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Abstract: Facial expressions help individuals convey their emotions. In recent years, thanks to
the development of computer vision technology, facial expression recognition (FER) has become a
research hotspot and made remarkable progress. However, human faces in real-world environments
are affected by various unfavorable factors, such as facial occlusion and head pose changes, which
are seldom encountered in controlled laboratory settings. These factors often lead to a reduction in
expression recognition accuracy. Inspired by the recent success of transformers in many computer vi-
sion tasks, we propose a model called the fine-tuned channel–spatial attention transformer (FT-CSAT)
to improve the accuracy of recognition of FER in the wild. FT-CSAT consists of two crucial compo-
nents: channel–spatial attention module and fine-tuning module. In the channel–spatial attention
module, the feature map is input into the channel attention module and the spatial attention module
sequentially. The final output feature map will effectively incorporate both channel information
and spatial information. Consequently, the network becomes adept at focusing on relevant and
meaningful features associated with facial expressions. To further improve the model’s performance
while controlling the number of excessive parameters, we employ a fine-tuning method. Extensive
experimental results demonstrate that our FT-CSAT outperforms the state-of-the-art methods on two
benchmark datasets: RAF-DB and FERPlus. The achieved recognition accuracy is 88.61% and 89.26%,
respectively. Furthermore, to evaluate the robustness of FT-CSAT in the case of facial occlusion and
head pose changes, we take tests on Occlusion-RAF-DB and Pose-RAF-DB data sets, and the results
also show that the superior recognition performance of the proposed method under such conditions.

Keywords: facial expression recognition; attention; transformer

1. Introduction

Facial expression is one of the most direct signals for expressing inner emotions in
human communication. We can gain insights into a person’s physical or mental state by
analyzing facial expressions. Therefore, facial expression recognition is of great significance
in various fields, such as autonomous driving, human–computer interaction, and healthcare.
It has gradually become an increasingly important research direction.

In human–computer interactions, machines utilize facial expression information to
provide intelligent responses and enhance the overall interaction process. In driver fatigue
monitoring, facial expression recognition is employed to detect the driver’s mental state
and ensure safe vehicle operation, thereby issuing a timely reminder if necessary. In medical
diagnosis, the facial expression recognition system analyzes the patient’s emotional state to
provide additional support in treatment. However, automatic facial expression recognition
still faces many challenges at present. Due to differences in gender, race, age, culture, and
other factors, even for the same facial expression, there may be significant differences in the
way emotions are expressed by different individuals. The features of facial expressions are
interfered with by many other information, making facial expression recognition difficult.
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Additionally, in real life, there are often pose changes, occlusion, and other issues that will
hamper the practical application of expression recognition. Thus, it is necessary to conduct
further in-depth research on expression recognition to overcome these obstacles.

With the development of deep learning, convolutional neural networks (CNNs) have
made remarkable achievements in the field of expression recognition. However, when the
key facial parts are obstructed or there are pose changes, the performance of CNNs often
decreases. CNNs extract features by continuously stacking convolutional layers, which
can be computationally expensive and prone to the challenge of vanishing gradients, thus
hindering network convergence. In recent years, transformer-based models, such as Vision
Transformers (ViTs) [1] and Data-efficient image Transformers (DeiTs) [2], have achieved
significant success in various computer vision tasks. Inspired by these achievements,
Transformer has also been introduced into FER tasks [3,4].

ViT [1] is the first study to replace the CNN model with the transformer model
and apply it to image classification. Inspired by ViT, Convolutional Visual Transformers
(CVT) [5] is the first work that applies the transformer model to facial expression recognition.
CVT uses the pre-trained ResNet18 as the backbone to extract feature maps from both
the face image and LBP feature image. All the extracted features are then fused via
attentional selective fusion (ASF). Subsequently, the spatial dimensions of the feature maps
are flattened and projected to the specific dimension. Finally, the multi-layer transformer
encoder is employed in classification. DeiT [2] introduces a new distillation procedure
based on a distillation token and obtains competitive results. Mask Vision Transformer
(MVT) [4] proposes a novel pure transformer-based model called MVT to solve FER tasks
in the wild. The proposed mask generation network (MGN) can effectively filter out the
backgrounds and interference of face images. Comprehensive experiments demonstrate
the effectiveness and robustness of the proposed method. Dong et al. [6] proposed CSWin
Transformer. It is an efficient and effective transformer-based backbone for general-purpose
vision tasks. The self-attention mechanism in CSWin Transformer allows the model to
capture dependencies between pixels across the entire image and enables the model to have
a better understanding of the spatial relationships between different regions in an image.

Although the CSWin Transformer network can effectively extract local expression
information, its self-attention mechanism divides the feature image into smaller steps for
processing, which leads to limited learning ability for global feature information in the
model. Furthermore, the models based on transformer have a larger number of parameters,
longer training time, and greater difficulty in training and transfer compared to CNN-based
models. Although CSWin Transformer is proven to achieve state-of-the-art performance
across various vision tasks, it has a large number of parameters, demanding substantial
computational resources and extensive training data and time. Additionally, CSWin Trans-
former typically performs well when trained on large datasets to capture a wide range of
image variations. When applied to small datasets, it may suffer from overfitting or struggle
to learn meaningful features.

To address the dilemma between improving recognition accuracy and reducing com-
putational complexity, this paper proposes an improved network model based on CSWin
Transformer [6] for FER. Specifically, the CSWin backbone network is used to enhance local
attention while introducing a channel–spatial attention module to provide better global
attention. The fine-tuning method is then used to further improve the model’s recognition
ability while reducing training parameters. The contributions of this article are as follows:

(1) We propose a fine-tuned channel–spatial attention transformer model (FT-CSAT)
which integrates the channel–spatial attention module. This enhancement allows the
model to not only focus on local information but also improve its capability to extract
global features.

(2) To further improve the performance of FT-CSAT in the FER task, we insert a fine-tuning
module after multi-layer perception (MLP), Cross-Shaped Window Self-Attention, and
layer normalization (LN) operations. This approach improves both the performance
of FT-CSAT and effectively controls the number of parameters.
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(3) We evaluate the effectiveness and efficiency of our proposed FT-CSAT. Experimental
results show that the recognition accuracy of FT-CSAT outperforms previous state-
of-the-art methods on two commonly used datasets. (88.61% on RAF-DB and 89.26%
on FERPlus.) Remarkably, the parameters of our model are only 27.35 M, which is
smaller than other transformer-based models. In addition, even under the conditions
of occlusion and pose changes, our model can still achieve good recognition accuracy.

The remainder of this paper is organized as follows: Section 2 reviews the related work
on FER. In Section 3, we provide the details of the proposed method. Section 4 reports the
experiment results on commonly used databases, followed by the conclusions in Section 5.

2. Related Work

Since 2012, many classic CNN models have emerged, such as AlexNet [7], VGGNet [8],
GoogLeNet [9], ResNet [10], etc. These models perform well in image recognition tasks.
Therefore, researchers applied deep learning technology to facial expression recognition
and achieved very good results. Luan Pham et al. [11], referring to the design of ResNet,
designed an improved ResNet model. The model uses residual structure to solve the
problem that the deeper the network depth may cause convergence problems. Mollahossein
et al. [12] designed an expression recognition method based on the VGG model, which
extracts expression features from the VGG model and achieves higher accuracy than
previous methods. Jung et al. [13] proposed a recognition method for image expression
sequences. The appearance features and geometric features are extracted from two different
CNN networks, and the improved feature fusion method is used to fuse the two features.
Yang et al. [14] designed a residual expression feature learning method, which uses the
generative adversarial network (GAN) to convert different expression images into neutral
expressions to learn expression features. The CNN model is used to classify the expression
features learned by the GAN model. Lopes et al. [15] combined a simple convolutional
neural network with specific image preprocessing techniques to improve the accuracy of
expression recognition. Liu et al. [16] proposed an AU-inspired Deep Network (AUDN)
inspired by facial motion units. AUDN decomposes a face into multiple facial action units
and then uses CNN to extract features from these action units.

The application of CNNs has made significant progress in facial expression recogni-
tion. However, the convolutional filters in CNNs rely on local neighborhood operations,
which lack global information and cannot capture long-distance dependencies between
different facial regions. Facial expression recognition based on convolutional neural net-
works still has limitations. Therefore, Google researchers [17] proposed the transformer
model in 2017, which makes up for the lack of global information in CNNs and achieves
great success in machine translation and other tasks. ViT [1] achieves good classification
results in image classification tasks by pre-training on large datasets and fine tuning on
smaller datasets. The global self-attention mechanism of the Vision Transformer enables the
network to overlook the impact of information-missing regions, guiding it to learn robust
facial features from a global perspective. This enhances the network’s feature extraction
capabilities, making it more powerful in capturing essential facial characteristics. Fuyan
Ma et al. [5] were the first to propose the application of a visual transformer to expression
recognition. They used an attention-selective fusion module (ASF) to aggregate both global
and local facial information and guide the backbone network to extract the required in-
formation. Aouayeb et al. [18] proposed to combine the visual transformer with the SE
attention module for expression recognition and achieved an accuracy of 87.22% on the
RAF-DB dataset. Feng et al. [19] employed a greedy strategy to locally optimize the SWin
transformer [20], fine-tuned the parameters, and their proposed model exhibits significant
improvements over the baseline network in RAF-DB, FER2013PLUS, and AffectNet [21].
Dong et al. [6] proposed a Cross-Shaped Window self-attention mechanism and Locally
enhanced Positional Encoding (LePE) to improve the performance on common vision tasks.
The presented CSWin Transformer achieves state-of-the-art performance on various vision
tasks under constrained computation complexity.
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3. Method

We propose the fine-tuned channel–spatial attention transformer model (FT-CSAT), an
efficient and effective transformer backbone consisting of two key modules: the channel–
spatial attention module and the fine-tuning module. In this section, we first introduce the
overall architecture of our model. Then, we describe these two modules in detail.

3.1. The Proposed Framework

The overall architecture of the proposed framework is illustrated in Figure 1. CSWin
Transformer is used as the baseline network. Although the CSWin Transformer network can
effectively extract local facial expression information, its self-attention mechanism divides
the input feature map into smaller step-sized blocks for processing, which hinders its ability
to learn global feature information. To address this limitation, we introduce a channel
spatial attention module to enhance the model’s extraction of crucial global information.
To improve the training efficiency, the pre-training parameters of the CSWin Transformer
on the ImageNet-1K data set are loaded, the cross-entropy function is selected as the loss
function, and the Adam algorithm is used for backpropagation to optimize the model.
ImageNet-1K is a subset of the large dataset ImageNet. It contains approximately 1.2 million
images with 1000 categories. Categories in ImageNet-1K cover a wide range of objects and
scenes, such as animals, vehicles, people, and natural landscapes. However, commonly
used expression recognition datasets, such as RAF-DB and FERPlus, often consist of only
six or seven types of expressions with tens of thousands of images. The data distribution of
the expression data set is significantly different from that of the upstream data set ImagNet-
1K. In order to further improve the performance of the model in downstream tasks, it
is necessary to fine tune the pre-training parameters to better adapt to facial expression
recognition in natural environments. Incorporating the pre-training parameters from
ImageNet-1K allows the CSWin Transformer model to leverage the knowledge acquired
from a large-scale dataset, enabling it to capture general image features and improve its
performance on subsequent tasks. This approach often leads to faster convergence during
fine tuning or training on smaller, task-specific datasets, as the model already possesses
a strong initial understanding of visual patterns and concepts. Therefore, we adopt the
parameter fine-tuning method to enhance the model’s performance while reducing the
number of parameters.
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Figure 1. The proposed framework.

3.2. Channel–Spatial Attention Module

In recent years, the attention mechanism, as one of the important components of neural
networks, has been widely used in the field of expression recognition. Hu et al. proposed
the SE (Squeeze Extraction) module [22], which learns the correlation relationships between
various channels in the feature map, generates channel attention, and enables the network
to focus more on informative channels. It brings significant performance improvements to
CNNs. Convolutional Block Attention Module (CBAM), based on the attention mechanism
of SE, was first proposed by Woo et al. [23]. Compared with SENet, which only focuses
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on channel features, CBAM is an attention module that combines channel attention and
spatial attention. It adaptively adjusts features along two independent dimensions.

Suppose the input feature image is F and the dimension is C× H ×W. The module
will obtain channel attention map MC and spatial attention map MS via channel and spatial
attention modules successively. The specific process can be summarized as follows:{

F′ = MC(F)⊗ F
F′′ = MS(F′)⊗ F′

(1)

where ⊗ represents element by element multiplication, F′ is the corrected output of the
channel attention module, and F′′ is the final output corrected in the spatial attention mod-
ule.

The channel attention module is used to focus on whether there are target features in
the input image. First, average pooling and maximum pooling are performed, respectively,
to obtain FC

avg and FC
max. Then, MLP

(
FC

avg

)
and MLP

(
FC

max
)

are obtained by weight sharing
using the MLP. Finally, the feature map MC of channel attention is obtained using Sigmoid.
The specific calculation formula is as follows:

MC(F) = σ(MLP(Avgpool(F)) + MLP(Maxpool(F)))
= σ

(
W1

(
W0

(
FC

avg

))
+ W1

(
W0
(

FC
max
))) (2)

where σ represents the Sigmoid activation function, and W0 and W1 represent the weight
of MLP(·).

The spatial attention module mainly focuses on the feature information of the target’s
location. Firstly, perform average pooling and maximum pooling operations on the feature
F′ generated by the channel attention module. Then, concatenate the two generated two-
dimensional vectors and perform convolution operations. Finally, spatial attention feature
MS(F′) is generated using Sigmoid. The specific calculation formula is as follows:

MS(F′) = σ
(

f 7×7([Avgpool(F′), Maxpool(F′)])
)

= σ
(

f 7×7
([

F′Savg; F′Smax

])) (3)

where σ represents the Sigmoid activation function, and f denotes the convolution opera-
tion with a kernel size of 7 × 7.

This paper proposes to add the attention module CBAM to the CSWin Transformer
network so that the network can extract effective features from channel and spatial dimen-
sions and suppress invalid features. It will guide the model to identify the key areas related
to expression, thereby improving the feature learning ability of the model.

Discussion. CSWin Transformer network, used as the baseline in our paper, consists of
four stages. Each stage consists of Ni sequential CSWin Transformer Blocks and maintains
the number of tokens. A convolution layer (3 × 3, stride 2) is used between two adjacent
stages to reduce the number of tokens and double the channel dimension. CBAM is
an end-to-end universal module that can be seamlessly integrated into any position of
a convolutional neural network for end-to-end training. Theoretically, CBAM can be
integrated into any stage of CSWin Transformer. The main difference lies in the size and
size of the feature graph of each stage of the network. However, in fact, the integration
of CBAM into different stages of CSWin Transformer will have different impacts on the
accuracy of expression recognition.

We conduct four integration approaches, as illustrated in Figure 2. Method (a) inte-
grates CBAM into the first stage of the CSWin Transformer, method (b) into the second
stage, method (c) into the third stage, and method (d) into the fourth stage. The recognition
accuracy of these different methods on the RAF-DB and FERPlus expression datasets is
presented in Table 1.
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Table 1. Different experiments.

Methods
Acc. (%)

RAF-DB FERPlus

baseline 87.29 87.67
(a) stage 1 87.19 87.65
(b) stage 2 87.42 87.86
(c) stage 3 87.52 88.05
(d) stage 4 87.58 87.95

(e) stage 3 and stage 4 88.01 88.51

From Table 1, it can be observed that, except for method (a), the expression recognition
accuracy of all other methods has improved. On the RAF-DB dataset, method (d) achieved
the highest recognition accuracy, reaching 87.58%, which is 0.29% higher than the baseline.
On the FERPlus dataset, method (c) achieved the highest recognition accuracy, reaching
88.05%, which is 0.38% higher than the baseline. Therefore, we propose method (e), which
integrates the CBAM module into the third and fourth stages of the CSWin Transformer
simultaneously. The experimental results demonstrate that method (e) achieves higher
expression recognition accuracy. The accuracy on the RAF-DB and FERPlus datasets
increased from 87.29% and 87.67% of the baseline to 88.01% and 88.51%, respectively.

Experiments show that after integrating the CBAM module into the CSWin Trans-
former network, the maximum pooling and average pooling in the channel domain and
spatial domain of the CBAM module can effectively learn discriminative global and local
features from facial expression images and accurately calculate the weight of each spatial
position in the feature map, thus strengthening the role of important spatial features in the
feature map in FER tasks.

3.3. Fine Tuning Module

The existing fine-tuning methods are mainly divided into two types. One approach
is full fine tuning. This method tunes all parameters of the pre-training model, which
inevitably leads to the introduction of more parameters. The other is to tune the last linear
layer, which solves the problem of introducing too many parameters, but the accuracy
is significantly reduced compared with full fine-tuning. This paper uses the Scaling and
Shifting Features (SSF) parameter fine-tuning method [24]. Different from the above two
methods, SSF can not only improve the performance of the model by fine tuning parameters
but also controlling the number of parameters introduced.

The SSF parameter fine-tuning method can achieve parameter fine tuning only by
scaling and shifting the deep features extracted using the pre-trained transformer model
without introducing additional inference parameters. It draws on the concepts of variance
and mean value. Pre-trained models trained on upstream datasets exhibit better feature
extraction capabilities through scale and shift parameters. During the training of the
downstream data set, the pre-training weight will be frozen, and the parameters will be
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updated until the feature input of SSF module. The feature output from the previous
operation is performed dot product with a scale factor and then summed with a shift factor.
The specific calculation formula is as follows:

y = γ� x + β (4)

where x ∈ R(N2+1)d represents the input. y ∈ R(N2+1)d is the output (is also the input of
the next operation). γ ∈ Rd and β ∈ Rd are the scale and shift factors, respectively. � is the
dot product.

In this paper, SSF is inserted after some specified operations in the pre-training model
to modulate features, as shown in Figure 3. These specified operations include MLP,
Cross-Shaped Window Self-Attention, and LN.
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MLP with SSF. In the CSWin Transformer block, MLP consists of two fully connected
layers, allowing the model to capture more complex relationships between image features
and serve as the input for the next attention block. The output features of the fully connected
layer are performed dots product with a scale factor and then summed with a shift factor.
The MLP after inserting SSF is shown in Figure 3a. The specific calculation formula is
as follows:

y = γ� (ω ∗ t + b) + β = (γ�ω) ∗ t + γ� b + β (5)

where t is the input of the previous fully connected layer in the MLP, ω is the weight, and b
is the bias. γ and β are the scale and shift factors, respectively.

Cross-Shaped Window Self-Attention with SSF. In CSWin Transformer, the Cross-
Shaped Window Self-Attention mechanism based on the multi-head self-attention mecha-
nism is proposed. The input is linearly transformed into a query Q, a key K, and a value
V. In this paper, the output of the linear conversion is fine tuned using the SSF method.
Then, the input features are linearly projected to K heads. The K heads are equally split into
two parallel groups (each has K/2 heads). The 1, . . ., k/2 heads perform horizontal stripes
self-attention. The k/2 + 1, . . ., k heads perform vertical stripe self-attention. The output of
these two parallel groups will be concatenated back together by a fully connected layer. In
this paper, the SSF modules are inserted after the fully connected layers. The Cross-Shaped
Window Self-Attention with SSF is shown in Figure 3b.
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LN with SSF. LN is used to normalize the output features of the CSWin-Attention,
which helps to stabilize the training process and improve the performance of the model.
Each CSWin Transformer block contains two LNs. As shown in Figure 3c, we insert SSF
module after each LN operation for parameter fine tuning. During the fine-tuning process,
the pre-trained LN weight parameters are frozen, the scale factor and shift factor are
updated and then merged into the original parameter space.

4. Experimental Results
4.1. Implementation Details

To evaluate the performance of our method for expression recognition in natural
scenes, experiments are conducted on the RAF-DB dataset [25] and FERPlus dataset [26].
In the experiments, we use the training and validation sets together as the training network
and add random Gaussian noise to the images for data enhancement, keeping the test set
unchanged. During the experiment, we used the maximum voting method, where the
expression category of each image with the highest number of expression labels was the
expression category label of the image. In order to verify that our method can effectively
obtain facial expression information when posture changes, facial detection, cropping, and
alignment processing are not performed on these two datasets in the experiment.

In this paper, we use CSWin Transformer-T (Tiny) as the baseline network, and the
pre-trained parameters on the ImageNet-1K dataset are loaded. The derivatives of each
parameter are calculated using the cross-entropy loss function, and the parameters are
updated with the Adam optimization algorithm. The initial learning rate is 0.00009, and
the batch size is 32. We train our model on an NVIDIA GeForce GTX 3080Ti GPU with
12 GB RAM.

4.2. Comparison with State-of-the-Art Methods

Evaluation of RAF-DB: At present, there are two popular methods to solve the facial
expression recognition problem: one is based on CNN, and the other is based on a Vision
Transformer. We compare our method with CNN-based methods, including RAN [27],
SPWFA-SE [28], OADN [29], SCN [30], IF-GAN [31], and EfficientFace [32]. We also
compare our method with the recently proposed methods that use a hybrid model of
the transformer and the CNN, such as CVT [5], PACVT [33], and FER-VT [34]. Table 2
reports the results of our method compared with previous methods on the RAF-DB dataset.
Our method yields the highest score of 88.61% in accuracy, which is 0.25% better than
the second-best method based on CNNs and 0.35% better than the second-best hybrid
method separately.

Table 2. Comparison on RAF-DB.

Type Methods Acc.

CNN

RAN [27] 86.90
SPWFA-SE [28] 86.31

OADN [29] 87.16
SCN [30] 87.03

IF-GAN [31] 88.33
EfficientFace [32] 88.36

Transformer + CNN
CVT [5] 88.14

PACVT [33] 88.21
FER-VT [34] 88.26

Transformer The proposed method 88.61
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Evaluation of FERPlus: Table 3 evaluates our method with previous methods on the
FERPlus dataset. We compare our method with recent state-of-the-art methods, including
LDR [35], RAN [27], SCN [30], CVT [5], MVT [4], and Meta-Face2Exp [36]. As we can see
in Table 3, our method achieves the best accuracy of 89.26% on the FERPlus dataset, which
is 0.38% higher than the second-best method (MVT [4]).

Table 3. Comparison on FERPlus.

Methods Year Acc.

LDR [35] ICIP 2020 87.60
RAN [27] TIP 2020 87.85
SCN [30] CVPR 2020 88.01
CVT [5] IEEE Trans 2021 88.81
MVT [4] 2021 89.22

Meta-Face2Exp [36] CVPR 2022 88.54

The proposed method - 89.26

Evaluation of parameters: To demonstrate that our method only needs to introduce a
small number of adjustable parameters, Table 4 compares the total parameter number of
our model with the existing facial expression recognition methods, including CNN-based
models and transformer-based models.

Table 4. Comparison of parameters.

Type Methods Params

CNN
gACNN [37] >134.29 M

TAMNet [38] 51.67 M

Vision Transformer

CVT [5] 51.80 M
D-DW-Conv.-T [39] 51 M

SWin-T [20] 28.3 M
ELSA-SWin-T [40] 29 M

The proposed method 27.35 M

As can be seen, our parameter number is 27.346 M less than the 51.8 M of CVT [5],
which also uses a transformer backbone network. The ELSA-SWin-T [40] model replaces W-
MSA and SW-MSA in SWin Transformer Block with ELSA, which improves the performance
of local attention. The number of parameters of ELSA-SWin-T is comparable to that of
SWin-T, but our model still has fewer parameters than either of these models.

Evaluation of occlusion and variant pose: To further validate the effectiveness of our
proposed method in addressing occlusion and head pose changes in natural scenes, we
conduct experiments on the Occlusion-RAF-DB and Pose-RAF-DB datasets.

As shown in Table 5, although our method is not specifically designed for occlusion
and variant pose FER issues, our method outperforms RAN [27] and CVT [5] in each case,
which shows the superiority of our method. Specifically, our method exceeds RAN and
CVT by 2.41% and 1.18% on Occlusion-RAF-DB, respectively. Our method also outperforms
RAN and CVT on Pose-RAF-DB. It exceeds RAN by 1.25% and 3.23% with poses larger
than 30 degrees and 45 degrees, respectively. It exceeds CVT by 0.02% and 0.17% with poses
larger than 30 degrees and 45 degrees, respectively. In summary, our method proposed in
this paper outperforms the previous methods for face occlusion and head pose variation in
natural scenes. It can effectively enhance the robustness of the model to both occlusions
and pose variation problems.
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Table 5. Results on Occlusion-RAF-DB and Pose-RAF-DB.

Methods Occlusion Pose (30) Pose (45)

RAN [27] 82.72 86.74 85.2
CVT [5] 83.95 87.97 88.26

The proposed method 85.13 87.99 88.43

4.3. Visual Analysis

To further investigate the effectiveness of our approach, we employ the Grad-CAM
method [41] to visualize the attention maps generated by our model. Figure 4 shows the
attention maps of different emotions in RAF-DB. The baseline is CSWin Transformer-Tiny
pre-trained on ImageNet-1K. The first row shows the original facial images, and the second
to third rows show the results of the baseline and our method, respectively.
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The darker colors indicate high attention, while the lighter colors indicate less attention
from the model. From the resulting images, it can be seen that the model proposed in this
paper can better perceive global attention information.

4.4. Ablation Study

In order to verify the validity of each module in the proposed model, ablation experi-
ments are conducted on RAF-DB and FERPlus datasets, as shown in Table 6. Specifically,
the model takes the CSWin-T pre-trained on the ImageNet-1K data set as the baseline
network for the experiment and then adds the channel–spatial attention module and the
fine-tuning module to the baseline network, respectively. In the experiment, the same
training settings are used for training. When global feature information is extracted using
the channel-space attention module, the recognition accuracies on RAF-DB and FERPlus
are increased by 0.72% and 0.84%, respectively, compared with the baseline network. In
addition, although the number of parameters increased by 5 MB after fine tuning, the
accuracies on RAF-DB and FERPlus further improved by 0.6% and 0.75%, respectively.



Sensors 2023, 23, 6799 11 of 13

Table 6. Ablation experiment results on RAF-DB and FERPlus. In the table, × indicates that the
module is not included in the model, and

√
indicates that the module is included in the model.

Channel–Spatial
Attention Module

Fine-Tuning Module
Acc. (%)

Params
RAF-DB FERPlus

× × 87.29 87.67 22.32 M√
× 88.01 88.51 22.35 M√ √

88.61 89.26 27.35 M

5. Conclusions

In this paper, we introduce FT-CSAT, a model based on CSWin Transformer for the
facial expression recognition (FER) task. Our approach involves the incorporation of a
channel–spatial attention module to enhance the model’s global feature extraction capa-
bilities. Additionally, we employ a fine-tuning method to further optimize the model’s
performance and control the number of introduced parameters. Experimental results
demonstrate the superiority of FT-CSAT over other state-of-the-art methods on two widely
used facial expression datasets, namely RAF-DB and FERPlus. Furthermore, experiments
conducted on the Occlusion-RAF-DB and Pose-RAF-DB datasets showcase the robustness
of our method in handling facial occlusion and head pose changes.

In future work, the proposed method can be further improved in the following respects:
(1) To further address the issue of facial expression recognition caused by changes in
facial scale, the multi-resolution strategy [42] can be considered to extract reliable and
stable facial features. (2) It is necessary to establish a high-quality and large-scale facial
expression database to reduce the problems of uneven distribution of expression images and
inconsistent expression category labeling as much as possible to improve the performance
of advanced deep-learning models in FER tasks.
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