasets. Refs. [21,26]
use CGAN to synthesize images to augment and balance datasets, but experiments in
this paper prove that synthetic images of CGAN have a low level of accuracy. The meth-
ods [22–25] use nonlabel-conditional GANs to augment or balance plant disease datasets,
but the disadvantage of these methods is that GANs need to be trained separately for each
class. In addition, ref. [27] used transfer learning on the samples synthesized by GAN to
enhance the classification accuracy of convolutional neural networks.

However, the above methods have problems with low accuracy of synthetic images
and complex training processes. To solve the problem of unbalanced plant disease datasets,
we propose a generative adversarial classified network (GACN) to enhance the classifica-
tion accuracy of convolutional neural networks. The GACN aims to further improve the
contribution of synthetic images to the discriminability of specific classification convolu-
tional neural network. The synthetic image of the proposed method has higher accuracy,
while the proposed method can generate synthetic images of any class through one-time
training. The GACN consists of a generator, discriminator, and classifier. The generator is
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used to synthesize images. The discriminator distinguishes between the real images and
the synthetic images as much as possible. The classifier is designed to correctly classify
real images and synthetic images. The GACN can be directly applied to plant disease
recognition tasks, or the generated synthetic images can be used to balance the dataset to
improve CNN accuracy. We evaluate our method using the PlantVillage [28] and AI 2018
Challenger datasets. We compare conditional generative adversarial network (CGAN) [29],
auxiliary classifier GAN (ACGAN) [30], multiple fake class GAN (MFC-GAN) [31], bal-
ancing GAN (BAGAN) [32], and ControlGAN [33] methods in the task of balancing plant
disease datasets. These five methods are the existing label-conditional methods, which
can output images according to the label. The difference between GACN and the above
label-conditional GANs is the addition of a classifier. GACN is designed to enhance the
discriminability of a specific classification CNN, so the classifier structure needs to be the
same as the specific classification CNN structure. The classifier of GACN is trained on
both synthetic and real images and adds a loss function for predicting the real image class
to the generator, which can encourage the generator to produce more accurate synthetic
images. GACN solves the problem that existing label-conditional GANs do not consider
encouraging the generator to generate synthetic images with higher accuracy for specific
classification CNN. The experimental results show that the GACN performance in balanc-
ing plant disease datasets is better than that of these label-conditional GANs. In addition,
compared with other plant disease recognition models studied on public plant disease
datasets, the classifier of the proposed method achieves higher classification accuracy.

The contributions of this paper are summarized as follows:

• A dual-purpose model GACN is proposed in this paper. The GACN is proposed to
improve the accuracy of plant disease recognition tasks. It can classify plant diseases
directly or generate synthetic images that can be used to balance plant disease dataset
to improve CNN accuracy.

• The proposed GACN classifier is applied to the plant disease recognition task, and its
accuracy exceeds that of the current methods studied on open plant disease recogni-
tion dataset.

• The synthetic image accuracy and balanced dataset performance generated by the
proposed GACN model are better than those of the existing label-conditional GANs.

The remainder of this paper is organized as follows: Section 2 introduces label-
conditional GANs and plant disease recognition methods based on GAN. The proposed
GACN method is described in Section 3. Section 4 discusses the performance of the pro-
posed classifier on the plant disease recognition task and the performance of GACN on
balanced plant disease datasets. Section 5 describes the conclusion and what can be done
in the future.

2. Related Work
2.1. Label-Conditional GANs

The GAN comprises a generator and discriminator. The purpose of the generator
is to synthesize as realistic a sample for spoofing the discriminator as possible, and the
purpose of the discriminator is to distinguish as much as possible between true samples
and synthetic samples. The generator and discriminator are trained against each other to
reach a state of equilibrium. Addressing the problem that GAN cannot synthesize samples
with labels, Mirza proposed CGAN in 2014. In a standard GAN, there are no restrictions
on the synthetic sample, so a sample of a given class cannot be accurately synthesized.
To address this issue, CGAN conditions the generator on additional information to direct
the sample generation process. The CGAN can synthesize samples of any specified class.
Therefore, CGAN can be specified to synthesize samples with specific labels to balance
different classes of samples in the dataset. As a variant of CGAN, ACGAN adds a loss
function for correct sample classification to the discriminator, so it can synthesize higher-
quality conditional samples. ControlGAN added an additional classifier but did not add a
loss function to encourage the generator to synthesize more accurate images. MFC-GAN
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uses fake classes to ensure the accuracy of minority class generation. BAGAN models
combine processes such as autoencoder training to synthesize samples. However, these
methods do not consider the classification network structure when generating images, and
generators are also not encouraged to produce more accurate synthetic samples, so the
synthetic samples cannot further enhance the performance of the classification models.

2.2. Plant Disease Recognition Model Based on GAN

Jordan et al. [21] proposed a method to enhance fruit quality classification accuracy
using CGAN. The experiment showed that an accuracy of 88.75% was obtained by using
synthetic image enhancement training. Zhou et al. [22] proposed a GAN-based method
for grape leaf spot recognition. The study generated 1000 local spot images per class
and achieved 96.27% accuracy on ResNet50 by mixing the synthetic image with the real
image. Lamba et al. [23] enhanced the rice disease dataset by GAN and then used CNN
for classification, achieving 98.23% accuracy. Haruna et al. [24] proposed balancing the
rice leaf disease dataset with StyleGAN and achieved 93% accuracy using the fast-RCNN
model. Zhao et al. [25] used DoubleGAN to form an image of unhealthy plant leaves
to balance the dataset and improve plant disease recognition accuracy. Abbas et al. [27]
proposed synthesizing images of tomato plant leaves using CGAN. Subsequently, they
used transfer learning to train the DenseNet121 model on both synthetic and real images,
further improving the accuracy of the DenseNet121 model.

3. Method
3.1. Network Structure

Nonlabel-conditional GANs are not suitable for generating images that can improve
CNN accuracy because synthetic images do not have label information. However, some
plant disease datasets have too few minority samples, which is not enough to support GAN
training. Even the models based on label-conditional GAN, such as CGAN, ACGAN, MFC-
GAN, and BAGAN, do not set the corresponding loss function to improve the accuracy of
the synthetic image while generating the synthetic image. In addition, they do not consider
the problem of training different CNN structures on synthetic images. In view of the above
problems, a classifier is added to the GAN in this paper to enhance the accuracy of the
synthetic images according to the classification results of the classifier. The classifier is
trained with the generator and discriminator. The synthetic images produced by GACN
can output synthetic images with higher accuracy according to specific CNN structure. The
trained classifier can also be directly applied to image classification tasks.

The proposed GACN is shown in Figure 1. It comprises a generator, discriminator, and
classifier. The discriminator uses convolution with a stride of 2 and finally uses nonlinear
mapping layers to output a source S and a class label C. The discriminator’s structure
is shown in Table 1. The structure of the proposed discriminator is similar to that of the
other GAN discriminator. Most discriminators use a convolution layer with stride 2 to
downsample the feature map and gradually increase the number of convolution channels.
The drop operation prevents the generator’s synthetic images from being too similar due
to overtraining of the discriminator. The generator structure is shown in Table 2. Each
synthetic image to be synthesized X f ake = Generator(c, z) has a corresponding class label
c, which is entered into the generator as additional information in the form of one-hot
encoding. The mapped latent code z and additional information are combined and fed
into the generator through concatenate operations. The nonlinear mapping layer maps
latent code to increase its size and reshape the feature map to RC×4×4 before entering
the generator. The generator uses a bicubic interpolation operation to upsample the
feature map size before the convolution layer. Early GAN use of deconvolution as an
upsampling operation produces grid-like artifacts, but bicubic interpolation operation
solves this problem. Notably, the network structure of the generator and discriminator
has a limited influence on the results, and the loss function is the key to generating highly
accurate images. The proposed model aims to further enhance the contribution of synthetic



Sensors 2023, 23, 6844 5 of 17

images to specific classification network discriminability. Therefore, the classifier structure
is the same as the specific classification network structure. For example, for synthetic
images to enhance the ResNet performance, the classifier must have the same structure as
ResNet. In this paper, we set the classifier structure to ResNet18 to compare performance
with other models.
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Figure 1. Structure of the generative adversarial classified network. (a) Structure of the generator.
(b) Structure of the discriminator. (c) The classifier structure is the same as the specific classification
network. “z” represents noise. “c” represents the label. “N” represents the number of classes.

Table 1. Structure of discriminator. The convolution is followed by BN, LeakyReLU (slope 0.2),
and dropout.

Type Kernel Strides Feature Maps Setting Dropout Nonlinearity

Convolution 4 × 4 2 64 - 0.5 LeakyReLU
Convolution 4 × 4 2 128 BN 0.5 LeakyReLU
Convolution 4 × 4 2 256 BN 0.5 LeakyReLU
Convolution 4 × 4 2 512 BN 0.5 LeakyReLU

Table 2. Structure of the generator. Feature maps are output feature map numbers. Bilinear is an
upsampling mode with a scaling factor of 2 placed before the convolution. LeakyReLU (slope 0.2) is
the activation function, placed after the convolution layer.

Type Kernel Feature Maps Setting Nonlinearity

Convolution 3 × 3 512 Bilinear ×2 LeakyReLU
Convolution 3 × 3 256 Bilinear ×2 LeakyReLU
Convolution 3 × 3 128 Bilinear ×2 LeakyReLU
Convolution 3 × 3 64 Bilinear ×2 LeakyReLU
Convolution 3 × 3 32 Bilinear ×2 LeakyReLU
Convolution 3 × 3 3 - Tanh
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3.2. Objective Function

We alternately train the discriminator, generator, and classifier. The objective function
of the discriminator has two parts: the log-likelihood of the correct class Lc and the log-
likelihood of the correct source Ls:

Lc = E[logP(C = c|Xreal)] + E[logP(C = c|X f ake)] (1)

Ls = E[logP(S = real|Xreal)] + E[logP(S = f ake|X f ake)] (2)

The discriminator is trained to minimize Ls + Lc, where Xreal is the real image and
X f ake is the fake image. Minimizing Lc means that the discriminator must correctly classify
the classes of the real and synthetic images. Minimizing Ls indicates that the discriminator
correctly classified the true and false of the real and synthetic images. The objective function
of the generator is to minimize Ls f + Lc f + Ltcr:

Ls f = E[logP(S = real|X f ake)] (3)

Lc f = E[logP(C = c|X f ake)] (4)

Ltcr = crossentropy[Tc(Xreal), C = c] (5)

where Ls f is the source from which the discriminator determines X f ake. Lc f is the dis-
criminator that determines the class of X f ake. Tc(·) is the classifier. crossentropy is the
cross-entropy loss. Ltcr calculates the distance between the classification result of Xreal by
the classifier and the real label c by using cross entropy. Minimizing Ls f indicates that
the generator should make the synthetic image more realistic and cheat the discriminator.
Minimizing Lc f makes the synthetic image more consistent with its corresponding class.
The objective function of the classifier is as follows:

Ltc f = crossentropy[Tc(X f ake), C = c]× r + crossentropy[Tc(Xreal), C = c] (6)

The classifier is trained to minimize Ltc f . r is used to control the weight of the false
image to the classifier. In this paper, the value of r is 0.2. Minimizing Ltc f indicates that the
classifier correctly classified real and fake images.

In each iteration of the training process, the discriminator is trained first, then the
generator is trained, and finally, the classifier is trained. In the discriminator training stage,
the discriminator is trained to classify the fake and real images and determines whether
the image is true or false. In the training classifier stage, the classifier is trained to correctly
classify fake and real images. Additionally, we set the coefficient r, which ensures that the
classifier is not more affected by poor-quality false images. In the process of training the
classifier, the synthetic image classes output by the generator should be evenly distributed.
For example, if the dataset contains 61 classes, with batch size set to 128, synthetic image for
each class should be generated at least twice. This can solve the problem that the classifier
is affected by real images of unbalanced classes. Therefore, the trained classifier can be
directly applied to the plant disease recognition task. In the training stage of the generator,
the generator synthesizes fake images to deceive the discriminator. In addition, in the
process of training the generator, we also add the loss of the classifier predicting the true
image class to the total loss of the generator to correctly classify the true image class by
training on fake images. In other words, the classifier improves classification accuracy of
real images by training on fake images, encouraging the generator to generate fake images
with high accuracy for the classifier. Using the trained generator to produce a synthetic
image can further improve the balanced dataset.
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4. Experiment
4.1. Datasets and Implementation Details

We train the proposed model on the PlantVillage and AI Challenger 2018 datasets. The
PlantVillage dataset is a plant disease dataset with 54,306 images in 38 classes, covering
24 types of diseases and 14 types of crops. The types of plants include grape, soybean,
blueberry, cherry, orange, peach, bell pepper, potato, raspberry, squash, apple, strawberry,
and tomato. The AI Challenger 2018 dataset contains 10 crops and 27 diseases, with a total
of 36,379 images divided into 61 classes. Plant diseases include bacterial, mold, viral, and
mite diseases. Unlike those in the PlantVillage dataset, the early crop disease images in
the AI Challenger 2018 dataset are very similar to the healthy images, so they were more
difficult to classify. The training and test images were set in a ratio of 8:2.

The Adam optimizer was used for the generator and the discriminator, where beta1
and beta2 were 0.5 and 0.999, respectively. The classifier uses Adam as the optimizer, where
weight decay is 1 × 10−4. The batch size is 128. The epoch is set to 300. The learning rates
of the generator, discriminator, and classifier networks were 0.0001, 0.0004, and 0.0004,
respectively. All experiments were performed in Python 3.8.8, PyTorch 1.10.2, and CUDA
10.2. The Ubuntu 18.04 with NVIDIA RTX2080TI GPU was used to train and test the
proposed model.

4.2. Evaluation Metrics

We evaluate the proposed model based on the following metrics: accuracy, PIQE [34],
NIQE [35], and Inception Score [36].

Accuracy =
TN + TP

TN + TP + FN + FP
(7)

True negative (TN) represents the number of predicted results that are negative and
actual class that are also negative. True positive (TP) represents the number where the
predicted result is positive and the actual class is positive. False negative (FN) represents the
number where the predicted result is negative and the actual class is positive. False positive
(FP) represents the number of predicted results that are positive and the actual class that
is negative. The accuracy represents the proportion of model prediction results to actual
results. By imitating human visual behavior, the PIQE and NIQE evaluate the perceptually
important areas on the image and are used to evaluate the image quality. High PIQE and
NIQE scores indicate low image quality. The Inception Score is used to evaluate image
quality and is commonly used to measure GAN performance. The higher the Inception
Score is, the better the image quality generated by the GAN. The implementation process
of PIQE, NIQE, and Inception Score can be found in the above papers.

4.3. Plant Disease Recognition Performance
4.3.1. Comparison of Plant Disease Recognition Accuracy

We compared the trained classifier in the proposed method with several other plant
disease recognition models. These plant disease recognition models are all methods studied
on public datasets. The accuracy of the above models was obtained by the PlantVillage
and AI Challenger 2018 test sets. As shown in Table 3, refs. [37–39] early plant disease
recognition models used universal recognition networks to classify plant diseases, and
they did not design corresponding network structures according to the plant disease
characteristics. Refs. [40,41] improved the VGG model, reduced the number of parameters,
and improved the performance compared with the standard VGG network [41]. The
model has only 6 M parameters and, therefore, is suitable for running on mobile devices,
Refs. [42,43]. By using the attention mechanism to enhance plant recognition accuracy,
ref. [42] with only 0.7 M parameters, due to the effective image recognition performance
of ResNet18, ref. [44] satisfactory accuracy was achieved after adding the attention model.
Ref. [45] with only 4 M parameters was proposed and specifically designed for plant disease
recognition tasks. The proposed model classifier has the same structure as ResNet18, and
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its performance is better than that of the ResNet18 variant proposed by [42]. The classifier
of the proposed model is trained on both real and synthetic images, and the accuracy of the
plant disease recognition task is better than that of these existing works.

Table 3. Comparison with existing plant disease recognition models on the AI Challenger 2018 and
PlantVillage test sets. The classifier structure of the proposed method is the same as that of ResNet18.

Study Year Network Param AI Challenger 2018 PlantVillage

Ferentinos [37] 2018 VGG 138 M 82.71% 97.67%
Too et al. [38] 2019 DenseNet 8 M 84.56% 98.02%

Kamal et al. [39] 2019 MobileNet variant 0.5 M 83.78% 97.45%
Chen et al. [40] 2020 VGG19 variant 41 M 83.12% 98.74%

Ramamurthy et al. [41] 2020 CNN+attnetion 0.7 M 76.53% 96.21%
Ronghua Gao et al. [42] 2021 ResNet18 variant +attention 51 M 85.73% 99.25%

Zhao et al. [43] 2022 CNN+attention 59 M 84.23% 98.54%
Li et al. [44] 2023 CNN 4 M 85.56% 98.61%

Singh Thakur et al. [45] 2023 VGG variant 6 M 85.89% 98.75%
Our 2023 GACN (Classifier ResNet18) 11 M 86.52% 99.78%

To prove that GACN can improve the accuracy of the plant disease recognition task,
we set up several experiments to verify the accuracy of the original ResNet and the accuracy
of the GACN classifier. We compare the classifier performance with ResNet18, ResNet34,
ResNet50, and ResNet101. As shown in Table 4, ResNet18 achieved 84.75% accuracy on
the AI Challenger 2018 dataset. After the classifier structure in GACN is set to ResNet18,
the accuracy of ResNet18 improved by 1.77% after training with real and synthetic images.
When the GACN classifier is ResNet50, the accuracy is 0.49% higher than that of ResNet50
on the PlantVillage dataset. The experimental results of ResNet18, ResNet34, ResNet50, and
ResNet101 show that ResNet accuracy can be improved by training real images together
with synthetic images of the proposed method. The trained GACN classifier can be directly
applied to plant disease recognition tasks, and the number of parameters will not increase
compared with the original ResNet network.

Table 4. Performance comparison between the classifiers of GACN and ResNet on the AI Challenger
2018 and PlantVillage test sets.

Method Setting Param AI Challenger 2018 PlantVillage

ResNet18 - 11 M 84.75% 98.74%
GACN Classifier ResNet18 11 M 86.52% 99.78%

ResNet34 - 21 M 84.87% 98.81%
GACN Classifier ResNet34 21 M 86.12% 99.26%

ResNet50 - 23 M 84.92% 98.92%
GACN Classifier ResNet50 23 M 86.64% 99.41%

ResNet101 - 42 M 85.04% 99.02%
GACN Classifier ResNet101 42 M 86.36% 99.31%

We carried out a five-fold cross experiment to verify the accuracy of the classifier in
plant disease recognition, as shown in Table 5. The five-fold cross experiment divides the
dataset into five blocks, one of which is used for testing and the rest for training. When K is
1, the first block is used for testing. The maximum block accuracies in Challenger 2018 and
PlantVillage are 86.52 and 99.78%, respectively. The average accuracies of AI Challenger
2018 and PlantVillage are 86.37% and 99.63%, respectively.
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Table 5. Accuracy of five-fold cross experiment on the AI Challenger 2018 and PlantVillage datasets.

Datasets k = 1 k = 2 k = 3 k = 4 k = 5 Average

AI Challenger 2018 86.52% 86.25% 86.46% 86.44% 86.16% 86.37%
PlantVillage 99.78% 99.72% 99.65% 99.43% 99.56% 99.63%

4.3.2. Accuracy Curve during Training

Figure 2 shows the accuracy curves of the GACN classifier and the original ResNet18
on the AI Challenger 2018 and PlantVillage test sets. We can observe that the original
ResNet18 is more accurate than the GACN classifier before epoch 100 on the PlantVillage
dataset; however, the GACN classifier is more accurate than the original ResNet18 after
epoch 150. In the AI Challenger 2018 test set, the GACN classifier was more accurate
than the original ResNet18 after epoch 180. This shows that during GACN classifier
training when the accuracy of the synthetic image improved, the performance of ResNet18
benefitted from the synthetic images. Therefore, the trained classifier in GACN can be
directly applied to plant disease recognition tasks.
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4.3.3. Influence of False Image Weights on the Results during Training

Figure 3 shows the effect of different ratios of r in the classifier on the results. This
set of experimental results comes from a classifier trained on the AI Challenger 2018 and
PlantVillage datasets. The classifier structure is the same as ResNet18. When r is 1, the
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synthetic and real images have the same contribution to classifier training. However,
the synthetic image does not yet have enough accuracy to replace the real image, so the
accuracy is lower than that of ResNet18, which is trained with only real images. As the r
value decreased, it also meant that the synthetic image contributed less to classifier training
and improved accuracy on the AI Challenger 2018 test set. When the value of r decreased
to 0.4, the classifier accuracy is better than that of the original ResNet18 network. The
experimental results show that the classifier achieves the best accuracy when the r value is
set to 0.2. This proves that training with synthetic and real images can enhance the accuracy
of convolutional neural networks.
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4.4. Performance of Synthetic Images
4.4.1. Performance of the Synthetic Image among Different GANs

We designed experiments to compare the accuracy of synthetic images from different
GANs. Our comparison methods include only the label-conditional GANs because plant
disease datasets are typically small and the number of images per class is insufficient to
support nonlabel-conditional GAN method training. In Table 6, we present information
from two plant disease datasets. In the PlantVillage training set, there are 152 images in the
minimum minority class and 5507 images in the maximum majority class; the median is
1403, and the mean is 1150. In the AI Challenger 2018 training set, there is only 1 image in
the minimum minority class and 2221 in the maximum majority class; the median is 343,
and the mean is 754.

Table 6. The information in the dataset includes the number of classes and the distribution statistics
for each class of images.

Dataset Classes Min Mean Median Max

PlantVillage 38 152 1150 1403 5507
AI Challenger 2018 61 1 754 343 2221

In the best case, synthetic images can be used as a substitute for real images. If a
GAN model can synthesize images with sufficient accuracy, it can significantly enhance the
accuracy of class-imbalanced datasets. Therefore, the goal of label-conditional GANs is not
only to synthesize conditional images but also to synthesize conditional images that are as
accurate as possible. The synthetic images of the different GANs are shown in Figure 4.
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This set of experiments was designed to verify the accuracy of synthetic images of
different GANs. We use the synthetic images synthesized by different GANs as training
images to train ResNet18 and verify the trained ResNet18 on the real image test set. In
the set of experiments, we studied the effect of different numbers of synthetic images on
the accuracy of the PlantVillage and AI Challenger 2018 test set. As shown in Table 7,
regardless of how many images are synthesized by the CGAN, the accuracy of the synthetic
images is always approximately 5% on the PlantVillage dataset. The ACGAN synthetic
image reached its maximum accuracy of 34.9% at 36,000 images. The accuracy of the
MFC-GAN synthetic images is approximately 5% higher than that of the ACGAN. The
proposed model achieves the highest accuracy of synthetic images. When there were 38,000
synthetic images, the highest accuracy is achieved by training on synthetic images, and
more synthetic images do not further improve the classification accuracy.

Table 7. Accuracy comparison of the number of synthetic images among different GANs. Each class
has the same number of synthetic images. The synthetic images were trained on ResNet18, and
the classification accuracy was calculated on the PlantVillage test set. The synthetic image size is
128 × 128. The classifier structure of the GACN is the same as that of ResNet18.

Amount CGAN ControlGAN ACGAN BAGAN MFC-GAN Our

3800 5.2% 7.1% 11.1% 12.6% 15.4% 23.5%
19,000 5.8% 6.8% 33.2% 32.5% 38.2% 43.3%
38,000 5.4% 7.6% 34.9% 35.2% 39.6% 44.2%
76,000 5.5% 7.2% 32.1% 32.5% 39.8% 42.2%

Because the AI Challenger dataset has more classes, the problem of dataset imbalance
is more serious, which makes it more challenging for GANs to generate images in just a few
classes. As shown in Table 8, the accuracy of the CGAN synthetic image is approximately
only 2%. ACGAN had an accuracy of 23.5% in the test set when generating 1000 images per
class. The accuracy of BAGAN’s synthetic images is similar to that of ACGAN. The accuracy
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of the synthetic image of MFC-GAN is approximately 3% higher than that of ACGAN. The
proposed model achieved an accuracy of 32.4% when synthesizing 61,000 images, which is
also the highest among all the compared GAN models. This set of experiments shows that
synthetic images have the potential to replace real images when the accuracy of synthetic
images continues to improve.

Table 8. Accuracy comparison of the number of synthetic images among different GANs. Each class
has the same number of synthetic images. The synthetic images were trained on ResNet18, and the
classification accuracy was calculated on the AI Challenger 2018 test set. The synthetic image size is
128 × 128. The classifier structure of GACN is the same as that of ResNet18.

Amount CGAN ControlGAN ACGAN BAGAN MFC-GAN Our

15,250 2.3% 3.2% 9.4% 10.2% 12.5% 16.6%
30,500 2.1% 3.6% 19.2% 19.6% 20.2% 28.5%
61,000 1.9% 3.3% 23.5% 22.5% 26.1% 32.4%
91,500 2.2% 2.9% 22.1% 21.6% 24.7% 31.2%

As shown in Table 9, we tested the performance of different GANs on the PIQE,
NIQE, and Inception Score evaluation metrics. The average PIQE, NIQE, and Inception
Score of the images in the PlantVillage dataset are given in the table. All PIQE scores
of GANs are lower than those of real images, but it is evident that from a human visual
perspective, synthetic images cannot be as real as real images. CGAN has the highest NIQE
score, indicating its worst authenticity from a human visual perspective. The PIQE and
NIQE scores of the proposed model are closest to those of real images, indicating that
synthetic images from GACN are more realistic than synthetic images from other GANs.
The Inception Score of GANs is higher than that of real images, indicating that the Inception
Score is independent on the accuracy of the synthetic image. This set of experiments shows
that the closer the PIQE and NIQE scores of the synthetic image are to the real image, the
higher the accuracy of the synthetic image.

Table 9. Average PIQE, NIQE, and Inception Score comparison of synthetic images among different
GANs. The synthetic images for each class are 1000 on the PlantVillage dataset. The synthetic image
size is 128 × 128. The classifier structure of GACN is the same as that of ResNet18.

Metrics Real Images CGAN ControlGAN ACGAN BAGAN MFC-GAN Our

PIQE 16.42 3.47 4.67 5.51 5.34 6.87 7.62
NIQE 17.84 88.57 56.89 42.27 45.64 38.56 31.15

Inception Score 2.78 3.46 3.78 3.26 3.51 3.56 3.05

4.4.2. Effect of Images Synthesized by Different GANs on Dataset Balancing

This experiment is set up so that when there are fewer images of a certain class than the
specified number, the class is supplemented with synthetic images of GANs to the specified
number. The experiment uses ResNet18 to train on the balanced training set and test on the
real image test set to verify the performance of different GANs balanced datasets. As shown
in Table 10, experiments on the PlantVillage dataset show that the CNN achieves the best
performance when there are at least 1000 images per class. Replenishment of each class to
2000 images negatively affected the CNN performance. This is because the GAN is not yet
able to synthesize images are accurate enough to replace the real images. MFC-GAN can
improve the CNN performance by 0.4%. Balancing the training set with synthetic images
of the proposed model improved the accuracy by 0.6%. However, CGAN, ControlGAN,
ACGAN, and BAGAN do not improve CNN performance because their synthetic samples
are not sufficient to provide sufficient discrimination ability. The experimental results
show that using GAN to supplement the synthetic images in the minority class can further
enhance CNN performance.
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Table 10. Comparison results of different GANs with the balanced PlantVillage dataset. According
to different datasets, the number of images for each class in the training set is supplemented by
synthetic images to a specified number. The synthetic images were trained on ResNet18, and the
classification accuracy was calculated in the PlantVillage test set. The synthetic image size is 128 ×
128. The classifier structure of the proposed model is the same as that of ResNet18.

Amount CGAN ControlGAN ACGAN BAGAN MFC-GAN Our

500 96.8% 97.2% 97.3% 97.1% 97.2% 97.1%
1000 97.1% 96.7% 98.1% 98.2% 99.1% 99.3%
1500 96.9% 97.1% 97.2% 97.8% 98.1% 98.5%
2000 96.7% 96.6% 96.2% 97.3% 96.8% 96.9%

Real images 98.7%

The class imbalance problem on the AI Challenger 2018 dataset is more serious. When
CGAN synthetic images are added to the training set, the accuracy of the ResNet18 network
decreases significantly. As shown in Table 11, synthetic images of CGAN and ControlGAN
cannot yet contribute sufficient accuracy to the training set. The accuracy of the synthetic
image of ACGAN is higher than that of CGAN and ControlGAN, so the performance of
ACGAN is better than that of CGAN and ControlGAN in the task of balancing datasets. The
synthetic image accuracy of MFC-GAN is better than that of BAGAN, ACGAN, CGAN, and
ControlGAN, allowing ResNet18 to achieve maximum performance when supplementing
a few classes of images up to 750 images. The accuracy of the proposed model reaches
86.3% when the class images are supplemented to 750 images. The accuracy of ACGAN,
MFC-GAN, and the proposed model exceeds that of the original training set after balancing
the training set. We can observe that the performance of the proposed model balance
dataset is better than that of other label-condition GANs. The reason for this result is that
the accuracy of synthetic images by the proposed model is better than that of other GANs,
which has been demonstrated in previous experiments. This shows that when the synthetic
image has a high accuracy, it can be used as an additional training image to supplement
the real image dataset.

Table 11. Comparison results of different GAN applications with the balanced AI Challenger 2018
dataset. According to different datasets, the number of images for each class in the training set is
supplemented by synthetic images to a specified number. The synthetic images were trained on
ResNet18 and the classification accuracy was calculated in the AI Challenger 2018 test set. The
synthetic image size is 128 × 128. The classifier structure of the proposed model is the same as that
of ResNet18.

Amount CGAN ControlGAN ACGAN BAGAN MFC-GAN Our

500 83.2% 84.4% 84.6% 84.1% 85.5% 85.8%
750 83.9% 83.2% 85.4% 84.2% 85.8% 86.3%

1000 83.5% 83.6% 85.1% 84.5% 85.2% 85.1%
1500 81.8% 82.5% 83.7% 83.6% 83.3% 83.8%

Real images 84.7%

We also conducted a five-fold experiment on the task of balancing datasets, as shown
in Table 12. The five-fold cross experiment divides the dataset into five blocks, one of which
is used for testing and the rest for training. When K = 1, the test set is the first block. Once
the dataset was divided, we used synthetic images of GACN to supplement the number
of images for each class in the AI Challenger 2018 and PlantVillage training sets to 750
and 1000, respectively. We trained ResNet18 on the balanced training sets and verified its
accuracy on the real image test set. The best results for the balancing dataset task were
86.3% and 99.3% in the two datasets, respectively.
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Table 12. Accuracy of five-fold cross experimentation on balanced AI Challenger 2018 and PlantVil-
lage datasets. The synthetic images were trained on ResNet18. The synthetic image size is 128 × 128.
The classifier structure of the proposed model is the same as that of ResNet18.

Dataset k = 1 k = 2 k = 3 k = 4 k = 5 Average

AI Challenger 2018 86.3% 85.9% 86.1% 85.8% 86.2% 86.1%
PlantVillage 99.3% 99.1% 98.9% 98.7% 99.2% 99%

4.4.3. Influence of Synthetic Image Resolution on the Accuracy

As shown in Tables 13 and 14, we study the effect of the resolution of the synthetic
image on the discriminability. The experimental results show little difference in the accuracy
of CGAN at 64 × 64 and 128 × 128. ResNet18 is trained on synthetic images generated
by different GANs, and its accuracy is verified on the real image test set. The accuracy
of the 128 × 128 samples of ACGAN is slightly higher than that of the 64 × 64 samples.
BAGAN and MFC-GAN’s 64 × 64 synthetic images are approximately 2% less accurate
than 128×128 synthetic images. The proposed model also achieves the best accuracy at
128 × 128 sizes. The accuracy of the 256 × 256 synthetic image is not verified by the failure
of all models to generate meaningful 256 × 256 synthetic images due to the structure and
loss function. This phenomenon is caused by insufficient generator parameters. Therefore,
the objective of conditional image synthesis is to find the best sample resolution as far as
possible to improve the classification ability of the CNN.

Table 13. Accuracy comparison of the resolution of synthetic images among different GANs. Each
class has 1000 synthetic images. The synthetic images were trained on ResNet18 and the accuracy
was calculated in the PlantVillage test set.

Resolution CGAN ControlGAN ACGAN BAGAN MFC-GAN Our

64 × 64 5.7% 6.5% 29.7% 30.1% 38.2% 43.5%
128 × 128 5.4% 7.6% 34.9% 35.2% 39.6% 44.2%

Table 14. Accuracy comparison of the resolution of synthetic images among different GANs. Each
class has 1000 synthetic images. The synthetic images were trained on ResNet18 and the accuracy
was calculated in the AI Challenger 2018 test set.

Resolution CGAN ControlGAN ACGAN BAGAN MFC-GAN Our

64 × 64 2.3% 2.9% 21.4% 21.2% 24.9% 30.3%
128 × 128 1.9% 3.3% 23.5% 22.5% 26.1% 32.4%

4.4.4. Ablation Experiment

This set of experiments validated the effect of different components of GACN on the
results. We trained on synthetic images generated by different variants using ResNet18
and tested it on the real images test set. The number of synthetic images for each class is
1000. As shown in Table 15, when we applied the generator and discriminator structure of
ACGAN in the proposed method, the accuracy decreased by approximately 1%. When we
set the classifier structure as VGG16 network structure, the accuracy of the trained ResNet18
on the real image test set decreased by approximately 9%. When the loss function Lc of
the discriminator is removed, we observe that the accuracy decreases significantly. This
variant is similar to ControlGAN, which verifies the reason for the low accuracy of synthetic
images by ControlGAN. The variant without classifier is similar to ACGAN and BAGAN.
Therefore, the accuracy of the synthetic image by this variant is consistent with ACGAN
and BAGAN. When GACN removes the classifier and loss function Lc of the discriminator,
this variant is similar to CGAN, and its accuracy is also greatly decreased. This shows
that the important part of the GACN is the loss function rather than the generator and
discriminator structure. Adding the loss function Ltcr to the generator encourages the
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generator to generate more accurate images, where Ltcr is Formula (5). In addition, the
classifier structure should be the same as the specific classification network structure to
improve the recognition accuracy of the specific classification network.

Table 15. The effect of different components of the proposed model on the results. Each class
has 1000 synthetic images. The synthetic images were trained on ResNet18 and the accuracy was
calculated in the PlantVillage and AI Challenger 2018 test set. Lc is Formula (1).

Setting PlantVillage AI Challenger 2018

GACN 44.2% 32.4%
ACGAN structure 43.5% 31.3%

classifier structure VGG16 35.1% 24.7%
w/o Lc 19.1% 11.5%

w/o classifier 35.7% 23.2%
w/o classifier and Lc 5.6% 2.7%

5. Conclusions

In this paper, we propose a generative adversarial classified network to synthesize
images. The proposed GACN model consists of a generator, discriminator, and classifier.
The proposed model can be identified directly for the plant disease or by generating
the image of plant disease to balance the dataset. The trained classifier can be directly
applied to plant disease recognition tasks, and the accuracy is better than that of existing
plant disease recognition models studied on public datasets. The recognition accuracy
of the trained classifier on the PlantVillage and AI Challenger 2018 datasets is 99.78%
and 86.52%, respectively. To prove that the proposed method can further improve the
discriminability of the classification network, we compare the proposed method with
existing label-conditional GANs. The comparison results show that the proposed model is
significantly superior to other label-conditional GANs in the accuracy of synthetic images.
On the PlantVillage and AI Challenger 2018 datasets, the synthetic image accuracies of the
proposed method are 44.2% and 32.4%, respectively. The proposed model also outperforms
other comparison GANs in the task of dataset balancing. Experiments have shown that
the higher the accuracy of synthetic images is, the better their performance in balancing
dataset tasks. In addition, the effects of the number and resolution of the synthetic images
on the discriminability of the classification network are also verified through several
sets of experiments. Unfortunately, the proposed method cannot effectively generate
256 × 256 synthetic images, so it is impossible to determine whether 256 × 256 synthetic
images can continue to improve the discriminability of CNNs. In future work, researchers
can refer to BigGAN [46] to increase convolution channels of the generator to generate
high-resolution synthetic images, which may continue improving the accuracy of synthetic
images. As the accuracy of synthetic images continues to improve, the synthetic images
have the potential to replace the real image training set.
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