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Abstract: This paper proposes an adaptive threshold segmentation algorithm for the magnesium
ingot stack based on image overexposure area correction (ATSIOAC), which solves the problem of
mirror reflection on the surface of magnesium alloy ingots caused by external ambient light and
auxiliary light sources. Firstly, considering the brightness and chromaticity information of the mapped
image, we divide the exposure probability threshold into weak exposure and strong exposure regions.
Secondly, the saturation difference between the magnesium ingot region and the background region
is used to obtain a mask for the magnesium ingot region to eliminate interference from the image
background. Then, the RGB average of adjacent pixels in the overexposed area is used as a reference
to correct the colors of the strongly exposed and weakly exposed areas, respectively. Furthermore, in
order to smoothly fuse the two corrected images, pixel weighted average (WA) is applied. Finally, the
magnesium ingot sorting experimental device was constructed and the corrected top surface image of
the ingot pile was segmented through ATSIOAC. The experimental results show that the overexposed
area detection and correction algorithm proposed in this paper can effectively correct the color
information in the overexposed area, and when segmenting ingot images, complete segmentation
results of the top surface of the ingot pile can be obtained, effectively improving the accuracy of
magnesium alloy ingot segmentation. The segmentation algorithm achieves a segmentation accuracy
of 94.38%.

Keywords: magnesium ingot sorting; the high reflection of magnesium ingot; exposure correction;
magnesium ingot segmentation

1. Introduction

With its excellent properties such as low density, high specific strength and specific
stiffness, and good thermal conductivity, magnesium alloy is widely used in robotics [1,2],
image processing [3,4], automotive, aerospace, and communication electronics, and also
plays an increasingly important role in realizing the light weight of products [5–7]. During
the magnesium alloy melting process, the key to achieving magnesium ingot sorting with
the magnesium ingot automatic picking equipment is the segmentation of the magne-
sium ingot image. And the quality of the segmentation results will affect the grasping
efficiency of the subsequent magnesium ingot automatic loading equipment. Therefore,
the segmentation of magnesium ingots in images has important research value.

The segmentation object in this paper is a magnesium ingot with a trapezoidal cross-
section, and the specific dimensions are shown in Figure 1a. The surface of the target
magnesium ingot is smooth and local overexposure will occur in the acquired image under
a complex external light environment [8]. When the image is segmented, the gradient
of partial gray value information of the magnesium ingot changes dramatically, and the
segmentation result of the magnesium ingot obtained by traditional methods is incomplete.
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When magnesium ingots are tightly arranged, there are gaps between the top surfaces of the
ingots due to their trapezoidal cross-section. The color of the gaps is similar to that of the
top surfaces of the ingots. During the process of the magnesium ingot segmentation, these
gaps can interfere with the segmentation results, leading to suboptimal image segmentation
outcomes. The schematic diagram is shown in Figure 1b.
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Figure 1. Schematic diagram of magnesium ingot and magnesium ingot gap: (a) magnesium ingot;
(b) magnesium ingot gap.

Currently, in the industrial field, machine vision [9] technology has been widely
applied to image segmentation of metal workpieces to better improve industrial production
efficiency [10–12]. The high reflectivity of metals is a common problem that affects the
effectiveness of segmentation algorithms. Jiang et al. [13] established an experimental
platform that is composed of a linear array camera, a linear light source, an encoder, and
a rotation system to improve image quality in response to the phenomenon of uneven
illumination of images caused by the high reflection characteristics of steel pipes. Furferi
et al. [14] designed three different lighting environments for the high reflectivity of small
metal parts to obtain images that are more conducive to segmentation processing. Feng
et al. [15] proposed an adaptive local tone mapping algorithm based on gradient domain
to solve the problem of local oversaturation of highly reflective metal surfaces, reducing
color shifts caused by brightness compression, enhancing color perception of images, and
compensating for the differences between display devices and natural scenes under visual
conditions. Zhou et al. [16] used the BEMD algorithm to process images for high contrast
textures caused by objective factors such as lighting in order to filter out noise and suppress
surface textures. Qiu et al. [17] designed a dual weighted principal component analysis
algorithm based on visual and spatial features to reduce the impact of high reflection
on the surface of metal workpieces. Existing studies usually fail to locate overexposed
regions accurately, and unrecognized overexposed regions may have new impacts on
recognition or segmentation. Some studies focus on the identification of small parts,
using filtering methods to repair overexposed areas, which are not suitable for large metal
planes. Therefore, this paper proposes an accurate algorithm for detecting exposed regions,
and based on this, color correction is performed based on neighborhood information to
minimize the impact of overexposure on recognition or segmentation.

On the other hand, the disorderly placement of metal parts also requires high stability
and accuracy of the algorithm. Hsu et al. [18] developed a machine vision system capable
of automatic classification for different lighting environments. Under back-lighting and
front-lighting environments, they used global and local threshold methods to achieve simul-
taneous segmentation of multiple metal parts. Li et al. [19] proposed a method for detecting
and recognizing surface features of metal workpieces. Aiming at the problems of uneven
illumination and reflection on the surface of metal workpieces, the Retinex algorithm was
used for image enhancement, the Otus algorithm was used for the segmentation of target
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features on the surface of metal workpieces, and the vertical projection of a binary graph
was used for the single separation of target features. Astain et al. [20] proposed a detection,
recognition, and positioning system for reflective metal workpieces, using background
subtraction and Viola–Jones classifiers to identify target workpieces. Chen et al. [21] used
Rotated MS R-CNN and Mask R-CNN to achieve the segmentation of randomly overlap-
ping screws. Zheng et al. [22] proposed a workpiece capture region recognition method
that combines deep learning and support vector machines. The method used the Mask
R-CNN neural network to complete the preliminary segmentation of the workpiece capture
region and used an SVM classifier with multiple feature fusion to perform secondary fine
segmentation of the Mask R-CNN recognition results, achieving the elimination of inter-
ference regions, and completing the recognition of the irregular placement of workpieces.
The methods based on deep learning have high recognition accuracy, but it is difficult to
collect data for training, and the results generated during the scene transformation are
unstable. Some research is based on clustering or statistical threshold setting methods.
They do not adapt to the complex situation of metal parts in space. Therefore, this paper
proposes a method that combines the adaptive threshold segmentation algorithm and the
morphological algorithm to segment the corrected image. This method has good robustness
and can solve edge recognition errors between metal parts.

Currently, there is little research on large metal ingots such as magnesium ingots. Due
to the large surface area of magnesium ingots, which are more susceptible to light effects,
research on the segmentation and recognition of small metal workpieces is not applicable
to magnesium ingots. In addition, the disorderly placement of metal workpieces may lead
to difficulties in extracting complete edges. The industrial-grade 3D sensors are expensive,
and when using depth cameras to capture images, the high reflective areas on the magne-
sium ingot surface cause depth information loss and create holes. Therefore, considering
the comprehensive factors, this paper proposes an adaptive threshold magnesium ingot
stack segmentation algorithm based on image overexposure region correction, using color
cameras to capture images. This algorithm can quickly and robustly segment magnesium
ingots in an image. The main contributions of this paper are as follows:

Firstly, a color correction algorithm based on overexposure detection is proposed. This
algorithm accurately identifies the areas of magnesium ingot overexposure under various
lighting conditions and corrects the color information of the target ingot. As a result, the
grayscale gradient of the image becomes more uniform, leading to improved image quality.
Secondly, based on this color correction algorithm, an adaptive threshold segmentation
algorithm for stacking magnesium ingots is designed. This algorithm utilizes threshold
segmentation and morphological processing techniques to segment the top surfaces of the
corrected images of the ingots. It effectively addresses the issues of segmentation results
sticking when magnesium ingots are arranged and distributed and the segmentation
challenges caused by overexposure.

The other chapters of this article are described as follows: In the second section, the
construction of the experimental light source environment is firstly introduced, then the
overexposure area detection algorithm and color correction algorithm are introduced in
detail for the experimental object. Finally, an adaptive threshold magnesium ingot stack
segmentation algorithm is introduced, which is suitable for the image that the color of
the overexposure area is corrected. In the third section, we quantitatively compare our
algorithm with other image segmentation algorithms, and design multiple sets of controlled
experiments to verify the reliability and accuracy of our algorithm. The fourth section
summarizes the main contributions of this article and draws conclusions.

2. Materials and Methods

This paper proposes an algorithm for detecting and correcting overexposed regions,
and designs an adaptive threshold magnesium ingot stack segmentation algorithm based
on image overexposed region correction, which can effectively solve segmentation failures
caused by object overexposure. The algorithm flowchart is shown in Figure 2.
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Figure 2. Overall algorithm flow.

2.1. Light Source Environment Construction

In order to meet the high-quality requirements for the original image of the image
recognition, in visual inspection systems, it is often necessary to design appropriate lighting
methods with the help of professional visual light sources to illuminate the target object
to be detected. Building a suitable light source environment can enhance the distinction
between the target object and the background in the captured image, form an imaging
effect conducive to image processing, obtain more information about the target object, and
reduce the difficulty of image-processing algorithms [23,24].

In natural environments, differences in time, weather, and the indoor environment
can cause uneven brightness distribution in the target area in the captured image, directly
affecting the segmentation results of the target object [25]. According to the structural
characteristics of the target object and the equipment, this paper has built a light source
environment composed of four strip light sources, as shown in Figure 3. The models are
KM-BRD120030-W-24 and KM-BRD80030-W-24 from KOMA Vision.
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According to the arrangement of magnesium ingots and the frame structure of the
equipment, two sizes and lengths of strip light sources, 800 mm and 1200 mm, are selected
and placed symmetrically. They are surrounded by a high angle above the target magne-
sium ingot for illumination. In order to ensure a clean background for the captured image
and to better highlight the target object, the target magnesium ingot is placed on a solid
color background. The constructed light source environment has a simple structure and
is convenient for debugging, which can more effectively save space without affecting the
movement of the mechanical arm above the magnesium ingot. The surrounding lighting
scheme can effectively prevent the impact of shadows generated by the movement of the
robot arm on the captured image, and avoid uneven brightness caused by shadows gener-
ated on the captured image. Figure 4 is a schematic diagram of the installation positions of
the experimental camera and the movable mechanical arm.
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Because the magnesium ingot is located at the middle of the light source environment
and the surface of the metal magnesium ingot is smooth, the parts of the magnesium ingot
that are close to the light source may experience varying degrees of overexposure. However,
the overexposure positions in the image are relatively concentrated, located at both ends of
the magnesium ingot and at a few positions on the edge of the magnesium ingot, as shown
in Figure 5.
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2.2. Overexposure Area Detection Based on Lab Color Space

We generally believe that the overexposed area in an image is white [26], and the
grayscale value of this part in a grayscale image is 255. Using the grayscale threshold
segmentation method, the part of the image with a grayscale value greater than 254 is
defined as an overexposed area. Figure 6b shows the grayscale threshold segmentation
result. As shown in Figure 6b, the segmented result is discrete and the region is not
complete enough to handle the transition from the overexposed region to the adjacent
region well.
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In this paper, we use Lab color space to map the brightness and chrominance informa-
tion in an image to determine whether there is a possibility of overexposure of pixels in the
image, obtaining strong and weak exposure areas. Compared to traditional segmentation
methods using single color information, this method can better handle the transition from
overexposed regions to adjacent regions.

2.2.1. Lab Color Space Conversion

Lab color space is a uniform color space model for visual perception, independent
of device differences. It is a digital method for describing human visual perception based
on physiological characteristics [27], where L represents the pixel brightness of the image,
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with a value range of [0, 100], and a and b represent the position of the pixel color in
the color space, with a value range of [−127, 127]. This space is a three-dimensional
rectangular coordinate system, and the color space model can be referenced in [27]. The
three components are perpendicular to each other and correspond to x, y, and z in the
coordinate axis based on the non-linear compressed XYZ color space coordinates.

Before converting an image from RGB color space to Lab color space, it is necessary
to normalize the r, g, and b values of the image. The conversion relationship is shown in
Equations (1) and (2): 

R = gammma
( r

255
)

G = gammma
( g

255
)

B = gammma
(

b
255

) (1)

gamma(x) =


( x+0.055

1.055
)2.4

, x > 0.04045

x
12.92 , otherwise

(2)

In addition, the conversion between RGB color space and Lab color space is an
indirect process, which requires mapping the RGB color space to the XYZ color space. The
conversion relationship is shown in Equation (3).

[
X Y Z

]T
= A ∗

[
R G B

]T , A =


0.4124 0.3575 0.1804

0.2126 0.7151 0.0721

0.0193 0.1191 0.9502

 (3)

Finally, the conversion of the XYZ color space to the Lab color space, and the conver-
sion relationship is shown in Equation (4):

L = 116 f (Y/Yn)− 16

a = 500[ f (X/Xn)− f (Y/Yn)]

b = 200[ f (Y/Yn)− f (Z/Zn)]

(4)

f (t) =

t
1
3 , t >

( 6
19
)3

1
3
( 29

6
)2t + 4

29 , x ≥ 0
(5)

In Equation (4), Xn, Yn, and Zn are related to the row vector elements of the transfor-
mation matrix A. The default values are 0.9504, 1.0, and 1.089.

2.2.2. Overexposure Region Segmentation

The strong exposure area in the image has strong brightness, and just performing
color correction on the strong exposure area will lead to uneven color transition of the
magnesium ingot. Therefore, this paper divides the overexposed area in the image into a
strong exposure area and weak exposure area, wherein the strong exposure area is the area
that still has the possibility of overexposure in the weak exposure area.

We map the brightness and chroma information of the image I in the Lab color space
and perform normalization processing. We use the brightness channels L and color channels
C in the Lab color space to define the weak exposure region S in the image, which makes
C =

[
a b

]T . The weak exposure probability value Mi of the pixel i is defined as:

Mi = sigmoid(δ · (γi · (Li − LT) + (CT − ‖Ci‖2))), i ∈ I, (6)

where LT is the brightness boundary value of the overexposed area, CT is the chromaticity
boundary value of the overexposed area, and δ controls the growth rate of Mi when Li is



Sensors 2023, 23, 6809 8 of 24

larger or ‖Ci‖2. is smaller. γi is a non-linear weight, as shown in Equation (7). It indicates
that the greater the brightness, the higher the weight of the pixel in the overexposed area.

γi = 100×
(

Li
100

)k
, i ∈ I (7)

The strong exposure area H is the area where there is still a possibility of overexposure
in S. The strong exposure probability value Pi of the pixel i is defined as:

Pi =
1
g
· 1

1−Mi
, i ∈ I, (8)

where g is the normalization factor to make maxiPi = 1.
The critical value of weak exposure probability dm is 0.5. When Mi ≥ dm, it is indicated

that there is a possibility of overexposure of the pixel, that is, overexposure occurs. After
binarizing all overexposed pixels in the image, its result is shown in Figure 7a. The critical
value of strong exposure probability dp is also 0.5. When Pi ≥ dp, it is considered that the
region where the pixel is located is the area where there is still a possibility of overexposure
in S, that is, the strong exposure region. The result is shown in Figure 7b:
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Figure 7. Overexposure region segmentation: (a) the segmentation area of the weak exposure region;
(b) the segmentation area of the strong exposure region.

In order to obtain the optimal parameters of δ, this paper selects five sets of values
for comparison. When γi = 1, it takes separately δ = 1/50, δ = 1/40, δ = 1/30, δ = 1/20,
and δ = 1/10. The results are shown in Figure 8. They show that as δ decreases, Mi is
less affected by the brightness and chromaticity of the exposed area, and the proportion
of wooden frames in the background becomes larger, which will affect the selection of
correction colors; but with the δ’s increase, Mi gradually approaches the maximum value
of 1, at which point Pi is infinite, which will cause segmentation failure of the H region.
Therefore, it is comprehensively considered to select δ = 1/30.

γi is a gamma function that serves as a non-linear weight to adjust the brightness
information in the image to the impact of Mi. The index k is used as a variable in the weight,
and its value is selected based on the optimal value obtained through multiple experiments
for the object in this paper. We take k = 0.1, k = 0.2, k = 0.3, k = 0.4, k = 0.5, k = 0.7,
k = 0.9, k = 1, k = 1.2, and k = 1.4 to compare the results. The comparison results are
shown in Figure 9. When k increases, the impact of brightness information on Mi becomes
more severe, and the gradual disappearance of the brightness changes in the overexposed
area. When calculating the H region, the infinite approximation of Mi to 1 will result in the
fact that the H region segmentation will fail. At this moment, Pi is infinitely close to 0. The
value of k is too small, resulting in incomplete segmentation of the S region. Therefore, it is
comprehensively considered to select k = 0.2.
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Figure 9. Results of image overexposure probability under different k: (a) k = 0.1; (b) k = 0.2;
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The Pseudocode of the overexposure detection algorithm is shown in Algorithm 1.

Algorithm 1: Overexposure detection algorithm.

Input: image I
Output: strong exposure area S, weak exposure area H
1: convert I to Lab color space
2: for i ∈ I do
3: calculate weak exposure probability value Mi, strong exposure probability value Pi
4: if
5: Mi ≥ dm, Pi ≥ dp, i ∈ I
6: pixels i represent overexposure
7: else
8: pass
9: end if
10: end for
11: dm ← Critical value of weak exposure probability
12: dp ← Critical value of strong exposure probability
13: return S, H
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Compared to the segmentation by single threshold, the proposed method can segment
more complete regions, including most of the regions in the image where brightness and
chroma differ. In addition, the proposed method has a better ability to handle transition
regions and obtain more complete segmentation results.

2.3. Overexposure Area Color Correction

Since the overexposed regions in the image are mainly concentrated at both ends
and edge positions of the magnesium ingot, the region in the magnesium ingot whose
color information is normal is used as a reference to determine the correction color, filling
this color into the segmented overexposed region. Finally, the correction image of strong
exposure and the correction image of weak exposure are fused according to the pixel
WA [28].

2.3.1. Acquisition of Magnesium Ingot Region Mask

Due to the shape and surface physical characteristics of magnesium ingots, which
are affected by the surrounding lighting and lighting methods, the overexposed areas in
the image are mainly concentrated at both ends of the magnesium ingot. Therefore, to
correct the color of the overexposed areas, it is necessary to obtain the appropriate color
in the normal color area of the magnesium ingot. First, it is important to eliminate the
background effect in order to better obtain the appropriate color of the magnesium ingot.

The main objects in the collected images have significant color differences, and the
HSV color space is used to segment the image background. After color space conversion
of the image, the three channels of the HSV color space are separated and represented as
binary images. Histograms of the three channels are drawn, as shown in Figure 10. In
Figure 10a–c, the horizontal bar in the middle is a magnesium ingot, while the remaining
objects are a wooden pallet and solid colored ground backgrounds.
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Figure 11. The results of mask acquisition and mask action results: (a) the threshold segmentation
results of H channel binary image; (b) the threshold segmentation results of S channel binary image;
(c) mask result from S channel.

The threshold segmentation of images utilizes the “bimodality” characteristic of image
histograms. The binary image histograms in Figure 10d,e have obvious “bimodality”,
while the binary image histograms in Figure 10f do not have this characteristic. So, it
does not meet the conditions for the threshold segmentation of images. In Figure 10a, the
magnesium ingot region is not significantly distinguished from other background objects
in terms of hue values. If threshold segmentation is performed using the lowest point value
of the bimodal depression in the histogram of the H channel binary image in Figure 10d,
it will result in incomplete segmentation of the magnesium ingot region and the image
background. Figure 11a shows the threshold segmentation result of an H channel binary
image. The magnesium ingot region is confused with a solid color background, which is
detrimental to the subsequent determination of the correction color. Using pixel saturation
information to perform threshold segmentation on the S channel binary image, the resulting
segmentation result is shown in Figure 11b, which better preserves the magnesium ingot
region in the original image.

The threshold segmentation result obtained from the S channel binary image, namely
the magnesium ingot region mask, mask, is applied as a mask to the original image to
remove the background object and retain only the magnesium ingot. The result is shown
in Figure 11c.

2.3.2. Determining the Correction Color and Filling of Overexposed Areas

The color correction of an image is a process of inferring and filling to the color and
texture information of the region to be corrected based on known region information. The
color of the overexposed area of the magnesium ingot region differs from the normal region
of the middle portion, and there is a significant color transition from both ends to the
middle. A secondary filling method is used for color correction of this portion. Different
correction colors are used to fill strong and weak exposure areas, respectively. Compared to
single large area filling, processing for areas with different overexposure levels can achieve
a uniform color transition effect.

The reference area for color correction is obtained from the exposure probability values
of the underexposed pixels in the magnesium ingot. Taking color correction in the weakly
exposed areas as an example, the algorithm is detailed as follows:

A. Calculating the threshold of color reference area.

Using the idea of mask superposition, the original image is overlaid with the non-
magnesium ingot region mask, mask, to obtain the non-magnesium ingot region N. Ac-
cording to Equation (6), the weak exposure probability value, Mj(j ∈ N) of pixel j in N
is calculated. The result of Equation (9) is the threshold T1, which is as the left critical
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threshold for dividing the color reference region. Right critical threshold T2 is dm from
Section 2.2.2, that is T2 = 0.5.

Ti = max
(

Mj
)
, j ∈ N (9)

B. Obtaining color reference areas.

We superposition the original image with mask to obtain the magnesium ingot region
Q. If the pixel l within Q satisfies: T1 ≤ Ml ≤ T2, l ∈ Q, it is indicated that the region
where the pixel is located can provide a color reference for the overexposed region, and it is
recorded as the reference region C. If the pixel l satisfies: Ml ≥ T2, l ∈ Q, it is considered
that the region where the pixel is located is overexposed, and it is recorded as the region
to be corrected R. The binarized image obtained using two critical thresholds is shown in
Figure 12.
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Figure 12. The portion of the magnesium ingot area that serves as a color reference. The white area is
the area providing color reference. The white area is C, and based on this area, a color reference is
provided for R.

C. Calculating the correction color of the area to be corrected.

The filling color of the region to be corrected R is calculated using the RGB value of
the pixel in the reference region C, and the calculation equation is shown in Equation (10).
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, l ∈ Q, (10)

where R, G, and B is the r, g, and b values of the filling color of the pixels in R, n represents
the number of pixels in C, and Rl , Gl , and Bl is the r, g, and b values of pixels within C.

D. Filling color.

R is filled with the color that was obtained from Equation (10), and the result is shown
in Figure 13b.
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Figure 13. The results of color correction for weak exposure areas: (a) original image; (b) the result of
color correction; (c) the result of median filter processing.

The Pseudocode of the color correction algorithm is shown in Algorithm 2.

Algorithm 2: Color correction algorithm (taking color correction for weak exposure as
an example).

Input: image I, S, H
Output: R, G, B
1: convert I to HSV color space
2: s_image← the S channel image of image I
3: mask← the result of threshold segmentation for s_image, represents the magnesium ingot
area, and mask represents non-magnesium ingot region.
4: N ← the result of applying mask to image I
5: Q← the result of applying mask to image I
6: for j ∈ I do
7: calculate the weak exposure probability value, Mj(j ∈ N) of pixel j in N
8: T1 is the Maximum value of Mj
9: calculate the weak exposure probability value, Ml(l ∈ Q) of pixel l in Q
10: T2 is dm, critical value of weak exposure probability
11: if
12: T1 ≤ Ml ≤ T2, l ∈ Q
13: pixels l can provide a color reference for the overexposed region
14: C is the reference region
15: else
16: pass
17: end if
18: R, G, B← the average value of r, g, b of pixels in C
19: end for
20: return R, G, B

As can be seen from the Figure 13b, the color of the overexposed area has been
improved. But after color filling, the filling edge appears jagged, and the color transition is
uneven. A median filter is selected to filtering to blur its outline and interior and making
the overall image color uniform, which achieves a smooth transition between high and low
frequencies and protects edge information effectively. The result of median filter processing
is shown in Figure 13c. The color correction algorithm for strong exposure areas is the
same, and the results are shown in Figure 14.



Sensors 2023, 23, 6809 14 of 24

Sensors 2023, 22, x FOR PEER REVIEW 14 of 25 
 

 

The Pseudocode of the color correction algorithm is shown in Algorithm 2. 

 

Algorithm 2: Color correction algorithm (taking color correction for weak exposure as 
an example). 
Input: image 𝐼, 𝑆, 𝐻 
Output: 𝑅ത, 𝐺̅, 𝐵ത  
1: convert 𝐼 to HSV color space  
2: s_image←the S channel image of image 𝐼 
3: 𝑚𝑎𝑠𝑘 ←the result of threshold segmentation for s_image, represents the 
magnesium ingot area, and 𝑚𝑎𝑠𝑘തതതതതതത represents non-magnesium ingot region. 
4: 𝑁 ←the result of applying 𝑚𝑎𝑠𝑘തതതതതതത to image 𝐼 
5: 𝑄 ←the result of applying 𝑚𝑎𝑠𝑘 to image 𝐼 
6: for 𝑗 ∈ 𝐼 do 
7:  calculate the weak exposure probability value, 𝑀௝(𝑗 ∈ 𝑁) of pixel 𝑗 in 𝑁 
8:  𝑇ଵ is the Maximum value of 𝑀௝ 
9:  calculate the weak exposure probability value, 𝑀௟(𝑙 ∈ Q) of pixel 𝑙 in 𝑄 
10:  𝑇ଶ is 𝑑௠, critical value of weak exposure probability 
11:  if 
12:   𝑇ଵ ≤ 𝑀௟ ≤ 𝑇ଶ, 𝑙 ∈ 𝑄 
13:   pixels 𝑙 can provide a color reference for the overexposed region 
14:   𝐶 is the reference region 
15:  else 
16:   pass 
17:  end if 
18: 𝑅ത, 𝐺,ഥ  𝐵ത ←the average value of 𝑟, 𝑔, 𝑏 of pixels in 𝐶 
19: end for 
20: return 𝑅ത, 𝐺̅, 𝐵ത  

As can be seen from the Figure 13b, the color of the overexposed area has been 
improved. But after color filling, the filling edge appears jagged, and the color transition 
is uneven. A median filter is selected to filtering to blur its outline and interior and making 
the overall image color uniform, which achieves a smooth transition between high and 
low frequencies and protects edge information effectively. The result of median filter 
processing is shown in Figure 13c. The color correction algorithm for strong exposure 
areas is the same, and the results are shown in Figure 14. 

   
(a) (b) (c) 

Figure 14. The results of color correction for strong exposure areas: (a) original image; (b) the result 
of color correction; (c) the result of median filter processing. 
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2.3.3. Image Fusion

The image that is corrected by single exposure intensity has a certain degree of uneven
color transition. From Section 2.2.2, we obtained the results of color correction for strong
and weak exposure areas. According the rule of WA, the results are fused, as shown in
Equation (11).

dst = α ∗ srcM + β ∗ srcP + γ, (11)

where dst represents an effect image after image fusion; α and β is image fusion weight,
affecting the proportion of the image to be fused in the fusion result; srcM and srcP repre-
sents the result image after color correction for weak and strong exposure; and γ represents
a scalar value attached to the sum of weights, and when γ becomes larger, the overall
brightness value of the image becomes larger. For the object of this paper, α = 0.5, β = 0.4,
and γ = 0, and the image fusion result is shown in Figure 15.

Sensors 2023, 22, x FOR PEER REVIEW 15 of 25 
 

 

2.3.3. Image Fusion 
The image that is corrected by single exposure intensity has a certain degree of 

uneven color transition. From Section 2.2.2, we obtained the results of color correction for 
strong and weak exposure areas. According the rule of WA, the results are fused, as shown 
in Equation (11). 

M Pdst src srcα β γ= ∗ + ∗ + , (11) 

where 𝑑𝑠𝑡  represents an effect image after image fusion; 𝛼  and  𝛽  is image fusion 
weight, affecting the proportion of the image to be fused in the fusion result; 𝑠𝑟𝑐ெ and 𝑠𝑟𝑐௉ represents the result image after color correction for weak and strong exposure; and 𝛾 represents a scalar value attached to the sum of weights, and when 𝛾 becomes larger, 
the overall brightness value of the image becomes larger. For the object of this paper, 𝛼 =0.5, 𝛽 = 0.4, and 𝛾 = 0, and the image fusion result is shown in Figure 15. 

 
Figure 15. Image fusion results. 

Compared to the original image, the fusion result shows that the overexposure 
phenomenon on the magnesium ingot region is reduced and the color transition is 
uniform. From Figure 16, the number of pixels in the grayscale range 230–255 in Figure 
16b is significantly less than that in Figure 16a, especially when the grayscale value is 255, 
which indicates that the overexposure area detection and correction algorithm proposed 
in this paper can effectively solve the overexposure phenomenon in the magnesium ingot 
region of the image. 

Figure 15. Image fusion results.



Sensors 2023, 23, 6809 15 of 24

Compared to the original image, the fusion result shows that the overexposure phe-
nomenon on the magnesium ingot region is reduced and the color transition is uniform.
From Figure 16, the number of pixels in the grayscale range 230–255 in Figure 16b is sig-
nificantly less than that in Figure 16a, especially when the grayscale value is 255, which
indicates that the overexposure area detection and correction algorithm proposed in this
paper can effectively solve the overexposure phenomenon in the magnesium ingot region
of the image.
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2.4. Segmentation Algorithm Based on the Correction of the Image Overexposure Area

Compared to the original image, the brightness is more uniform and color informa-
tion is more complete for the corrected image, which is conducive to the segmentation
of magnesium ingot regions. In this paper, an adaptive threshold segmentation algo-
rithm [29] is used to segment the magnesium ingot regions in the image. This method can
adapt to complex and variable lighting environments compared to traditional threshold
segmentation methods.

The result of color correction in Section 2.3.3 is superimposed with mask obtained
from Section 2.3.1. The results are shown in Figure 17b. It only retains the magnesium ingot
region that narrows the segmentation range and reduces the computational complexity
of the algorithm. Figure 17c is the result of grayscale conversion. The adaptive threshold
segmentation function is run with select appropriate parameters and the results are shown
in Figure 17d. The obtained result is processed by image morphology, and the result of the
final segmentation is shown in Figure 17e.
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3. Results and Discussion

To verify the image segmentation effect of the algorithm in this paper, experiments
were conducted on an automatic magnesium ingot sorting device, as shown in Figure 18.
Since there is overlap in the grayscale value range between the wooden frame area and
the magnesium ingot area, the recognition of magnesium ingots cannot be achieved solely
through the grayscale information of the images. Therefore, a color camera is chosen for
image collection. The camera used in the experiment is Hikvision’s MV-CA060-10GC color
camera, as shown in Figure 19a. The lens model used is Hikvision’s MVL-HF0628M-6MP
wide-angle lens, as shown in Figure 19b. Its focal length is 6 mm and the image resolution is
3072 × 2048. The experiments shown in this paper mainly validate the algorithm from four
aspects: (1) The impact of illumination on the algorithm when the magnesium ingot is at
different positions; (2) the influence of light intensity on the algorithm; (3) the effectiveness
of the algorithm under actual operating conditions; (4) the comparison between ours and
other segmentation algorithms.
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(1) Verifying the impact of illumination on the algorithm when the magnesium ingot
is at different positions.

Due to the method of lighting on all sides, the distance between magnesium ingots at
different locations and the light source is different, and magnesium ingots close to the light
source are significantly affected by light, making overexposure more likely to occur. By
controlling the number, placement position, and placement posture of magnesium ingots,



Sensors 2023, 23, 6809 17 of 24

the experiment was designed. And the segmentation results of magnesium ingots are
shown in Figure 20.
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Figure 20. The results of image segmentation at different locations. (a–f) are the input images, and
(g–l) are the results of image segmentation.

In Figure 20, several images are selected with distinct positional characteristics and
processed using the algorithm in this paper. The second row images are the segmentation re-
sults of images. In Figure 20a–f, when the magnesium ingot is located at different positions,
the degree of overexposure on the surface will change. For the same magnesium ingot,
both ends of the magnesium ingot are closer to the light source, so the positions of both
ends of the magnesium ingot are significantly overexposed. When multiple magnesium
ingots are arranged, the magnesium ingots located at the edge of the wooden tray are more
prone to overexposure. From the results of image segmentation, whether it is changing the
number of magnesium ingots or changing the placement position of magnesium ingots,
the algorithm in this paper can achieve good segmentation results.

(2) Verifying the influence of light intensity on the algorithm.
The intensity of the light source will directly affect the area of the overexposed area on

the surface of the magnesium ingot. In order to verify the adaptability of the algorithm
in this paper to different overexposed areas and to be able to adapt to the interference
of light sources with different intensities, a control experiment is designed for different
illumination. The brightness of the light source of the strip light is adjusted through a
dimmer controller. And the segmentation results of the magnesium ingot are shown in
Figure 21.

As can be seen from the input image in Figure 21, as the brightness of the light source
increases, the overexposure area of the magnesium ingot region gradually increases, and
the degree of overexposure becomes more severe. From the segmentation results of the
magnesium ingot image, the algorithm in this paper is basically not affected by changes
in light source brightness, and has good reliability. It can maintain a higher rate of image
segmentation under different light source brightness.
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Figure 21. The segmentation results of light source brightness changes. (a1–e1) and (a3–e3) are the
input images, and (a2–e2) and (a4–e4) are the results of image segmentation. From left to right, the
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current strip light source).

(3) Verifying the effectiveness of the algorithm under actual operating conditions.
In an industrial production environment, magnesium ingots are arranged in a vertical

cross shape and in multiple layers. Due to the limit of experimental conditions, the number
of magnesium ingots is insufficient. Take a double-layer arrangement of magnesium ingots
as an example, and the specific arrangement is shown in Figure 22. In addition, during
the actual sorting process, magnesium ingots are identified layer by layer, and each layer
of magnesium ingots is covered, enabling one-time access to the location information
of the entire layer of magnesium ingots. The experiment arranges magnesium ingots
according to actual industrial production, and designs a comparison of brightness values
of light sources.

In Figure 23, it can be seen from the image in the first row that the lower magnesium
ingots leaked out in the middle of the magnesium ingot gap. Due to the fixed position of the
strip light source, as the number of layers of magnesium ingots increases, the distance from
the light source becomes closer and closer, and the overexposure situation on the surface of
the magnesium ingot changes. In addition, a comparison of light source brightness value
is designed. From the results of image segmentation, the algorithm in this paper can still
have the good accuracy of segmentation under the actual working conditions, even if the
brightness of the light source changes.
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Figure 23. The results of image segmentation under actual operating conditions. (a–e) are the input
double-layer magnesium ingot images, and (f–j) are the results of image segmentation. From left to
right, the brightness values of the light source in the image are 50, 100, 150, 200, and 255.

(4) Comparing with other algorithms to verify the reliability of this algorithm.
This experiment selects four magnesium ingot images with different postures and

compares the segmentation results of the four algorithms. They are the Otsu threshold [30],
Triangle threshold [31], Adaptive threshold, and proposed method. The segmentation
results of the experiment are shown in Figure 24.

From Figure 24 the four segmentation methods can achieve good segmentation results
for a single magnesium ingot and when magnesium ingots are separated from each other.
When the ingots are closely aligned, in Figure 24(b3,c3,b4,c4), there is an adhesion phe-
nomenon in the segmentation results, which makes it impossible to distinguish between
magnesium ingots and magnesium ingot gaps. Therefore, the Otsu threshold and Triangle
threshold are not suitable for magnesium ingot segmentation. In Figure 24(d3,d4), mag-
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nesium ingots and magnesium ingot gaps are distinguished to some extent, but there are
varying degrees of missing phenomena in the segmentation results. The reason is that after
processing the image using the Adaptive threshold, the pixels in the initial segmentation
result do not have connectivity, resulting in the failure of subsequent morphological pro-
cessing. The initial segmentation result of Figure 24(a4) is shown in Figure 25. Compared
with the Adaptive threshold, the segmentation result of the proposed method is more
complete. The proposed method can cope with the changing posture of magnesium ingots
with greater accuracy and robustness.
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We collected a total of 250 magnesium ingot images, including various light source
brightness, various magnesium ingot postures, and magnesium ingot arrangement meth-
ods. When each magnesium ingot in the image is recognized independently, the image
is considered as a fully recognized image. The calculation for the segmentation accuracy
in this paper is the percentage of fully recognized images out of the total number of cap-
tured images. Comparative experiments were conducted between the three threshold
segmentation algorithms and ours, and their segmentation accuracies are shown in Table 1.
Because the experimental image contains multiple magnesium ingot arrangements, the
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Otsu threshold and Triangle threshold cannot accurately distinguish between magnesium
ingots and magnesium ingot gaps, and their segmentation accuracies are unsatisfactory.
Compared with the Adaptive threshold, the segmentation accuracy of the proposed method
has significantly improved.
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Table 1. The results of algorithm recognition.

Method Segmentation Accuracy

Otsu threshold 30.12%
Triangle threshold 28.11%

Adaptive threshold 86.34%
Proposed method 94.38%

From the collected images, a total of 225 images were selected. They were divided into
two groups of experiments according to different the postures and light source brightness
of magnesium ingot images, comparing the recognition rates of the four methods.

In Figure 26, the Otsu threshold and Triangle threshold have unideal recognition rates
in experiments and cannot meet normal industrial needs. Due to changes in the brightness
of the light source, the overexposure on the surface of the magnesium ingot will change,
increasing the difficulty of segmentation, and significantly reducing the recognition rate.
In experiments with different locations of magnesium ingots as variables, the recognition
rates of the Adaptive threshold and the proposed method in this paper are both relatively
high, reaching 90.91% and 95.96%, respectively; however, in experiments with different
light source brightness as variables, the recognition rate of the Adaptive threshold is only
88.71%, while the recognition rate of the proposed method can reach 96.77%, which proves
that the proposed method has strong anti-interference ability in the face of changes in
ambient luminance, and the overall recognition rate is high.

In addition, during the magnesium alloy smelting process, the basic production
requirement is to deliver two magnesium ingots per minute. The real-time requirement for
the identification process is not high, and our current identification efficiency can meet the
production requirements.
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4. Conclusions

This algorithm can be applied to the recognition of magnesium ingots with high
reflectivity on the surface, solving the segmentation difficulties caused by overexposure
of magnesium ingots due to changes in lighting. This paper proposes an algorithm for
detecting and correcting overexposed regions for high reflection of magnesium ingots, and
designs an adaptive threshold magnesium ingot stack segmentation algorithm based on im-
age overexposed region correction. This algorithm identifies overexposed areas in an image
through the mapping relationship between image brightness and chrominance information,
and corrects them based on their neighborhood color information. The corrected image
effectively improves segmentation accuracy, and this algorithm can effectively improve the
antienvironmental interference ability of image segmentation processing.

In the experiment presented in this paper, we achieved satisfactory segmentation
results for the magnesium ingots with our current shape and size under the current lighting
environment. However, in order to obtain even better experimental results, we plan to
further explore the segmentation of magnesium ingots with different shapes and sizes
under more complex lighting conditions.
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