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Abstract: Forecasting energy consumption models allow for improvements in building performance
and reduce energy consumption. Energy efficiency has become a pressing concern in recent years due
to the increasing energy demand and concerns over climate change. This paper addresses the energy
consumption forecast as a crucial ingredient in the technology to optimize building system operations
and identifies energy efficiency upgrades. The work proposes a modified multi-head transformer
model focused on multi-variable time series through a learnable weighting feature attention matrix
to combine all input variables and forecast building energy consumption properly. The proposed
multivariate transformer-based model is compared with two other recurrent neural network models,
showing a robust performance while exhibiting a lower mean absolute percentage error. Overall, this
paper highlights the superior performance of the modified transformer-based model for the energy
consumption forecast in a multivariate step, allowing it to be incorporated in future forecasting tasks,
allowing for the tracing of future energy consumption scenarios according to the current building
usage, playing a significant role in creating a more sustainable and energy-efficient building usage.

Keywords: transformers; time-series forecast

1. Introduction

Building energy efficiency has become increasingly important as climate change and
energy security concerns have grown [1]. Building energy usage accounts for significant
global energy consumption and greenhouse gas emissions. Improving building energy effi-
ciency is a crucial strategy for reducing energy consumption and mitigating climate change.

One emerging technology that can potentially improve building energy efficiency is
energy forecast models, trained from live data from sensors and other sources [2].

Energy forecasts can be used to improve building energy efficiency in several ways.
One approach is to optimize the operation of building systems, such as heating, ventilation,
and air conditioning (HVAC) systems [3] according to the current demand.

By forecasting and analyzing the building’s energy performance, operators can identify
ways to reduce energy consumption while still maintaining comfort and safety. Another ap-
proach is to use the forecast models to identify and prioritize energy efficiency upgrades [4].

Developing an effective energy forecast model requires heterogeneous sensor data to
unveil hidden building usage patterns. The Figure 1 diagram shows how building sensor
data combined with additional data and machine-learning models allow all available data
to represent the building energy consumption pattern.

In addition to improving the building energy efficiency, forecasting energy consump-
tion allows operators to identify ways to optimize the structure for different use cases by
simulating different scenarios.

The energy forecast model is based on modifying the multi-attention transformer
model by including a learnable weighting feature attention matrix to address the build-
ing energy efficiency. The model is leveraged by analyzing live sensor data from the
Institute for Systems and Computer Engineering, Technology and Science (INESC TEC)
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Research Building, consisting of computer research labs, auditoriums and support facilities,
alternating more than 700 researchers, staff and other personnel.

Figure 1. Energy Consumption Forecast.

The objective is to forecast the energy consumption for the next 10 days, allowing
the application of effective mitigation procedures regarding energy waste and quickly
assessing how these mitigation procedures impact the actual energy consumption.

With this in mind, this research work is organized into sections, with Section 2 pre-
senting a comprehensive study on forecast models works, focused on energy forecast and
maintenance; Section 3 showing the principal methodology to be followed and techniques
to be employed; Section 4 containing the data analysis and forecast modeling; Section 5
containing the results discussion; and the conclusion in Section 6.

2. Literature Review

Building energy forecast models are an excellent tool for understanding and mitigating
infrastructure efficiency in many fields. They allow for the creation of several data scenarios
to foresee the impact on energy consumption and evaluate the impact of building usage modi-
fications.

Maintenance decision-making and sustainable energy are the main concerns of [5], by
employing the forecasting of electrical energy consumption in equipment maintenance by
means of an artificial neural network (ANN) and particle swarm optimization (PSO). With
the same objective, [6] employs fully data-driven analysis and modeling by first analyzing
the linear correlation between the outdoor environmental parameters with the actual
measured energy consumption data and then employing the use of the backpropagation
artificial neural network (BP-ANN) to forecast energy consumption, allowing the reduction
of the low-carbon operation and maintenance for the building HVAC systems.

The issue of CO2 emissions poses a significant challenge to building efficiency. In the
study conducted by [7], the research delves into both the advantages and limitations of
conventional energy consumption mitigation methods. Notably, the study emphasizes
the potential of integrating 2D GIS and 3DGIS (CityGML) [8] with energy prediction
approaches. This combination considers frequent interventions at the building scale,
applicability throughout the building’s life cycle and the conventional energy consumption
forecasting process.
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In the work of [9], the emphasis is placed on the significance of forecasting energy usage
in building energy planning, management and optimization. The review acknowledges the
potential of deep learning approaches in effectively handling vast quantities of data, extracting
relevant features and enhancing modeling capabilities for nonlinear phenomena.

The use of LSTM and GRU for energy forecasting was the subject of study for [10].
LSTM combinations with CNN were proposed by [11] for the same purpose. The CNN-
LSTM proposed model employs a CNN to extract complex non-linear features combined
with a LSTM to handle long-term dependencies through modeling temporal information in
the time-series data.

LSTM, Bi-LSTM and GRU are employed in [12] to perform occupancy prediction in
buildings with different space types. Another example related to intelligent vehicle systems
can be found in [13], where the authors evaluated the performance of different architectures,
including LSTM, to predict vehicle stop activity based on vehicular time-series data.

In a similar way, [14] exploits CNN–LSTM models for household energy consump-
tion, with a particular emphasis on data normalization. The transformers for time series
are also a subject of interest in [15], proposing Autoformer, a novel architecture with an
auto-correlation mechanism based on the series periodicity, which conducts the depen-
dencies discovery and representation aggregation at the sub-series level, outperforming
self-attention in both efficiency and accuracy.

Although energy forecasting models mostly target foreseen target variables, they
can be employed to define maintenance operations, allowing for the mitigation of the
operational cost in building or manufacturing facilities [16].

The current time-series forecast models have several limitations, namely, in exploring
all the available information in a meaningful way, harming the forecasting of a longer
period of time. This concern makes it vital for developing models that use all informa-
tion in a multivariate way and captures very long patterns useful in a correct energy
consumption forecast.

3. Methodology

The main objective of this work is to employ a modified multi-variable transformer to
forecast energy building consumption for the next 10-day period (250 h).

To establish a comparison baseline, multistep LSTM/GRU models are also employed
and trained with the same data. The overall description of the proposed and evaluated
models is below.

3.1. Baseline Models

lstm [17] is a type of rnn suitable for time-series forecasting. It is designed to address
the vanishing gradient problem in traditional rnns that occurs when the gradients used
to update the network weights become very small when propagating through many time
steps, harming the learning of long-term dependencies.

The lstm models consist of a series of lstm cells (Figure 2), with the number of cells
as a hyperparameter. Each of these cells contains three gates (input, forget and output)
that control the flow of information through the cells. The weight of these gates is learned
during the training process. Each cell stores information over time, and a hidden state
allows it to pass information between cell chains in the network.
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Figure 2. LSTM cell block.

The equations for the long short-term memory (LSTM) model are as follows:

Input Gate: it = σ(Wxixt + Whiht−1 + Wcict−1 + bi)

Forget Gate: ft = σ(Wx f xt + Wh f ht−1 + Wc f ct−1 + b f )

Cell State Update: c̃t = tanh(Wxcxt + Whcht−1 + bc)

Cell State: ct = ft � ct−1 + it � c̃t

Output Gate: ot = σ(Wxoxt + Whoht−1 + Wcoct + bo)

Hidden State: ht = ot � tanh(ct)

where

it represents the input gate activation at time step t,
ft represents the forget gate activation at time step t,
c̃t represents the candidate cell state at time step t,
ct represents the cell state at time step t,
ot represents the output gate activation at time step t,
ht represents the hidden state (output) at time step t,
xt represents the input at time step t,
ht−1 represents the hidden state at the previous time step (t− 1),
ct−1 represents the cell state at the previous time step (t− 1),
σ represents the sigmoid activation function,
� represents the element-wise multiplication (Hadamard product).

These equations describe the operations performed by an LSTM cell to update and
pass information through time steps in a recurrent neural network architecture.

The memory cell is updated based on the input, forget, and output gates, while the
hidden state is updated based on the memory cell and the output gate. In summary, LSTM
has these particular hyperparameters: the number of LSTM layers that determine the
network depth; the number of LSTM units, allowing for the definition of the size of the
hidden state and memory cell, controlling the network ability to store information.

GRU [18] is also a type of RNN widely used in time-series forecasting. It addresses
the same problem as lstm through a simpler architecture, described in Figure 3.

The GRU cell also contains a hidden state, which is used to pass information between
cells in the network. Unlike LSTM, GRU only has one memory cell, which is updated using
the reset and update gates. Both models commonly employ a Dropout technique [19] to
prevent overfitting and adaptable learning rate usage, such as Adam [20] or SGD [21].
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Figure 3. GRU cell block.

The equations for the gated recurrent unit (GRU) model are as follows:
Update Gate:

zt = σ(Wxzxt + Whzht−1 + bz)

Reset Gate:

rt = σ(Wxrxt + Whrht−1 + br)

Candidate Hidden State:

h̃t = tanh(Wxhxt + Whh(rt � ht−1) + bh)

Hidden State Update:

ht = (1− zt)� ht−1 + zt � h̃t

where

zt represents the update gate activation at time step t,
rt represents the reset gate activation at time step t,
h̃t represents the candidate hidden state at time step t,
ht represents the hidden state (output) at time step t,
xt represents the input at time step t,
ht−1 represents the hidden state at the previous time step (t− 1),
W represents weight matrices,
b represents bias vectors,
σ represents the sigmoid activation function,
� represents the element-wise multiplication (Hadamard product).

These equations describe the operations performed by a GRU cell to update and pass
information through time steps in a recurrent neural network architecture.

Overall, LSTM and GRU architectures are both effective for time-series forecasting,
and the choice between the two will depend on the specific requirements of the task at hand.
In general, LSTM is a better choice for tasks requiring capturing long-term dependencies,
while GRU may be more appropriate for tasks requiring faster training times or datasets
with shorter-term dependencies. Although many variations of LSTM and GRU were
proposed to improve forecasting capabilities, such as a bidirectional LSTM [22], by utilizing
information from both sides, or a bidirectional GRU [23] with the same purposes, the main
fundamental architecture is used.
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3.2. Proposed Transformer Multistep

The transformers model [24] employs the use of an encoder–decoder scheme formed
by a set of stacked self-attention in combination with point-wise layers to map the input
sequence (xi, . . . , xn) to a series of continuous representations z = (z1, . . . , zn). For a given
z, it generates a set of output symbols (yi, . . . , ym) at each time, in an auto-regressive
manner, using the previously generated forecast points as additional inputs.

The sequence data points are transformed into discrete tokens, converted into a
numeric token representation and fed into the input embedding layer to map the sequence
element into a continuous learnable vector.

Because the proposed transformer model does not contain any recurrence or con-
volution blocks to insert information regarding the relative position of the input tokens
among the input sequence, a piece of positional encoding information is inserted into the
embedding layer that corresponds to a cosine and sine relative function representation, gen-
erating two separate vectors from the even pe(m, 2n) and odd pe(m, 2n + 1) sequence time
steps, embedding the positional information based on https://github.com/oliverguhr/
transformer-time-series-prediction, accessed on 30 May 2023).

The embedding vector is defined by the dimension D and the positional embedding
pe(m, 2n) with the even elements of the positional vector P for a given input X in each time
step represented in pe(m, 2n), resulting in Equation (1):

pe(m, 2n) = sin m[−2n log(1000)/D] (1)

Regarding the odd element representation, each positional embedding pe(m, 2n + 1)
is expressed in Equation (2).

pe(m, 2n + 1) = cos m[−2n log(1000)/D] (2)

The final positional encoded P vector aggregates both the even and pairs positional
encoding, resulting in a final embedding vector with X + P dimensions.

Concerning the encoding, layers are formed by a stack of Nl . This hyperparameter
corresponds to the number of stacked identical layers. Each layer is formed by a multi-head
self-attention mechanism combined with the positional-wise fully connected feed-forward
network. Each sub-layer employs a residual connection followed by a layer normalization,
with the output expressed in Equation (3).

Output = LayerNorm(y) + SubLayer(y)) (3)

All sub-layers and embedding layers inside the model generate an output dimen-
sion D equal to model size dmodel considering the input features input f eature. In this
case, the optimal value was found to be 250× input f eature to encompass the full 10-day
forecast period.

The decoder is very similar to the encoder. However, it adds a third sub-layer to
perform multi-head attention over the output of the stacked encoders and two sub-layers,
using similar residual connections as the encoder and adjacent layer normalization. Simi-
larly, the number of decoder layers is a hyperparameter to be determined. The final decoder
stack embedding output is compensated by one position, allowing the avoidance of current
positions being mixed with subsequent ones when using squared subsequent masking.

The input queries Q, keys K and values V of dimension dv are subject to the scaled dot
product of the keys with all given keys, normalized by the dimension of keys dk as

√
dk, to

overcome the monotonous magnitude growth with the increase of the d dimension, leading
to gradient vanish (Figure 4). The final attention matrix A that encapsulates the packed
Q, K, V is obtained using a softmax to gather the weights of the values, being represented
in Equation (4)

A(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (4)

https://github.com/oliverguhr/transformer-time-series-prediction
https://github.com/oliverguhr/transformer-time-series-prediction
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Figure 4 shows how Queries Q, Keys K and Values V are combined in an incremental
dot product, passing by the scaling layer, optional masking layer, softmax and final matrix
multiplication to form the attention matrix A.

Figure 4. Scaled dot product attention scheme.

The train of transformers allows us to effectively construct an attention matrix formed
by queries Q, keys K and value V.

Transformers models can contain single or multi-attention heads, with a single head
putting all focus in a single location, aggregating all contributions to a location with the
same weight. The main drawback of single-attention heads is that they lead to averaging
the contributions to a local representation.

Alternatively, multi-head attention (Figure 5 allows the modeling of several repre-
sentations from different locations simultaneously, allowing the capture of information
from several sparse locations with different weights, expressed in Equation (5). For each
of the projected queries dk, dk and dv, attention is performed in parallel, resulting in dv
dimensional value representations, and the final heads h becoming concatenated into a
single attention output.

The final Equation (5) for multi-head attention can be expressed as

MultiHead(Q, K, V) = Concat(h1, h2, . . . , hn)WO (5)

with hn being the number of attention heads and n being the projections matrices, with each
head represented as headi = Attention(QWQ

i , KWK
i , VW

i ), containing Q queries and K keys
as a result of the dot product, and the projections matrices that correspond to parameters
matrices WQ

i ∈ RD×dk , WK
i ∈ RD×dk and WV

i ∈ RD×dv . Following this operation, the
outputs are concatenated and multiplied by the weighting matrix WO, corresponding to a
squared matrix obtained from Rhdv × D [24].

The proposed multistep transformers with the modified attention heads and input
embedding follow the diagram of Figure 6, which is largely based on [24]. However,
with a modification on the multi-attention heads and how the inputs X are combined,
we use a correspondent embedding through a learnable weight attention matrix instead
of a dedicated embedding for each input feature. The final proposed input aggregated
embedding is expressed in Equation (6).
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εt =
n

∑
j=1

m(j)
Xt

ε
(j
t (6)

where ε̂t corresponds to the linear transformer feature input, mXt is the leaned matrix
weight regarding the combination of each of the input transformed features at time t
towards the final embedding ε̂t at instant t.

Figure 5. Multihead attention scheme.

The proposed multistep multi-head transformer model is represented in Figure 6, with
inputs X1 to Xn at instant m− k, corresponding to the different input features at a particular
period of time, combined in an attention head Am from Equation (6) for each considered
instant, following by the aggregated embedding and the combination of the positional
encoding and transformer block to form the full encoder stage. The decoder stage employs
the transformer decoder block, the forecast layer and the dense for each target future value.
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Figure 6. Transformer Proposed Model.

4. Setup And Forecasting

To evaluate the performance of the proposed multivariate transformer, two comparison
baselines, LSTM and GRU, were trained on the same data with the same objective. For easy
modeling, the redundant sensors are averaged into a single one per room to construct the
feature regarding each room measurement.

4.1. Models

To evaluate the performance of the proposed transformer and baseline models, after
training, the models infer over 250 points of historical data (test input that corresponds to
10 days) and forecast another 250 hourly future points (corresponds to the 10 day period
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ahead). For training, 70% of the data starting from day 1 are set for training, the subsequent
10% chunks for validation and 20% for testing purposes.

In more detail, the proposed transformer blocks follow the arrangement of Figure 6
with an aggregation of the multivariate input features using Equation (6).

The LSTM and GRU models use 250 units cells to forecast the same period length,
described in Figure 7.

Figure 7. LSTM and GRU time-series forecast model.

Considering the multistep forecast, an additional repeat vector layer and time-distributed
dense layer are added to the architecture.

4.2. Evaluation Metrics

The trained models were evaluated using MSE and MAPE on each time period ∆t.
The forecasted value ŷi subtracted from the actual one yi and divided by yi and normalized
by the set of samples N, is expressed as

MAPE(y, ŷ) =
1
N

N

∑
i=1

∣∣∣∣yi − ŷy

yi

∣∣∣∣. (7)

MSE considers the average of the squared errors between the real value yi and the
predicted ŷi in a given N set of samples, expressed as

MSE(y, ŷ) =
1
N

N

∑
i=1

(yi − ŷi)
2. (8)
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4.3. Dataset

To construct a model capable of forecasting energy consumption, the first task is to
analyze the data produced by several sensors during one year. The activities conducted at
the building are mainly research regarding computer science and electrical engineering and
support services, composed of research labs, human resources, auditoriums, restaurants
and other common building infrastructure. The building comprises two blocks of four floors
encompassing several room characteristics, such as computer labs, meeting auditoriums,
restaurants and service spaces.

Each of the individual rooms contains a set of sensors to measure environmental
variables and energy consumption through a dedicated sensor network. The deployed
sensors on each room perform a combined measurement of humidity; temperature; Co2
concentration, pressure, expressed in Pascals; and local energy consumption, for a total of
144 sensors.

The dataset includes the following:

• Real-time historical data from the INESC TEC building.
• Encompassing two-year time span.
• Totaling 8760 × 2 sample points (2 years).

4.4. Data Analysis

Regarding the data in analysis, the mentioned dataset comprises the building rooms’
ambient sensory and corresponding energy consumption gathered during a year. The vari-
ables in the dataset contain the interior temperature in degrees Celsius ◦C, relative humidity
in percentage %, air pressure expressed in Pascals PPa and room energy consumption as a
target variable gathered in 15-min intervals throughout the year, aggregated in hour means.
The analysis is restricted to only one year of data for a more concise analysis.

Concerning the energy consumption, Figure 8 presents the average energy consump-
tion per room considering the day period and weekday.

Figure 8. Cont.
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Figure 8. Average room consumption per weekday and season.

Figure 8 clearly highlights that weekends account for lower consumption, and the
morning and noon periods account for a large part of the total building consumption,
corroborated by the fact that it is a computer science research lab. However, it is clear that
Thursday accounts for a peak in average room consumption, with Friday showing a clear
descent in energy consumption.

Regarding the energy consumption among the building’s main floors and sections,
Figure 9 aggregates the average consumption per floor.

Figure 9. Average consumption per building floor (A or B means the building block and the number
of the floor).
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From Figure 9, it is possible to identify a clear outlier, namely, floor B0, which corre-
sponds to the location of the restaurant and cafeteria of the building, where large energy
kitchen appliances are present. In the opposite direction, floor B5 accounts for the lowest
average energy consumption, correlated by the fact that this floor only contains small
building auxiliary devices. The restaurant information can be corroborated by Figure 10.

Figure 10. Average session consumption per building floor compared to lower floor consumption.

Figure 10 exhibits that floor B0 has a higher energy peak in the morning and at noon
compared to the second largest floor consumption (A4), corresponding to the services floor.
The consumption on floor B0 intersects with the most agitated period of the restaurant
at lunchtime.

Figure 11 shows the mean building consumption by month, with clear evidence that
the August months account for a lower consumption due to vacations and the winter
months for a substantial increase in consumption due to lighting and heating.

Figure 11. Energy consumption (mean) by month—the year 2022.

Regarding environment variable sensors, Figure 12 shows the box-plot distribution of
the ambient variables by room.
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Figure 12. Box-plot of ambient variables by room.
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From Figure 12 there is clear evidence that auditoriums present higher humidity
levels due to less usage and exposure to the sun. Considering these large auditoriums are
located on the lower floor, they present with higher humidity due to a lower temperature
(Figure 13), a well-known ambient variable phenomenon.

Figure 13. Variable correlation.

4.5. Time-Series Analysis and Pre-Processing

To accurately forecast energy consumption, it is relevant to determine the presence of
seasonality, trends and the presence of abnormal values.

ACF corresponds to the correlation between a time series with a lagged version of
itself, up to 50 lags, starting at a lag of 0 and having the maximum correlation at this period
of time. It allows us to determine if a time series corresponds to white noise/random,
the degree of the relation of a given observation regarding its adjacent observation and
determine the order of the time series. Additionally, PACF allows the inclusion or exclusion
of indirect correlations in the ACF calculation. Figure 14 summarizes the main time-series
correlation (considered only 10 lags). The blue area depicts the 95% confidence interval,
meaning that anything within the blue area is statistically close to zero, and anything
outside the blue area is statistically non-zero with regard to the target variable, EnergyWh,
the ACF and PACF in Figure 14, and derived features such as weekday (Monday to Sunday),
day period (‘Late Night’, ‘Early Morning’, ‘Morning’, ‘Noon’, ‘Eve’, ‘Night’), and season of
the year (spring, summer, autumn, winter).

Figure 14. ACF and PACF.
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Shows that for most lags, the auto-correlation is significantly non-zero for all lags.
Therefore, the time series is not random, presenting some degree of seasonal patterns.

In order for models to converge properly, the dataset is pre-processed to find outliers
or erroneous measures that may harm the training of the models, replacing those values
with the mean of the previous and next values Xi =

1
2 (xi−1 + xi+1). Furthermore, the data

were normalized with respect to min–max to be fed to models, and the reverse process was
made to recover the target forecasted value.

5. Results

Several combinations of hyperparameters were used to train and evaluate the three
models effectively. All models were trained during 100 epochs in a 2 × Intel Xeon Gold
2.5 Ghz with 20 cores each, totaling 384 GB RAM, fitted with 2 Teslas v100 with 32 Gb each
and 2 GTX 2080 with 11 Gb each. A 5 k-CV was employed to determine the set of the best
hyperparameters for each configuration and to evaluate the model in the test set.

In order to compare different time-series forecasts, MAPE was employed, since it is a
scale-independent measurement, and our time series does not cross zero, so the undefined
problem is circumvented.

The final transformer model architecture took approximately 20 h of training, with an
average of 1000 s on each epoch, approximately 1.6 times higher than LSTM and 1.9 than
GRU, with the final convergence curves represented in Figure 15.

Figure 15. Convergence curves of all evaluate models (training and validation).

From Figure 15, it is evident that GRU models presented some degree of overfitting,
compared with LSTM and the transformer proposed model. The transformer model shows
a more stable convergence during the set of epochs, mainly due to a larger complexity
when compared with other RNN models.

After curated debugging and hyperparameter tuning, the transformer with six heads
stacked with six identical encoders obtained the best result (Table 1), with a dropout max
of dropout = 0.2.

The decoder block employs the use of a linear transformation of the input data into
the same number of in f eatures = f eaturessize = 250× n and out f eature = 1, corresponding to
the forecast of 10 days (250 h).

The loss was the L2-norm, employing SGD with a gamma = 0.98, a learning rate of
lr = 0.005 and stepsize = 10 using a batch the size of 16. The transformer’s total number of
parameters was 16,330,827, with a look-back window of 34.

Regarding LSTM, the optimal number of nodes is 256 nodes per layer (Table 1), using
a dropout of 0.2, a decay rate 0.99, with a look-back window of 32, employing Adam
optimization with a learning rate/step size of lr = 0.005, with β1 = 0.9 and β2 = 0.99,
using a L2-loss with a batch size of 16.
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Regarding GRU, the optimal number of nodes is 200, 128 nodes per layer, a dropout of
0.2, Xavier weight initialization, decay rate 0.99, with a look-back window of 26, employing
Adam optimization with a learning rate/step size of lr = 0.005, with β1 = 0.9 and β2 = 0.99,
using a L2-loss with a batch size of 16.

Table 1 summarizes the results obtained in all the evaluated models using the test
input samples (MAPE and MSE).

Table 1. Results on the models variations (normalized).

LSTM

N Cells N Nodes Window Parameters MAPE MSE

400 128 32 18M 18.11% 15.43%
300 128 32 16M 16.34% 13.35%
200 256 32 13M 17.41% 14.45%
300 256 32 14M 14.26% 11.65%
200 128 24 12M 12.42% 10.02%
250 256 32 14M 10.02% 7.04%

GRU

N Cells N Nodes Window Parameters MAPE MSE

400 128 32 14M 23.56% 21.43%
300 128 32 13M 15.98% 12.54%
200 256 32 12M 13.93% 11.56%
300 256 12 13M 15.34% 12.76%
200 128 26 11M, 11.66% 09.43%
250 128 32 12M 13.59% 10.49%

Transformer

Heads Enc/Deco Window Parameters MAPE MSE

10 10/10 32 24M 12.33% 10.61%
10 6/6 32 14M 11.25% 9.75%
10 5/5 32 13M 10.43% 8.27%
6 10/10 32 20M 10.24% 8.11%
6 6/6 32 16M 7.09% 5.42%
5 5/5 32 13M 8.36% 6.62%

Figure 16 presents a side-to-side comparison of the top performer models against the
ground-true values in the test set.

(a)

Figure 16. Cont.
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(b)

(c)

Figure 16. The forecast of energy consumption for each best-performing model. (a) Transformer.
(b) LSTM. (c) GRU.

Choosing an input window is crucial for achieving optimal performance. It is impor-
tant to analyze the input data to identify any seasonal patterns thoroughly, and the input
sequence size should include these personalities or trends. In this case study, a look-back
window of 32 to forecast 250 points ahead with six heads, both in the encoder and the
decoder, resulted in the best overall performance on the proposed transformer model. In
the transformer models, an input window lower than 250 time steps led to suboptimal
results. This corresponds to a suboptimal selection of input-target sequences that do not
capture relevant time-series patterns useful for the model to forecast future energy values
correctly.

This study aimed to assess the performance of multi-head attention-based transformers
for the energy consumption forecast and compare the performance with LSTM and GRU-
based models.

Transformers have proven to be highly suitable for multivariate time-series forecasting
using large data samples and the correct use of the input window. The multi-head attention
mechanism increases the performance, particularly in tasks involving multi-step forecasting.
Implementing such models is widely applicable across various sectors, including energy
forecasting, where they can aid in establishing mitigation policies to reduce operational
costs and address challenges related to climate management. Additionally, they can be
beneficial for modeling building maintenance and predictive control for HVAC systems [16,25],
bringing operational benefits.
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However, further changes and improvements are necessary to enhance the model’s
efficiency and robustness to ensure greater competence in real-world data-driven models
for different sectors.

6. Conclusions

Energy forecasting is crucial for building characterization, which often manifest un-
predictable energy consumption patterns that are not captured by models, leading to a
degradation of their performance. Deep learning approaches, on the contrary, allow for a
model of non-linear dependencies and capture relevant information to perform forecasts.

In this article, a modification of a multi-head multivariable transformer model is
proposed for building an energy consumption forecast, complemented by a comprehensive
performance comparison with common RNN models, such as GRU and LSTM and a
real-time building energy and environment collected dataset. MSE and MAPE were used
to evaluate the models. The performance of the multivariate transformer model using a
multi-head attention mechanism and modified input embedding is almost 3.2 p.p. better
than the best-trained baselines.

The construction of a richer dataset must follow the guidelines of the ROBOD project [26],
which encompasses many sensors, HVAC, building occupancy and WiFi traffic, among others.

The main drawback of the multi-head attention transformer concerns its complexity
and training time and the limited set of training features. Thus, training in a more rich
dataset such as the Building Data Genome Project 2 [27] or the Global Occupant Behaviour
database [28] would enable us to further validate the proposed forecast model with more
variables, allowing us to foresee potentialities in the use of transformers in the current
energy forecast, providing accurate energy consumption forecasts.
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MSE Mean-squared error
MAPE Mean absolute percentage error
ACF Auto-correlation function
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