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Abstract: The rapid development of Internet of Things (IoT) communication devices has brought
about significant convenience. However, simultaneously, the destruction of communication infrastruc-
ture in emergency situations often leads to communication disruptions and challenges in information
dissemination, severely impacting rescue operations and the safety of the affected individuals. To
address this challenge, IoT big data analytics and unmanned aerial vehicle (UAV) technologies
have emerged as key elements in the solution. By analyzing large-scale sensor data, user behavior,
and communication traffic, IoT big data analytics can provide real-time communication demand
prediction and network optimization strategies, offering decision support for post-disaster communi-
cation reconstruction. Given the unique characteristics of post-disaster scenarios, this paper proposes
a UAV-assisted communication coverage strategy based on IoT big data analytics. This strategy
employs UAVs in a cruising manner to assist in communication by partitioning the target area into
multiple cells, each satisfying the minimum data requirements for user communication. Depending
on the distribution characteristics of users, flight-communication or hover-communication protocols
are selectively employed to support communication. By optimizing the UAV’s flight speed and con-
sidering the coverage index, fairness index, and average energy efficiency of the mission’s target area,
the Inner Spiral Cruise Communication Coverage (IS-CCC) algorithm is proposed to plan the UAV’s
cruising trajectory and achieve UAV-based communication coverage. Simulation results demonstrate
that this strategy can achieve energy-efficient cruising communication coverage in regions with
complex user distributions, thereby reducing energy consumption in UAV-based communication.

Keywords: Internet of Things big data analytics; unmanned aerial vehicle; wireless communication
coverage

1. Introduction

In the context of emergency communication scenarios, the severe destruction of tradi-
tional communication infrastructure significantly impacts the availability and effectiveness
of communication, posing immense challenges to rescue operations and the affected in-
dividuals in disaster areas. However, in recent years, the rapid development of IoT big
data analytics and UAV technology has brought about new solutions for emergency com-
munication. With its powerful data processing and insights capabilities, IoT big data
analytics, combined with the mobility and flexibility of UAVs, opens up new possibilities
for emergency communication.
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In post-disaster network reconstruction, IoT big data analytics plays several crucial
roles. Firstly, it helps assess the extent of damage to communication infrastructure in
affected areas and determines the priority of repairs. By analyzing real-time data and histor-
ical records, including sensor data, communication traffic, and user demands, an accurate
evaluation of the communication needs in the damaged areas can be achieved, providing
guidance for repair work. Secondly, IoT big data analytics can be used for planning and
optimizing post-disaster communication networks. By analyzing the data traffic, user distri-
bution, network topology, and resource allocation, optimal network planning schemes can
be devised to ensure the maximization of communication coverage and efficient resource
utilization. Additionally, IoT big data analytics can monitor network faults and anomalies,
quickly detecting and rectifying issues, thereby enhancing the reliability and stability of the
network. Most importantly, by integrating the IoT big data analytics with mobile devices
such as UAVs, it becomes possible to bridge communication coverage gaps and rapidly
establish temporary communication links. The flexibility and maneuverability of UAVs
allow for the quick deployment and relocation in post-disaster areas, providing critical
emergency communication support to affected regions. Equipped with communication
devices, UAVs can serve as mobile communication relay stations, supplementing damaged
infrastructure and maintaining the integrity of the communication network.

UAVs provide a versatile and flexible platform for assisting communication in emer-
gency situations. Equipped with communication relay devices, UAVs can establish tem-
porary wireless networks in areas where traditional infrastructure is damaged or unable
to operate effectively, expanding the coverage and reach of communication services [1].
The combination of UAVs and IoT big data analytics enables UAVs to be strategically
deployed, optimizing communication coverage, prioritizing communication needs, and
adapting to evolving circumstances. The UAV-assisted emergency communication system
model proposed in Figure 1. In the aftermath of disasters, when traditional communication
base stations are damaged or unable to function properly, the flexibility and maneuver-
ability of UAVs allow them to be rapidly deployed and repositioned in the affected areas,
providing vital emergency communication support. Equipped with communication de-
vices, UAVs can act as mobile communication relay stations, supplementing the damaged
infrastructure and ensuring the integrity of communication networks. By carrying the
communication relay equipment, UAVs can establish temporary communication links to
provide emergency communication services to disaster-stricken areas [2]. Furthermore,
UAVs can dynamically adjust their positions based on data collected from sensors, provid-
ing more comprehensive communication coverage and support [3].

Therefore, it is important to study the UAV communication coverage strategy in the
emergency environment. A significant amount of research has focused on minimizing the
task time and maximizing the energy efficiency for UAV-assisted communication [4—6].
However, most existing studies assume that the locations of ground users are known
and their distribution is uniform. There is a lack of research on complex scenarios where
post-disaster users have a non-uniform distribution and unknown locations. Furthermore,
to our knowledge, limited attention has been given to the trade-offs between the limitations
of UAV onboard batteries [7] and the maximization of communication coverage area in
post-disaster scenarios. The challenges faced in establishing UAV-assisted communication
coverage in emergency environments can be summarized as follows:

. To optimize UAV energy consumption, endurance, communication coverage, and
quality, it is essential to quantify these parameters. However, there has been limited
research on quantifying the UAV energy consumption and coverage range in emer-
gency environments. Therefore, the challenge lies in how to achieve the maximum
coverage range while minimizing UAV energy consumption, and jointly optimizing
these two factors.

¢ Inorder to establish a UAV-assisted cruising communication coverage that is charac-
terized by rapid deployment, high bandwidth, and adaptability to different environ-
ments, a multi-objective optimization problem needs to be formulated, which involves
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minimizing the cruise time and maximizing the communication coverage in user
areas. However, achieving the minimum cruise time for maximizing communication
coverage can be conflicting objectives. Therefore, addressing the multi-objective opti-
mization problem and achieving a satisfactory balance between conflicting objectives
is highly challenging.

The objective of the UAV communication coverage strategy is to maximize the cover-
age rate index, the fairness coverage index, and minimize the UAV energy consump-
tion for complex user distribution scenarios, while ensuring the connectivity of the
UAV network at each time step. Achieving all these objectives is challenging.
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Figure 1. The system model for UAV-assisted emergency communication.

The purpose of this paper is to address the complex post-disaster scenarios with

uneven user distribution, and propose the use of UAVs for cruise coverage to restore
communication. The main technical contributions of this paper are as follows:

Due to the complexity of optimizing energy consumption for UAV-assisted commu-
nication coverage in post-disaster scenarios with uneven user distribution, a direct
solution to this problem is challenging. In this paper, we propose a multi-objective op-
timization problem that aims to minimize UAV energy consumption while achieving
maximum communication coverage. To effectively solve this problem, we decompose
it into two sub-problems through the segmentation and integration of the optimiza-
tion objectives.

In the first sub-problem, the UAV assists ground users in communication through a
combination of flight-communication mode and hover-communication mode.
Then, the optimal flight speed for the UAV to meet the cruise communication coverage
is analyzed, aiming to optimize the UAV’s flight speed and reduce its propulsion
energy consumption.

In the second sub-problem, due to the inability of the UAV to accurately obtain the
locations of ground users, a bow-shaped or spiral-shaped cruise can be used to achieve
the complete coverage of the target area in post-disaster scenarios. Considering that
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the energy consumption required for spiral-shaped coverage is less than that for
bow-shaped coverage [8], we propose a UAV cruise communication coverage strategy,
called the IS-CCC algorithm, to achieve the complete coverage of the post-disaster
target area. This strategy allows the UAV to achieve the complete coverage of the
target area with relatively low energy consumption.

*  We compared and evaluated our proposed strategy with various coverage algorithms,
considering the coverage rate index, fairness coverage index, and UAV energy con-
sumption. Our aim was to demonstrate the effectiveness of our solution. The ex-
perimental results indicate that our approach successfully achieves a satisfactory
balance between the UAV energy consumption and cruising communication coverage
efficiency. Furthermore, it consumes less energy compared to other related algorithms.

The organization of the rest of this paper is as follows: Section 2 provides a review
of related works. Section 3 introduces the system model. Section 4 presents the system
optimization approach. Section 5 describes the system testing and results analysis. Finally,
Section 6 concludes the paper.

2. Related Works

In this section, we reviewed the relevant work of IoT big data analytics and the use of
UAVs in post-disaster communication networks.

In this era of the IoT, IoT big data analytics plays a crucial role in various fields such
as smart city transportation [9] and post-disaster network reconstruction [10]. The IoT con-
nects various physical devices, sensors, and terminal devices, generating massive amounts
of data [11]. Through IoT big data analytics, valuable information and insights can be
extracted from these data, bringing many applications and benefits to various industries.
Firstly, IoT big data analytics can assess and predict post-disaster communication needs
by collecting and analyzing sensor data, user demands, and communication traffic in the
post-disaster communication network. By deploying a central control system to allocate
computing and caching resources to mobile users [12], decision makers can understand
the communication requirements of the affected areas, including the number of people,
communication traffic, and types of communication services. This enables them to plan
and effectively allocate resources. Secondly, IoT big data can help in planning and con-
figuring the infrastructure and resources of post-disaster communication networks. By
analyzing the geographical data, population distribution, and communication demands,
the locations, quantities, and coverage areas of communication base stations, as well as the
types and capacities of communication equipment, can be determined. This optimization
of network layout ensures that communication services meet the needs of post-disaster
rescue efforts. In summary, IoT big data analytics plays an important role in the planning
and optimization of post-disaster communication networks. The related work covers areas
such as post-disaster communication needs assessment, network planning and design,
topology optimization, fault detection, and recovery, and resource scheduling and manage-
ment. These efforts provide strong support for achieving efficient and reliable post-disaster
communication networks.

UAUVs have been widely used in wireless communication. The combination of UAVs
with mobile edge computing (MEC) is considered a promising technology with applications
in various fields such as medical monitoring [13], intelligent agriculture [14], intelligent
transportation [15], emergency communication [16], etc. The development of edge com-
puting and content caching in wireless networks can provide high-quality communication
services to customers [17]. It has become a key enabling technology in addressing a series of
problems caused by the increasing number of interconnected devices and large-scale data
transmission [18]. For example, Wang et al. [19] proposed an online scheduling scheme
for edge servers based on UAVs, which merges tasks geographically into several hotspots
and schedules UAVs to appropriate hover positions, achieving less UAV scheduling for
more user demands. Ning et al. [20] designed a 5G-enabled UAV to community offloading
system, which maximizes the throughput.
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The application of UAVs in emergency communication systems for communication
coverage needs to fulfill specific requirements, including rapid deployment, easy operation,
low cost, high capacity, and wide coverage. Using UAVs as aerial communication relay
platforms can effectively improve the coverage and capacity of the network, with coverage,
capacity, and latency meeting the basic requirements of emergency communication [21].
UAV communication coverage involves UAVs carrying long-term evolution communication
payloads moving over disaster areas or hovering in a certain position to serve as aerial
base stations for ground user communication. Meanwhile, blockchain has been used
to ensure the security of mobile data transactions [22], and has been widely applied in
civilian [23,24] and military applications [25]. Aggarwal et al. [26] proposed a blockchain-
based security solution and 6G-enabled network connectivity in UAV communications to
address the security concerns during the communication coverage of UAVs. This solution
offers enhanced security measures to mitigate the potential risks and vulnerabilities in
UAV communication systems. When using deep reinforcement learning techniques to
assist in the deployment and communication of multiple UAVs, it has been extensively
studied by many scholars. For example, in order to effectively control the network topology,
Liu et al. [27] adopted the deep deterministic policy gradient to adjust the connection with
other UAVs to minimize the learning time and improve the performance of the system.
In order to improve the performance of wireless networks, Zhong et al. [28] adopted an
effective framework based on the deep Q-Network to manage the dynamic motion of UAVs
and maximize the total data transmission rate of ground users. Liu et al. [29], in order
to solve the deployment and motion design of UAV network, the deployment algorithm
based on Q-Learning can show a fast convergence rate after a few iterations to obtain its
own three-dimensional position and enable the rapid deployment of UAV.

The research on UAV communication coverage in emergency areas is mainly concen-
trated in several aspects, including resource allocation [30,31], height optimization [32],
trajectory optimization [33,34], and multi-UAYV collaborative coverage [35]. Liu et al. [36]
investigated post-disaster multi-UAV collaborative control strategies and proposed a dis-
tributed multi-UAV control solution based on deep reinforcement learning. Although
the above research has explored post-disaster UAV-assisted communication technologies
from multiple perspectives, UAVs also have certain limitations in post-disaster networks.
First, consider that the UAV flight time and range are limited by battery life and energy,
which may limit the sustainability and efficiency of UAVs in large-scale or prolonged
rescue missions; Secondly, high wind speed and a complex environment may challenge
the stability and control ability of UAV, limiting its flight ability under certain conditions;
Finally, the simultaneous deployment of UAVs in a post-disaster network can also involve
coordination and resource allocation issues, requiring effective deployment strategies and
team collaboration. While UAVs have many advantages in post-disaster networks, such
as rapid response, efficient data acquisition, and rescue capabilities, understanding these
limitations is critical to optimizing their applications and addressing related issues. In
addressing these limitations, we can consider technological improvements, collaboration,
and rational use strategies to improve the effectiveness of UAVs in post-disaster networks.

3. System Model
3.1. UAV Power Consumption Model

In the process of UAV-assisted wireless communication, the energy consumption of
UAVs can be attributed to two main factors: communication-related energy consumption
and propulsion energy consumption [37]. Communication-related energy consumption
encompasses the energy required for UAVs to engage in communication with ground
users. This includes energy consumption associated with communication circuits, signal
processing, signal radiation, and reception, among other factors. Furthermore, UAVs also
necessitate propulsion energy consumption to sustain a high-altitude flight and facilitate
movement. Presently, fixed-wing UAVs and rotary-wing UAVs are among the commonly
used types of UAVs. Indeed, rotary-wing UAVs offer the advantage of vertical takeoff



Sensors 2023, 23, 6795

6 of 21

and landing, as well as the ability to hover at a fixed position, which enables them to
provide stable network coverage for ground areas. In this section, the focus is primarily on
analyzing the energy consumption model of rotary-wing UAVs. This model encompasses
both communication-related energy consumption and propulsion energy consumption.

3.1.1. Propulsion Energy Consumption

Generally, the propulsion energy consumption of UAVs is primarily determined by the
flight speed and acceleration of the UAVs. This refers to the power necessary for propelling
the UAV during its flight. In this study, the focus is on UAVs covering the target area
in a stable and uniform manner at a constant speed. Therefore, the additional energy
consumption caused by UAV acceleration is disregarded. It is worth noting that the time
taken for UAV acceleration and deceleration during operation constitutes a small fraction
of the overall mission time. Hence, it is reasonable to neglect UAV acceleration for typical
communication application scenarios. When a rotary-wing UAV flies at a constant speed v,
the propulsion power consumption of the UAV can be modeled as Equation (1) [37]:

1
302 vt 2\ 1
tip

where Py = psAQPR35/8 represents the blade profile power, P; = (1 + k)W% /\/20A
represents the induced power when the UAV is in hover state; and Py and P; are constants.
do, p, 5, A, Uip, and g are constants related to aerodynamics and aircraft design, with
specific parameter values shown in Table 1. From Equation (1), it can be observed that the
propulsion power consumption of a rotary-wing UAV mainly consists of three parts: blade
profile power, induced power, and parasite power. The parasite power increases with the
cube of the UAV’s flight speed to overcome the body drag of the UAV.

Table 1. Symbolic representation of power consumption for rotary-wing UAV.

Symbol Physical Meaning
Py Blade profile power (W)
P; Induced power (W)
Usip Tip velocity of rotor blade (m/s)
V0 Average rotor-induced velocity at hover (m/s)
do Airframe resistance ratio
[y Air density (kg/m?)
s Rotor firmness
A Rotor disk area (m?)
1) Contour resistance coefficient
O Blade angular velocity (rad/s)
R Rotor radius (m)
k Rotor thrust increment correction coefficient of induced power
W UAV weight (N)

When the rotary-wing UAV is in a hovering state, the flight speed v = 0 can be set
to zero, and Equation (1) can be simplified as:

Py =P+ B )

Based on Equation (2) analysis, it can be inferred that the power of a rotary-wing UAV
during hovering is a finite value, mainly determined by factors such as the weight of the
UAV, air density, and the area of the rotor disc. When the flight trajectory g(t) of the UAV
is given, the energy consumption for the propulsion of the UAV can be expressed as [38]:

T;
Ei(T{a)}) = [ Pl ©
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where T; represents the duration of the UAV's flight mission, and ||v(t)|| represents the
instantaneous velocity of the UAV at any given time .

3.1.2. Communication-Related Energy Consumption

When the UAV provides communication access to ground users, it incurs the energy
consumption associated with communication. It is worth noting that the energy consump-
tion related to communication is typically much lower compared to the propulsion energy
consumption, usually in the order of a few watts, while the propulsion energy consump-
tion can be in the hundreds of watts. Assuming the UAV’s communication power is P,
(not necessarily a constant), the energy consumption related to communication can be
represented as:

Tt
Eo(T;, P.) = /O P.(t)dt @)

Therefore, with the energy consumption models for both propulsion and communication-
related energy, the total energy consumption of the UAV can be represented as:

E(Ti, {q(t)}, Pe) = E1 + Es ®)

3.2. UAV Cruise Communication Coverage Model
3.2.1. Communication Energy Consumption Formulization

When a natural disaster causes a ground base station to fail, the UAVs can be used as
an aerial base station to quickly establish an emergency communication network to restore
communication for ground users. Figure 2 shows a proposed scenario of a UAV cruising
for communication coverage in complex post-disaster scenes where users are distributed in
various locations, with the majority concentrated in safe places such as schools and shelters,
and a few users sparsely distributed in arbitrary positions within the target area. Therefore,
only the positions of key areas such as safe places, denoted as g € G, can be obtained, while
the location information of other users cannot be acquired. Assuming that the target area is
a rectangular disaster area with a size of L X M (m), the rotary-wing UAV is used to cruise
at a fixed flying altitude of H(m) as an airborne temporary base station, covering the target
area. The coverage area of the UAV on the ground is a circular region with a radius of R(m),
and the UAV establishes communication links with satellites to meet communication needs.
The UAV can flexibly adjust the transmit power to adjust the coverage range on the ground
based on demand.

Considering that there are more users with higher communication demand in key
areas such as safe places, the v adopts a hover-communication protocol to assist user
communication when cruising over key areas with dense user distribution, while using
a flight-communication protocol to assist user communication in other areas. Due to the
complexity of the task of UAV cruising and communication coverage in the target area, the
target area is divided into grids, and the UAV covers each grid by hovering over the center
point of each grid cell to achieve communication coverage in the target area.

In this scenario, we assume that high buildings are severely damaged after a disaster,
and the probability of non-line-of-sight components in the received signal is much lower
than the probability of line-of-sight components. Therefore, an air-to-ground channel model
is used for signal transmission, and the influence of small-scale fading is neglected. In this
case, the air-to-ground channel can be approximated as a free space channel model, and its
channel power gain can be expressed as:

h(t) = Bd (1) 6)

where B represents the channel power gain at a reference distance of 1 m, and d—2(¢)
represents the distance between the UAV and a ground user at time {. Assuming that T;
represents the total mission time for the UAV to cruise and provides the communication
coverage in the target area, then at any time t € [0, T;], the distance between the UAV
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and any ground user 1, where n belongs to the set of all ground users n € N, can be
expressed as:

dn(t) = \/19(5) — wa]® + H2 %

where w,, € R?*! represents the horizontal position of any ground user, and represents the
projection of the UAV’s trajectory onto the horizontal ground.

According to the analysis of the system model, it is known that the coverage area
of the UAV on the ground changes over time. This means that establishing a complete
connection and completing data transmission between ground users and the UAV requires
a certain duration of continuous coverage time, denoted as t.. Therefore, only when the
association time between ground users and the UAV is greater than ¢, can the connection
between them be successfully established.

Assuming that the total available bandwidth B is uniformly divided into
L ={1,2,...,L} orthogonal channels during the process of communication data transmis-
sion, the achievable rate of user z at time ¢ when it successfully establishes communication
can be expressed as follows:

P
Ri(t) = Bjlog, (1 + lﬂ(ff%) ®)

where Py represents the transmission power of the UAV, Nj represents the noise power
of the boundary user, B; represents the bandwidth of subchannel /, and I € L. Only when
the total amount of data received by boundary user z within the duration of continuous
coverage {. is greater than or equal to the minimum data amount Q bits can it be considered
that the UAV meets the communication requirements of the ground users, as expressed in
Equation (9).

/Ot” RL(H)dt > Q,¥n )

When the UAV is flying horizontally at a constant speed v, the propulsion power
consumed can be calculated using Equation (1) as P(v). Considering the weather and other
reasons [39], when the UAV is hovering over key areas with a high concentration of users
using a hover-communication protocol for coverage, the hover power of the UAV can be
calculated using Equation (2) as P,. Therefore, the energy consumption of UAV’s cruising
communication coverage can be approximated as:

(et 1H

1000 10)

E ~ P(US)@ + Ph |:Tt — qE]t):| + P.T; +
where T; represents the total mission time of the UAV’s cruising coverage over the target
area, (t)/v represents the UAV’s flight time, Ty — () /v represents the UAV’s hover time,
and P, represents the communication power related to communication during the UAV’s
cruising coverage process, k and <y are specific attenuations caused by weather and gases.

The research objective of this part is to optimize the energy consumption of UAV’s
cruising communication coverage by optimizing the UAV’s flight speed and planning
UAV’s flight trajectory based on the cruise coverage of the target area. The research
problem can be modeled as follows:
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min E(v, t
min E(v, {g(1))
fe Pyp
.t —_ >
s.t /0 Blog, <1 + dz(t)N())dt > Q,Vn,Vt € [0, T,
0 <9 < Viax, (11)

q(0) = q1,9(Tt) = qr,
hmin < H < hmax/
Ef + E;, 4+ Ec < Emax-

where q;,qr € R2*!, respectively, represent the initial and final positions of the UAV
projected onto the ground, while E; and Ej, represent the energy consumption for UAV
flight and hover, respectively. E. represents the energy consumption associated with
communication-related tasks during UAV flight or hover.

Center point of
. Key area Common area
the cell J

Figure 2. UAVs cruise communication coverage model.

3.2.2. Coverage Evaluation Formulization

As the task objective is to meet communication coverage in complex post-disaster user
distribution scenarios, it is necessary to define the coverage indicators of the target area
cells. First is the coverage index, which is used to measure the number of times a cell is
covered in a single task. For any cell at any time ¢, the coverage index is expressed as:

14
Tt (vs.
ct(vs.) = 720:1‘/;,(05 ),Vv €L,V

Ct = u T (12)
cr(u) = %‘(—;_tt(:)),Vu el,---,U

where T;(u) or T;(vs.) represents the number of times the key unit # or ordinary unit v
is covered at the current time ¢, and T represents the total mission time. It should be
noted that the continuous coverage of key units is assumed to be a single coverage, and
the coverage rate index only considers the coverage times in time. Since the goal of UAV
collaborative communication coverage is to maximize the total coverage of the target area,
simply improving the coverage rate index may result in unfair coverage of all units, that
is, in most time steps, a few units are continuously covered while the remaining units are
never covered. Therefore, it is necessary to solve the fairness problem of unit coverage,
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which is a spatial index used to measure whether all units are fairly covered in space.
The corresponding fairness coverage index for a given target area control strategy is
represented as follows:

[cr(vs.) + ¢ (u))?

K{ct(vs.)z + Ct(u)Z] 1

fe=

As analyzed from Equation (13), the larger the fairness coverage index f;, the more
equitable the coverage of the target cells, where f; € [1/K, 1]. Furthermore, the UAV flight
inherently consumes energy, and it is crucial to minimize this energy consumption to
extend the network’s overall lifetime.

Using the coverage rate index c, fairness coverage index fr, and average energy
efficiency 7t as evaluation metrics, the average energy efficiency 71 can be expressed as:

_crXfr

o (14)

nr
where et represents the average energy consumption of the UAV during the test period.
This value is normalized by the maximum possible energy consumption of the UAV during
the same test period.

In summary, the goal of the UAV communication coverage strategy in scenarios with
complex user distribution is to maximize the coverage index, fairness coverage index, and
minimize UAV energy consumption, while ensuring network connectivity at each time step.
Indeed, achieving all these objectives can be quite challenging. On the one hand, UAVs
need to patrol continuously to provide effective and equitable communication coverage
for target cells, which involves effectively distributing their presence in both time and
space domains. On the other hand, minimizing the total energy consumption of UAVs and
ensuring network connectivity requires reducing the movement of UAVs while maintaining
stable communication connections. Reducing the movement of UAVs can save energy,
while maintaining communication connections is crucial for ensuring network connectivity.
Balancing these requirements is a complex task. Therefore, a good UAV control strategy
should balance this issue well.

4. Optimization of Energy Consumption for UAV Cruise Communication Coverage

The optimization problem of energy consumption for UAV cruise communication
coverage in complex areas with post-disaster user distribution is too complicated to be
directly solved. Therefore, this problem is divided into two sub-problems. Firstly, the
optimal flight speed for the UAV to meet cruise communication coverage is calculated,
ensuring that the UAV achieves energy optimization by using the minimum power to satisfy
the coverage requirements. Secondly, the flight trajectory for the UAV to cruise and cover
the target area is planned, aiming to achieve maximum coverage with the least cruise time,
thus optimizing the energy consumption of the UAV. By solving these two sub-problems,
energy optimization for post-disaster UAV cruise communication coverage is achieved.

4.1. Cruising Speed Optimization

First, let us solve sub-problem one, which involves analyzing the optimal flight speed
for the UAV to meet cruise communication coverage. As mentioned earlier, the UAV
adopts a combination of flight-communication protocol and hover-communication protocol
to assist ground users in communication. Therefore, by optimizing the flight speed of
the UAV, the energy consumption for propulsion can be reduced. When the UAV is
engaged in assisting communication, it will be equipped with a directional antenna with
an adjustable wave speed. The half-beamwidth of the directional antenna is denoted as
w, where 0 < wmin < W < Wmax < /2, Wmin and wmax are determined by the technology
used to adjust the actual beam width of the antenna [40].
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As shown in Figure 3. Assume that the UAV departs from point O; at time ty = 0
and reaches point O; at time t; = vt.. Since the width of the shadow region varies with
changes in the UAV’s coverage radius and flight speed, in order to analyze the cruise
speed of the UAV while satisfying ground user communication, we define the width of the
shadow region as O;0; = R, which represents the flying distance that satisfies dp,0, = R,
the total coverage time of users within the shadow region as t. = dp,0,/v = R/v. From
geometric analysis, it can be determined that the width of the shadow region is denoted as
l; = do,0, = R, and the length of the shadow region as I, = v/3R. There is a relationship
equation w = arctan(R/H) between the half-beamwidth of the antenna, coverage radius,
and the height of the UAV.

I, =~3R~

Uav flight direction

Figure 3. Schematic diagram of UAV flight speed analysis.

As the UAV’s cruise communication coverage time progresses, the distance between
the UAV and the users constantly changes. The distance between the UAV and the boundary
user z can be represented by Equation (7).

2
d;(t) = <\/2§R> +<th>2+H2 (15)

2

At any given moment ¢, the received signal-to-noise ratio (SNR) of the boundary
user z can be expressed as:
PupGo

SNR:(1) = () Now?

(16)
where Gy /w? represents the antenna gain within the main lobe of the directional antenna of
the UAV. In order for boundary user z to establish communication, the total communication
data volume of the boundary user must be greater than or equal to Q bits within the
continuous coverage time period f., which can be expressed as:

ke PyBGo
_ > 7
/0 Bllogz<1+ 7 (t)Nowz)dt >0 (17)
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To optimize the energy consumption of the UAV’s cruise communication coverage
in the target area, substituting w = arctan(R/H) and Equation (15) into Equation (17),

and letting & = PGy / {No arctan (R/H )2} , and then making a variable substitution for
x = vt, the expression can be obtained as follows:

2
‘R 2
By In <\@R> +(Rx> +H 4 u

vIn2 Jo 2 2

2 2
—In (@R) +(I§x> +H?||dx>Q

further calculating Equation (18) and letting y = R/2 — x, the expression (16) can be
obtained as follows:

2 2
0
B /R In <‘/2§R> +*+H*+a| —In (*/SR> +y24+H? | |dy>Q (19

vln?2 .

2
continuing the calculation of Equation (19), defining a = \/ (\/gR / 2) + H2+ a and

2
b = \/ (\/gR / 2) + H?, and substituting a and b into the expression and integrating,

the resulting expression is as follows:

Bl 2 2 R 2 2 R
>
1 |:R In (R +a ) + 2a arctan( > RlIn (R +b ) + 2b arctan Q (20)

by simplifying Equation (20), the cruising speed of the UAV that satisfies communication
with boundary users can be expressed as follows:

Bl 2 2 R 2 2 R
< JR _
[ 1 {R In (R +a ) + 2a arctan< ) RIn (R +b ) + 2b arctan (21)

The arctangent function can be approximated as arctan x & x /(1 + 0.28x?). Substitut-
ing this function, as well as the values of 2 and b, into the formula, the cruising speed of the
UAV that satisfies the communication coverage can be calculated as v'.

B 1.75R?> + H? +«a
/< =L dRIn( T~ %
= anz{ “< 1.75R2 + H2 )
N R(—1.78R%*a?> — 2H?a? — a*)
[(0.75R2 + H2 + «)(0.75R2 + H2)]

(22)

1
" (0.75R2 + HZ + «)(0.75R2 + H2) + 0.28R2(1.5R2 + 2H2 + a2) + 0.784R? }

4.2. Trajectory Optimization

In this subsection, the sub-problem of the UAV cruising communication coverage
strategy is solved, which involves planning the UAV’s flight trajectory. Due to the UAV’s
inability to accurately obtain the ground users’ locations, in order to achieve communication
coverage for all ground users in the post-disaster scenario, a circular or spiral cruising
pattern can be adopted to achieve the full coverage of the target area. For rectangular areas,
considering that the energy consumption required for spiral coverage is lower than that for
circular coverage, a spiral pattern is adopted for covering the target area.

When the UAV achieves normal communication with the boundary users, the width
of the shadow area covered by the UAV is denoted as Iy = R, and the length of the
shadow area is denoted as I, = v/3R. Due to the fact that the coverage area of the UAV
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on the ground is in the form of a strip during flight communication coverage, the target
area is rasterized using cells with a side length of v/3R. The geometric center points and
centroid regions g of each cell are obtained as waypoints for the UAV’s planned path.
By cruising through all the waypoints, the UAV can achieve communication coverage
over the target area. Rasterizing the target area into cells allows for the transforma-
tion of the communication coverage problem into a UAV trajectory planning problem
with known waypoints.

To achieve the full coverage of the target area, an IS-CCC algorithm is proposed.
In this algorithm, the UAV cruises in an inner spiral pattern to cover all the geometric
center points gy of the cells in the target area. If the current geometric center point g; that
needs to be cruised contains the centroid region g, then the algorithm checks whether the
next center point g;,1 's cell also contains the centroid region g. If it does, the algorithm
continues to check the number of centroid regions in the cell of center point g;,, until the
cell of center point g;, does not contain the centroid region g. At that point, the algorithm
finds the shortest path that passes through all centroid regions g between the current center
point g; and center point g;,, and repeats this process until all waypoints are covered in
the target area, thus obtaining the UAV’s cruising trajectory {4(t) }. The pseudo-code of the
algorithm is shown in Algorithm 1.

Algorithm 1 Cruise communication coverage algorithm based on internal helix

Input: cell center location, key area location, UAV coverage radius R
Output: UAV cruise track q(t)
The process:

1. Set the center point of the cell closest to the origin of coordinates in the target region
as the initial waypoint gg; The UAV looks for the geometric center point of the
nearest cell as the next waypoint q; in the internal spiral direction clockwise or
counterclockwise.

2. If the cell of the next geometric center point g; contains key regions g, the number
of key regions s; in the cell is calculated; Find the next nearest central point g;,1 and
judge the number of key regions s; 1 in the cell of the central point g, until there
is no key region in the cell of the next nearest central point g;,,.

3. The shortest path algorithm is adopted to calculate the shortest path from the
current central point g; through the key area g to the central point g;,,.

4. Otherwise, directly take the center point of the next cell as the current optimal
waypoint.
5. Repeat Steps 2-5.

*

Use a straight line to connect each waypoint in the order of access.
7. Return the cruise track g(t) of the UAV.

As the UAV's flight trajectory {g(t)} is a continuous-time function, and the comple-
tion time T} of the mission is unknown, a path discretization method proposed by Zeng
Yong et al. [37] is adopted to obtain a form with a finite number of optimization variables
that is easier to handle. It is worth noting that trajectory and path are two different terms.
Path refers to the route followed by the UAV, which includes all the positions on the UAV’s
trajectory without involving the time dimension. On the other hand, trajectory includes
both the path and the instantaneous velocity of movement along the path, and it involves
the time dimension.

When the UAV is cruising to provide communication coverage over the target area, it
needs to complete the coverage of all the geometric center points and key regions. Therefore,
the path between two adjacent waypoints can be considered as a path segment, and the
UAV’s flight trajectory can be discretized into path segments. The expression for a path
segment can be obtained as follows:

met () = Gu (D] < Amax, ¥m € M, M = {1,2,... M} (23)
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where Amax is a properly chosen value; and Ty = [gy+1(t) — gm(t)] /0’ represents the
UAV’s flight time within the discretized path segment. By discretizing the path, the UAV’s

M+1
m=0"
spent by the UAV in each path segment can be represented by { Ty, 2\1/1;01 The energy

consumed by the UAV during the cruising process is represented by Equation (24).

flight trajectory g(f) can be represented by M + 2 waypoints {q,(t)} and the time

Ep = Pr(v) Yoo T (24)

The energy consumption of the UAV during hovering-assisted communication in a
critical area can be expressed as follows:

G
E, =P, Zg:O Ty (25)

where T, represents the time spent hovering in the target area. The energy consumed during
the UAV flight or hovering process related to communication is represented as follows:

Ee=Pe( Lo Tn+ Yoo Th) (26)

The optimized energy consumption for UAV cruise communication coverage can be
obtained by combining Equations (24)—(26):

E; = Ef+Eh+EC
=Py (') Zf:o T + Py ZgG:o Ty + Fe (Ei\::o T + S:o Th)

Therefore, according to Equation (27), the energy consumption during UAV cruise
communication coverage includes the energy consumption during UAV flight Ef, the
energy consumption during UAV hovering Ej, and the energy consumption during
UAV-assisted communication E..

(27)

5. Simulation Experiment and Result Analysis
5.1. Simulation Setting

To thoroughly validate the performance of the proposed UAV cruise communication
coverage strategy, this section conducts the performance evaluations of the strategy under
different coverage algorithms, including the UAV multicast coverage path planning algo-
rithm (MCPA) [41] and the traditional inward spiral coverage algorithm (Spiral). In the
experimental process, the simulated environment is set as a rectangular target area after a
disaster, with the dimensions of the target area being L x W = 3.5 (km) x3 (km). Users in
the target area are randomly distributed, with the critical area represented by the shaded
region in Figure 2. When the UAV cruises to the critical area, it hovers and communicates
for a period of time Tj, according to the hover-communication protocol, with the UAV’s
communication-related power being denoted as P, = 5 (W).

The UAV cruises over the target area at an optimal constant speed to satisfy the
communication needs of ground users, using the IS-CCC algorithm for UAV trajectory
planning. Additionally, the UAV starts cruising from any position near the boundary and
completes all waypoints, then returns to the starting point in a straight line to replenish
energy if necessary. The proposed strategy is simulated and verified in the MATLAB
simulation platform, with specific simulation parameters shown in Table 2 as follows.
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Table 2. Simulation parameters.

Parameter Value
Blade profile power (Pp) 80W
Induced power (P;) 88.5W
Tip velocity of rotor blade (Uy;,) 120 m/s
Average rotor induced velocity at hover (vp) 4.03m/s
Airframe resistance ratio (dg) 0.6
Air density (p) 1.225 kg/m?>
Rotor firmness (s) 0.05
Rotor disk area (A) 0.503 m?
Contour resistance coefficient (J) 0.012
Blade angular velocity (Q)) 300 rad/s
Rotor radius (R) 04 m
Rotor thrust increment correction coefficient of induced 01
power (k) ’
UAV weight (W) 20N
Launch power of UAV (Py;) 37 dBm
System available channel set (L) 50
Channel power gain at 1 m () —75dB
Noise power (Np) —104 dBm
UAV flying altitude (H) 100 m
UAV coverage radius (R) 300 m
System bandwidth (B) 1 MHz
Data information threshold (Q) 15 Mbit
UAV hovering time (T},) 120's
Communication-related power (P;) 5W

5.2. Experimental Results and Analysis

In the analysis of the simulation results, the flight trajectory of the UAV for cruising and
communicating over the target area is first displayed. Then, the total energy consumption
and cruising efficiency of the UAV for covering the target area are analyzed. Finally, the
relationship between the UAV energy consumption and the number of priority areas is
analyzed and compared with other algorithms.

As shown in Figure 4, the trajectory planning for achieving the full coverage of the
target area using the IS-CCC algorithm is demonstrated under the grid-based representa-
tion, with a UAV flight speed of 10 m/s and a minimum data rate of Q = 15 Mbit to satisfy
the communication needs of ground users. Each grid cell has a size of 519 m x 519 m, and
there are five priority areas denoted by coordinates x; = [550, 1520, 2700, 2100, 2650] and
yx = [560, 1450, 1630, 2640, 2750]. From the figure, it can be observed that the UAV starts
from the position closest to the origin and cruises in a spiral manner to cover all waypoints,
optimizing energy consumption for covering priority areas until all waypoints are covered
to achieve the mission objective. It can be observed from the figure that, when a priority
area exists in any grid cell, the UAV follows the shortest path from the previous cell to the
next cell and hovers to cover the priority area.

As shown in Figure 5, the impact of the number of waypoints on UAV energy con-
sumption is demonstrated when the number of priority areas is set to 5, and it is compared
with the traditional Spiral algorithm and MCPA algorithm. From the figure, it can be
seen that the IS-CCC algorithm requires the lowest energy consumption as the number
of waypoints increases. Among them, the traditional Spiral algorithm consumes the most
energy, reaching 4.02 x 10° (J). The MCPA algorithm consumes intermediate energy, ap-
proximately 3.99 x 10 (J); while the proposed IS-CCC algorithm consumes the least energy,
only 3.86 x 10° (J). Compared to the Spiral algorithm, the energy consumption of the
IS-CCC algorithm is reduced by 0.16 x 10° (J). In addition, there is a sudden increase in
energy consumption for all three algorithms in the figure. This is because, when the UAV
cruises to a priority area, a hover-communication protocol is used for communication, and
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the energy consumption during hovering and communication at that waypoint causes a
sudden increase in UAV energy consumption.
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Figure 4. Trajectory planning based on the IS-CCC algorithm.
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Figure 5. Relationship between the UAV energy consumption and the number of waypoints.

Figure 6 illustrates the cruising efficiency of UAVs for communication coverage in
the target area, with a mission time of T; = 1 h. From the figure, it can be observed that,
when the number of priority areas is set to 5, the IS-CCC algorithm has the highest cruising
efficiency with a total of 73 waypoints, while the MCPA algorithm has 70 waypoints and
the Spiral algorithm has the fewest waypoints at 68. The IS-CCC algorithm proposed in
this paper cruises three more waypoints compared to the MCPA algorithm, and five more
waypoints compared to the Spiral algorithm. In addition, the cruising efficiency of the
Spiral algorithm is relatively low, which may be due to the fact that the Spiral algorithm
tends to maximize local cruising efficiency during the cruising process, which could result
in a lower overall cruising efficiency.
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Figure 6. UAV cruise communication coverage efficiency.

Figure 7 presents the impact of the number of priority areas on the UAV flight energy
consumption. From the figure, it can be observed that, as the number of priority areas
increases, the energy consumption of UAVs also increases. Furthermore, the IS-CCC
algorithm consumes the least amount of energy compared to the other two algorithms. For
example, when the number of priority areas is set to 4, the energy consumption of the IS-
CCC algorithm is 3.63 x 10 (J), which is 0.12 x 10° (J) lower than the energy consumption
of the Spiral algorithm, and 0.17 x 10° (J) lower than the energy consumption of the MCPA
algorithm. When there are no priority areas (i.e., the number of priority areas is 0), the
energy consumption of the three algorithms is the same. This phenomenon occurs because,
when there are no priority areas, the UAV’s cruising trajectory is the same, resulting in the
same energy consumption for all algorithms.
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Uav energy consumption (J)
w
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Figure 7. The relationship between UAV energy consumption and the number of key areas.

In addition, from the figure, it can be observed that, as the number of priority areas
increases, the energy consumption curve fluctuates and rises rather than uniformly in-
creases. This is because the optimal cruising trajectory for the three algorithms differs due
to the varying positions of the priority areas, resulting in differences in UAV propulsion
energy consumption.
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[

Figure 8 shows the impact of the number of key cells on the average energy effi-
ciency, coverage index, fairness coverage index, and average energy consumption. It can
be observed that the IS-CCC strategy outperforms the other two strategies in all four
evaluation metrics.
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Figure 8. The influence of the number of key cells on average energy efficiency, coverage index,
fair coverage index, and average energy consumption. (a) The relationship between average energy
efficiency and the number of key cells. (b) The relationship between the coverage index and the
number of key cells. (c) The relationship between the fair coverage index and the number of key cells.
(d) The relationship between average energy consumption and the number of key cells.

First, the effect of the number of key cells on the average energy efficiency was
compared, as shown in Figure 8a. The average energy efficiency of the IS-CCC strategy
slowly increases with the increase in the number of key cells, while the average energy
efficiency of the other two algorithms remains basically stable. This is because with
the increase in the number of key cells, the UAVs in the IS-CCC strategy reduce the
energy and flight time consumption by flying and increase the hovering time to improve
the coverage rate index, resulting in a slow increase in the average energy efficiency.
In Figure 8b, as the number of key cells increases, the coverage index of the IS-CCC strategy
continues to increase, while those of the MCPA and Spiral strategies remain basically
unchanged. This is because, as the number of key cells increases, the UAVs in the IS-CCC
strategy reduce the time of flight consumption and increase the hovering time, which leads
to an increase in the coverage index. In Figure 8c, it can be observed that the fairness
coverage index of IS-CCC, MCPA, and Spiral strategies remains almost unchanged with
an increase in the number of critical cells. This is because the increase in the number of
critical cells has little effect on the fairness coverage strategy of UAVs, and therefore, the
fairness coverage index remains constant. In Figure 8d, the average energy consumption
of all strategies remains almost unchanged as the number of key cells increases. This is
because, with the increase in key cell numbers, the control strategies of the UAVs remain
unchanged, and therefore, the average energy efficiency remains basically unchanged.
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6. Conclusions

In this paper, aiming at the communication coverage problem for complex user distri-
bution scenarios in an emergency environment, we proposed a UAV-based cruise commu-
nication coverage strategy for complex user distribution scenarios. The strategy utilizes
UAVs to assist in post-disaster communication through cruise communication mode. Firstly,
the minimum transmission rate that meets the user’s communication requirements is set,
and the post-disaster target area is divided into multiple grid cells. Then, based on the
characteristics of user distribution, UAVs are used to assist user communication in ordinary
cells through a fly-communicate mode, and in priority areas through a hover-communicate
mode. To optimize energy consumption during UAV cruise communication and improve
the efficiency of UAV-assisted communication, the strategy proposes the IS-CCC algorithm
to plan UAV flight paths by optimizing UAV flight speeds, achieving energy-efficient
UAV cruise communication while ensuring the recovery of ground user communication.
The simulation results show that the proposed strategy can effectively achieve UAV com-
munication coverage in disaster areas under complex user distribution scenarios, and it
outperforms other strategies in terms of coverage rate index, fair coverage index, and
average energy efficiency.
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