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Abstract: This paper presents novel preliminary research that investigates the relationship between
the flow of a group of jazz musicians, quantified through multi-person pose synchronization, and their
collective emotions. We have developed a real-time software to calculate the physical synchronicity
of team members by tracking the difference in arm, leg, and head movements using Lightweight
OpenPose. We employ facial expression recognition to evaluate the musicians’ collective emotions.
Through correlation and regression analysis, we establish that higher levels of synchronized body
and head movements correspond to lower levels of disgust, anger, sadness, and higher levels of
joy among the musicians. Furthermore, we utilize 1-D CNNs to predict the collective emotions of
the musicians. The model leverages 17 body synchrony keypoint vectors as features, resulting in a
training accuracy of 61.47% and a test accuracy of 66.17%.

Keywords: facial emotion recognition; collective behaviour analysis; multi-person pose synchronization;
convolutional neural networks; affective computing; pose estimation

1. Introduction

Emotion recognition is an important area of research to enable effective human–
computer interaction [1]. Scientific research has led to applications of emotion recognition
in tasks such as examining the mental health of patients [2], safe driving of vehicles [3],
and ensuring social security in public places [4]. Collective emotions of a team refer to
the shared emotional experiences and states that emerge within a group of individuals
working together towards a common goal. These emotions are not just the sum of individ-
ual emotions but are experienced and felt collectively by the team as a whole. Collective
behavior and group dynamics identify the synchronous convergence of an effective re-
sponse across a group of individuals using data [5]. This multi-modal data may consist
of facial configurations, textual sentiments [6], voice, granular data amassed from wear-
able devices [7], or even neurological data obtained from brain-computer interfaces [8].
Analyzing collective behavior aims to understand the emergent properties that arise from
the interactions of individuals within a group [9]. These emergent properties may include
collective intelligence, decision-making processes, flow, coordination, or conflict resolu-
tion [9]. The detection and analysis of emotions leveraging recent developments in artificial
intelligence have seen progressive advancements using multi-modal datasets, machine
learning, and state-of-the-art deep learning models. Understanding collective behavior and
group dynamics is crucial for improving team performance [9]. By identifying factors that
facilitate or hinder effective responses across the group, interventions can be developed to
enhance collaboration, decision-making, and overall group performance [9].

Facial Emotion Recognition (FER) is a computer vision task aimed at identifying
and categorizing emotional expressions depicted on a human face [10]. The goal is to
automate the process of determining emotions in real-time, by analyzing the various
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features of a face such as eyebrows, eyes, and mouth, and mapping them to a set of
basic emotions like anger, fear, surprise, disgust, sadness, and happiness [10]. Recently,
researchers have turned to exploring emotions through body pose and posture, emotional
body language, and motion [11]. The recent improvements in human pose estimation
make pose-based recognition feasible and attractive [11]. Several recent studies propose
further improvements in conducting body language prediction from RGB videos with poses
calculated by OpenPose [12]. This study is also related to emotion recognition. Several
previous studies propose to detect psychological stresses with multi-modal contents and
recognize affects with body movements [13]. Unconsciously shared movement patterns can
reveal interpersonal relationships: from the similarity of their poses, reciprocal attitudes
of individuals can be deduced [13]. Estimation of body synchronization is relevant in a
variety of fields like synchronized swimming [14], diving [15], and group dancing [16]
which can profit from an analysis of motion and pose similarity. Organizational researchers
focusing on leadership and team collaboration may be interested in studying human
interactions through synchronization effects [17]. Psychological and sociological research is
studying similar effects, too. For example, exploring the effect of body synchronization on
social bonding and social interaction [18,19]. Interest in body synchronization stems from
the objective to transfer inter-personal entanglement, a social network metric describing
the relationship of individuals in their community, to human body movement. Bodily
entanglement is defined as an overarching concept entailing the synchronization of bodies
and their distance [20]. Entanglement as a social network metric has been proven to be an
indicator of team performance, employee turnover, individual performance, and customer
satisfaction [20]. The concept is based on earlier research that studied various forms of
human synchronization, emotional body language, and activities that lead to a state of
connection and flow between individuals [20].

Research on the estimation of body synchronization in a group of jazz musicians
focuses on understanding how musicians coordinate their movements and actions during
a performance. At the same time, we also look at how this is related to the overall flow,
entanglement, and collective emotional behavior of the group. Glowinski, D. et al. [21]
explore the automatic classification of emotional body movements in music performances
using machine learning. Their study aims to develop computational models that can
recognize and classify the emotions expressed through body movements. Participants
performed musical tasks while their movements were analyzed and used to train machine
learning algorithms. The results demonstrate the potential of automated systems to rec-
ognize affective body movements in music, with applications in affective computing and
human–computer interaction. However, research on predicting the collective emotions
of teams performing music using a quantified metric for body synchronization is lacking
due to the limited availability of reliable tools for multi-person pose synchronization [22].
Existing tools are error-prone and tailored for specific purposes, hindering comprehensive
studies [22]. Furthermore, there is a lack of integrated research, both technically and con-
ceptually, examining the intricate bodily entanglement and flow of performing groups,
such as jazz orchestras, to identify factors influencing group performance. Motivated by the
aforementioned research problems, we inspect ways of examining the relationship between
team entanglement and the collective emotions of a group of jazz musicians.

We study the data from a two-hour jazz rehearsal session performed by an orchestra of
19 musicians who were part of the Jazzaar festival (www.jazzaar.com). Figure 1 depicts mu-
sicians playing diverse instruments during the Jazzaar experiment. The chief contributions
of the research presented in this paper are:

1. We developed a high-performing system for real-time estimation of multi-person
pose synchronization, detecting body synchronization across diverse visual inputs to
calculate synchronization metrics. It leverages Lightweight OpenPose [23] for efficient
pose estimation, achieving a performance of 5-6 frames per second on a regular CPU.
By analyzing pre-recorded rehearsal videos of jazz musicians, we extract 17 body
synchronization metrics, encompassing arm, leg, and head movements. These metrics

www.jazzaar.com


Sensors 2023, 23, 6789 3 of 18

serve as features for our deep learning model. The system incorporates a robust
synchronization metric, enabling accurate detection across various pose orientations.

2. To assess the relationship between facial emotions and team entanglement, we com-
pute the Pearson correlation between facial emotions and various body synchrony
scores. Additionally, we conduct a regression analysis over the time series data, using
body synchrony scores as predictors and facial emotions as dependent variables.
This approach allows us to estimate the impact of body synchrony on facial emo-
tions, providing deeper insights into the connection between team dynamics and
emotional expressions.

3. We propose a machine learning pipeline to predict the collective emotions of jazz
musicians using body synchrony scores to achieve accurate and interpretable results.

Figure 1. Orchestra of jazz musicians playing diverse musical instruments.

Our software differs from existing tools through its real-time capability, reliability in
multi-person pose synchronization, and flexibility in accepting a wide range of inputs. We
also leverage 1D CNNs which are particularly well-suited for processing sequential data,
such as time series data [24], and can capture local patterns and dependencies within a
sequence. The use of convolutional filters also extracts meaningful patterns, which reduces
the need for manual feature engineering.

2. Related Work
2.1. Emotions

Psychologists have developed multiple frameworks to understand and classify human
emotions. When it comes to distinguishing one emotion from another, researchers take two
different perspectives [25]. The first perspective suggests that emotions are distinct and
fundamentally different constructs. The second perspective argues that emotions can be
characterized along a continuum or dimension. Paul Ekman, a renowned psychologist, is a
key proponent of the former. He identifies six primary emotions: anger, disgust, sadness,
happiness, fear, and surprise. According to this theory, other complex emotions can be
derived from these fundamental emotions [26]. Another model known as Plutchik’s wheel
of emotions presents eight core emotions: joy, trust, fear, surprise, sadness, disgust, anger,
and anticipation [27].

The Circumplex model, following the continuum model, was developed by James
Russell [28]. It presents a dimensional perspective on emotions. According to this model,
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emotions are organized in a circular space that encompasses two dimensions: arousal
and valence. Arousal is represented along the vertical axis, whereas valence is depicted
along the horizontal axis. The center of the circle represents a state of neutral valence
and moderate arousal. Within this model, emotional states can be positioned at various
levels of valence and arousal, or at a neutral level for one or both of these dimensions. The
Circumplex model is commonly utilized to examine emotional responses to stimuli such as
words that evoke emotions or facial expressions conveying emotions.

Emotions are commonly expressed through various modes, including language, voice
or tone of speaking, physiology, and facial expressions [29]. Extensive research supports the
notion that both speech data and facial expressions serve as strong indicators for accurately
predicting emotions [30]. Additionally, physiological changes in the body can serve as
important indicators of emotions. They emphasize the significance of physiological cues,
such as heart rate, skin conductance, pupil waves, and hormonal responses, in assessing
and understanding emotional experiences [31].

For instance, Li M. et al. [32] focus on using the pupil wave as a physiological signal
for depression and anxiety assessment because pupil dilation is known to be associated
with emotional arousal and cognitive processes. When an individual experiences different
emotions, their pupils can dilate or constrict in response to changes in the autonomic
nervous system and the release of neurotransmitters. Roessler J., et al. [33] propose a novel
application of emotion recognition using physiological signals through the “Happimeter”
smartwatch. By tracking changes in body signals, such as acceleration, heartbeat, and
activity, the smartwatch predicts individual emotions with high accuracy. They conduct
an experiment over three months in the innovation lab of a bank with 22 employees to
measure individual happiness, activity, and stress. Their research showcases the potential
of using physiological signals for real-time emotion recognition and its impact on promot-
ing well-being and positive behavior. In a previous study, an electrical device worn by
candidates on the chest measured temperature, location, sound, and body acceleration for
sentiment analysis [34]. They experimented in multi-class emotion prediction using heart
rate and virtual reality stimuli, to investigate if the heart rate signals could be utilized to
classify four-class emotions. They used common classifiers like Support Vector Machine
(SVM), K-Nearest Neighbours (KNN), and Random Forest (RF) to predict emotions. An
emotion classifier was built using Decision Tree (J48) and IBK classifiers by collecting the
data on blood volume pulse, galvanic skin response, and skin temperature attaining an
accuracy of 97% [35].

By considering a combination of language, voice, physiology, and facial expressions,
researchers can gain deeper insights into the complex and multi-faceted nature of hu-
man emotions.

2.2. Facial Emotion Recognition (FER)

Emotion recognition models have extensively utilized traditional machine learning
algorithms. Researchers such as Mehta, D. et al. [36] employed Support Vector Machine
(SVM), K-Nearest Neighbours (KNN), and Random Forest (RF) algorithms to achieve
intensity estimation and emotion classification. Happy, S. et al. [37] implemented a facial
emotion classification algorithm that combined a Haar classifier for face detection with
Local Binary Patterns (LBP) histograms of various block sizes as feature vectors. These
features were then classified using Principal Component Analysis (PCA) to identify six basic
human expressions. Geometric feature-based facial expression recognition was explored
by Ghimire, D. et al. [38] who identified 52 facial points as features. These features were
fed into a multi-class AdaBoost and Support Vector Machine (SVM) system, achieving
high recognition accuracy. Advancements in emotion classification research have seen the
integration of deep learning techniques, including Convolutional Neural Networks (CNN)
and Long Short Term Memory (LSTM), a type of Recurrent Neural Network (RNN). Jung, H.
et al. [39] proposed a deep learning approach where one deep network extracted temporal
appearance features from image sequences, whereas another deep network focused on
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temporal geometry features from facial landmark points. Jain, D. et al. [40] combined
LSTM and CNN networks in a multi-angle optimal pattern-based deep learning method to
label facial expressions. In a different study, Kahou, S. et al. [34] discovered the superiority
of a hybrid CNN-RNN model over a standalone CNN for facial emotion recognition when
leveraging multiple deep neural networks for different data modalities. Bhave, A. et al. [41]
construct a model using XGBoost to predict the collective facial emotions of a group of
jazz musicians using electrical signals generated by plants kept in the vicinity. Thus, the
field of emotion classification has witnessed the incorporation of advanced deep learning
techniques, demonstrating their efficacy in capturing nuanced emotional information from
facial expressions. These approaches offer promising avenues for improving the accuracy
and complexity of emotion recognition models.

3. Methodology
3.1. Extracting FER Time Series Data

In this experimental study, we have utilized the face emotion recognition (FER) algo-
rithm developed by Page, P. et al. [42]. The real-time output of this algorithm is depicted
in Figure 2, showcasing its effectiveness. To achieve facial emotion recognition, we have
employed the faceapi.js JavaScript API (available at https://justadudewhohacks.github.io/
face-api.js accessed on 15 February 2023). This API, built on top of the TensorFlowJS core
API, enables face recognition directly within the web browser. The faceapi.js API consists
of two separate neural networks, one for face detection and another for face expression and
emotion recognition. During the experiment, the FER algorithm receives frozen frames
per second from the video window, capturing the feeds from all participants’ cameras. For
each detected face, the model calculates the average probabilities for the current emotion
every second. This process involves assigning a probability between 0 and 1 to each recog-
nized emotion, including neutral, happy, sad, angry, fearful, disgusted, and surprised. For
instance, a label like “angry (0.8)” indicates that the particular face appears 80% angry and
has a 20% likelihood of being annoyed or disgusted, as predicted by the model.

Figure 2. Output of the real-time group Face Emotion Recognition (FER) algorithm.

To determine the overall audience emotion score, we calculate the mean face emotion
value from all the detected faces. This approach allows us to obtain a comprehensive
understanding of the collective emotional state of the audience. By leveraging the FER
algorithm and faceapi.js, we are able to analyze facial expressions in real-time, assigning
probabilities to various emotions and deriving an aggregate measure of audience emotion.

https://justadudewhohacks.github.io/face-api.js
https://justadudewhohacks.github.io/face-api.js
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This detailed assessment facilitates a deeper exploration of the emotional dynamics within
the audience and enhances our understanding of their emotional responses.

3.2. Team Entanglement

Entanglement is a metric that measures the synchronization of communication in work
settings. It focuses on the similarity of communication patterns among team members,
indicating the extent to which they communicate in a synchronized rhythm. The research
on entanglement is motivated by the discovery that synchronized physiological signals
between team members can enhance performance, as well as the concept of flow state,
where intentions are synchronized and actions are harmonious [43,44]. In the organizational
context, entanglement quantifies the flow state and synchronization in team communication,
considering the internet-mediated interpersonal synchronization [45]. It uses the similarity
of communication time series, such as emails, as a proxy for synchronization, while also
considering the distance between individuals involved in the activity.

Gloor, P. et al. [20] suggest the study of entanglement via body measures. The two
overarching components of bodily entanglement are synchronization and distance. Entan-
glement describes the synchronization of communication but also compares the distance of
actors’ network positions to derive information on their interweaving. Synchronization
itself is measured in terms of the difference between variables describing actor behavior.
Distance defines the difference in the actors’ positions in the network. As synchronization
is measured through the difference in a certain behavior of actors, a mapping to the human
body is proposed by comparing the postures of individuals via a pose similarity metric. The
distance measure, which compares the actors’ positions in the social network, is proposed
to be transferred by studying the difference in their physical positions in the room. Defining
bodily entanglement is a possible variation of entanglement; it can be composed of bodily
synchronization and distance. Body entanglement is loosely defined as the set E of body
part synchronization Sb and body distance d.

E = {S, d} (1)

Gloor, P. et al. [20] explore the effect of entanglement on team performance in the
context of social networks. A hypothesis of the effect of bodily entanglement on team
performance is derived. Figure 3 summarizes the research model and explains how this
hypothesis is derived.

Figure 3. Research model for effect of bodily entanglement on team performance.
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3.3. Real-Time Estimation of Multi-Person Pose Synchronization

We create a dedicated software measuring entanglement and body pose synchroniza-
tion [22]. The software generates synchronization values for an individual body part. The
software is a real-time multi-person pose synchronization estimation system, designed to
be user-friendly, intuitive, and fast in execution. To address the limitations of previous
synchronization measures and encompass a broader understanding of synchronization,
four different types of synchronization metrics are made available in this software. These
metrics aim to incorporate perpendicular body part differences into the synchronization
score and provide the option to compare opposite-body sides, considering mirroring as a
form of synchronization. The system’s implementation adheres to the designed framework
and employs an analysis pipeline for each input frame. This pipeline includes pose estima-
tion, derivation of pose synchronization, body distance, and body height for the current
frame. At the end of the system run, tabular and visual output is generated and provided
to the user.

During the implementation process, Lightweight OpenPose [23], an efficient pose
estimation model, is used. The system achieves an average frame rate of 5.5 fps on a
Mac M1 8-core CPU. It incorporates four synchronization metrics and offers two different
output formats. The design of the system is visualized in Figure 4. The exemplary visual
output generated by the software for input of recorded videos of jazz rehearsal is shown in
Figure 5. We further describe the three major components implemented in the system.

Figure 4. Components of the real-time multi-person pose synchronization software.
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Figure 5. Exemplary visual output generated by our multi-person pose synchronization software.

3.3.1. Pose Estimation

In this system, pose synchronization analysis relies on pose estimation, which refers
to the process of determining the positions of human body joints using visual data, such
as images or videos [46]. The system implements Lightweight OpenPose, which runs
inference with 28 frames per second on a device with CPU access [23]. Lightweight
OpenPose follows a bottom-up approach to pose estimation. The bottom-up approach
involves initially detecting all the joints in an image, without prior knowledge of the
number of individuals. Once all the keypoints are detected, they are then grouped based on
the individuals present. In contrast, the top-down approach works in the opposite direction
by first identifying the person instances in the input image. Subsequently, pose estimation
is carried out for each individual instance [47]. Figure 6 [48] illustrates these differences.

The bottom-up approach proves to be more effective than the top-down approach
when dealing with input images that have significant occlusions and complex poses. How-
ever, it tends to generate more false positives since it does not leverage body structure
information. On the other hand, top-down approaches make better use of this information
but struggle with complex poses and crowded scenes [49]. Images that pose challenges for
top-down implementations, for instance, may exhibit characteristics such as pronounced
torso rotation, cluttered backgrounds, or loose clothing that obscures body outlines [50]. A
notable advantage of the bottom-up approach, which justifies its application in the devel-
oped system, is its resilience to the number of people present in the input image. Although
top-down approaches require separate passes through the network for each person instance,
resulting in increased execution time proportional to the number of individuals, bottom-up
approaches perform a single pass on the input image. As mentioned earlier, the network
outputs the overall image keypoints, and subsequent grouping of keypoints per person is
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conducted without the need for additional forward passes. Therefore, the processing time
only marginally increases with higher person quantities [51].

Figure 6. Bottom-up and top-down approaches for multi-person pose estimation.

Based on the estimated body joints, we refer to body parts as the vector between
two adjacent keypoints, as listed in Table 1. The detected joints, or keypoints, are further
illustrated in Figure 7.

Table 1. Body parts and corresponding keypoint vectors.

Body Part Keypoint Vector

Right Shoulder Section neck → r_sho
Left Shoulder Section neck → l_sho

Right Upper Arm r_sho → r_elb
Right Lower Arm r_elb → r_wri
Left Upper Arm l_sho → l_elb
Left Lower Arm l_elb → l_wri

Right Upper Bodyline neck → r_hip
Right Upper Leg r_hip → r_knee
Right Lower Leg r_knee → r_ank

Left Upper Bodyline neck → l_hip
Left Upper Leg l_hip → l_knee
Left Lower Leg l_knee → l_ank

Neck Section neck → nose
Right Nose to Eye Section nose → r_eye
Right Eye to Ear Section r_eye → r_ear
Left Nose to Eye Section nose → l_eye
Left Eye to Ear Section l_eye → l_ear
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Figure 7. Body keypoints estimated by Lightweight OpenPose.

3.3.2. Synchronization Calculation

The system provides two types of mapping—linear and perpendicular. In the perpen-
dicular approach, a 90° angle between body part vectors indicates a complete absence of
synchronization, whereas angles approaching zero degrees indicate an improvement in
synchronization. Angles nearing 180° also signify an enhancement in synchronization. In
contrast, a linear synchronization variant interprets an angle of 180° as a complete lack of
synchronization, with synchronization improving as the angle approaches 0°. The system
encompasses four synchronization metrics as demonstrated in Figure 8 that are defined
based on two key axes: the point of minimal synchronization: 90° angle or 180° angle
and the body parts being compared: same-side or opposite-side as shown in Figure 9.
The first axis focuses on how the angle between body part vectors is translated into a
synchronization score, where the score can be zero at either a vector angle of 90° or 180°.
The second axis distinguishes synchronization based on whether it considers same-side
body parts or opposite-side body parts. This classification allows the system user to choose
the most suitable metric for their specific use case, ensuring flexibility and adaptability.
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Figure 8. Dimensions and variants of synchronization metrics available in our software.

Figure 9. Same-side and opposite-side synchronization options.

3.3.3. Distance

The pose distance in the system is determined by using the hip centers of the poses
as reference points. The hip center would be the center between the two keypoints L-Hip
and R-Hip, as shown in Figure 7. This approach yields a more stable time series compared
to using reference points located on the limbs, which tend to exhibit higher degrees of
movement. By calculating the Euclidean distance between the hip centers and multiplying
it by the normalization factor ’H’, which is the sum of pose-independent body heights ’h’,
we obtain the distance between poses.

3.4. Data Extraction and Pre-Processing

The raw dataset of facial emotions comprises time series data for all seven emotions,
namely angry, sad, disgusted, neutral, happy, surprised, and fearful. Each emotion is repre-
sented as a probability score ranging from 0 to 1, reflecting the likelihood of that emotion
being expressed collectively at each second. For instance, a single data point in the dataset
might indicate the following emotion probabilities: angry = 0.674142, happy = 0.152293,
sad = 0.118742, neutral = 0.027505, disgusted = 0.007242, surprised = 0.019037, and
fearful = 0.001040. In this example, angry has the highest probability, indicating that the
dominant collective emotion for that specific moment would be labeled as angry. To obtain
the Y column of our dataset, we further ascertain the dominant collective emotion for each
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data point and assign a label accordingly. For our data, we observe that the Y column con-
sists of the labels happy, sad, and angry since these are the dominant collective emotions. To
extract the group synchronization features, we employ the software discussed in Section 3.3,
which provides us with a comprehensive set of 17 body synchrony metrics. Within this
software, we are offered a selection among four distinct synchronization metrics. Among
these options, we opt for the perpendicular variant, as it is purported to offer superior
outcomes compared to the linear variant. Given the context of our analysis, wherein all
the musicians are oriented toward the audience during their performance, it is worth
noting that the notion of opposite-side synchronization would only hold significance if
two individuals were engaged in a face-to-face interaction, such as a conversation. Thus,
the same-side variant emerges as the most suitable for our purpose. The body synchrony
scores include keypoint vectors represented as values per second, which constitute the
’X’ component of our dataset. After data cleaning and feature scaling, an imbalance is
observed in the classes present in the Y column. The original data comprises 54% happy,
42% sad, and 4% angry samples.

We use min–max normalization to linearly rescale each feature in the dataset to map
the original feature values into a specified bounded range of 0 to 1. This preserves the
relative ordering of data points while aiding numerical stability and convergence in the
machine-learning algorithm.

To address this bias, we utilize SMOTE (Synthetic Minority Oversampling Tech-
nique) [45] to generate synthetic samples, resulting in a balanced dataset with each label
representing 33.3% of the samples.

SMOTE generates synthetic samples for the minority class by interpolating feature
vectors between existing minority class examples and their k-nearest neighbors in the
feature space, mathematically producing new data points that lie on the line segments
connecting the original instances. We use cubic spline interpolation to approximate a
smooth curve between data points by fitting cubic polynomials in each interval that ensures
continuity of the first and second derivatives at the data points, providing a piece-wise
continuous and differentiable curve that minimizes interpolation errors.

Additionally, we employ Stratified K-Fold Cross Validation (K = 3) to obtain train
and test data splits, which aids in preventing overfitting, reducing bias resulting in the
development of a generalized model.

4. Results
4.1. Correlation Analysis

We carry out a correlation analysis using the Pearson correlation coefficient comparing
facial emotions and body synchrony scores.

Pearson correlation is a statistical measure that quantifies the linear relationship
between two variables by computing their covariance divided by the product of their
standard deviations. Section 5 also mentions significance values that indicate the probability
of obtaining this correlation by chance alone, derived from a hypothesis test.

We observe an overall negative correlation between the facial emotions of disgust,
surprise, anger, fear, and sadness and the body synchrony scores. The value of N for
these correlations is 7948. In Section 5, we further discuss and interpret the correlations
showcased in Figure 10.
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Figure 10. Diagonal correlation heatmap of body synchrony scores and the collective emotions of
disgust, surprise, sadness, anger, and fear.

4.2. Regression Analysis

We perform a regression analysis on the independent variables of the body synchrony
metrics (keypoint vector scores) and the dependent variables (collective facial emotions).

We use the stepwise regression forward selection, an iterative algorithm in linear
regression that optimizes the model fit by sequentially introducing predictor variables
based on a predefined criterion, such as the maximization of a goodness-of-fit measure
(adjusted R-squared), where each iteration adds the most relevant predictor and continues
until further improvements are insignificant or a stopping condition is met.

In the SPSS tool, we choose the dependent variable as the disgust emotion and the
predictors as 17 body synchrony scores and achieve an adjusted R squared value of 0.584.
The value of N for this regression analysis is 6941. Table 2 exhibits the results of the
regression analysis.

4.3. Deep Learning Model

The collective facial emotions of jazz musicians are predicted by utilizing body syn-
chrony features extracted from the entanglement software.

XGBoost achieves an accuracy of 57.171% on our training data, but we favor 1D CNNs
since it is particularly well suited for sequential data [24] like our time series dataset. 1D
CNNs automatically learn relevant features, reducing manual feature engineering, unlike
XGBoost which relies on handcrafted features.

XGBoost is an optimized gradient boosting algorithm that uses an ensemble of weak
learners (typically decision trees) and applies regularization to prevent overfitting. It
minimizes the sum of a specific loss function over the predictions and the gradients of
the loss function to iteratively improve the model’s performance. A 1D Convolutional
Neural Network (CNN) is a type of deep learning architecture designed to process one-
dimensional sequential data, such as time series or sequences. It applies a one-dimensional
convolution operation, utilizing filters to extract local patterns from the input data, followed
by non-linear activation functions and pooling layers to learn hierarchical representations
and reduce spatial dimensions.
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Table 2. Regression Analysis using SPSS (dependent variable = ’disgust’; R sq. adj = 0.584).

Unstandardized
Coefficients

Standardized
CoefficientsModel

B Std. Error Beta
t Sig.

(Constant) 0.008 0.000 25.629 5.28× 10−10

synchrony_r_knee_to_r_ank −0.004 0.000 −0.371 −32.068 1.19× 10−10

synchrony_neck_to_l_hip 0.010 0.002 0.456 5.473 4.68× 10−10

synchrony_neck_to_r_sho 0.033 0.001 1.451 32.711 6.23× 10−10

synchrony_neck_to_r_hip −0.022 0.001 −1.118 −15.128 2.00× 10−10

synchrony_r_sho_to_r_elb 0.020 0.001 0.823 20.699 7.74× 10−10

synchrony_neck_to_nose −0.020 0.001 −0.789 −20.238 4.30× 10−10

synchrony_neck_to_l_sho −0.014 0.001 −0.695 −11.820 9.44× 10−10

synchrony_r_eye_to_r_ear −0.012 0.001 −0.417 −16.156 4.67× 10−10

synchrony_nose_to_l_eye 0.012 0.001 0.414 10.885 3.06× 10−10

synchrony_l_sho_to_l_elb −0.012 0.001 −0.567 −9.294 2.29× 10−10

synchrony_l_knee_to_l_ank −0.002 0.000 −0.115 −9.702 4.96× 10−10

synchrony_nose_to_r_eye 0.005 0.001 0.226 5.763 8.83× 10−10

synchrony_r_hip_to_r_knee 0.003 0.000 0.123 5.084 3.84× 10−10

synchrony_l_hip_to_l_knee −0.003 0.001 −0.136 −5.071 4.11× 10−10

To achieve this, a Fully Connected Network incorporating 1-d Convolutional Neural
Network and Dense Layer is employed for a multi-class classification task. 1-D CNN applies
a set of learnable filters (also known as kernels) to the input features. Each filter performs
a convolution operation by sliding over the input and calculating dot products between
the filter and the local input patches. This process helps in capturing local patterns and
features. We build a CNN-based deep learning model for predicting collective emotions
using body synchrony scores. The neural network architecture is as follows. The input
layer consists of the 17 body synchrony scores. The Convolutional Neural Network (CNN)
comprises three 1-D Convolution layers with a kernel size of 3, filter size of 32, 64, and 64,
respectively, and ReLU activation function. The layers are interleaved with Max Pooling
layers of size 2. The output of these layers is flattened and fed to Dense layers of 64, 32,
and 3 units. The activation function used for Dense Layers is ReLU except for the last layer,
which employs the Softmax Activation. We use Adam Optimizer (learning rate of 0.0001) and
a batch size of 100 for the dataset. The categorical cross-entropy loss is used for the multi-class
classification. We notice saturation during training at around 17 iterations; hence, we fix the
number of epochs to 20 and train the model on an NVIDIA Tesla K80 GPU. We achieve a
training accuracy of 61.467% and a test accuracy of 66.168% depicted in Figure 11. Figure 12
demonstrates the confusion matrix for our deep learning model. Figure 13 displays the
decrease of train and test loss as we reach saturation within 20 epochs.
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Figure 11. Train and test accuracy of our deep learning model.

Figure 12. Confusion matrix of our deep learning model.

Figure 13. Train and test loss of our deep learning model.

5. Discussion

We refer to Figure 9 for interpreting the results of our correlation analysis. For the
collective emotion of disgust, the r values of r_knee_to_r_ank (−0.51), l_hip_to_l_knee (−0.39),
r_hip_to_r_knee (−0.35) and l_knee_to_l_ank (−0.35) are particularly highly negative, indicat-
ing a negative correlation between the leg movements of jazz musicians and the collective
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emotion of disgust. We also observe that the neck_to_nose (−0.43) and l_eye_to_l_ear (−0.39)
values are negatively correlated with the disgust emotion. The movement we are looking
at over here is the shaking of their head. Apart from the movement of the legs and head,
we also look at the hand movements. The r values of r_elb_to_r_wri (−0.41), l_elb_to_l_wri
(−0.41), r_sho_to_r_elb (−0.36) and l_sho_to_l_elb (−0.41) reveal that the hand movements
of the jazz musicians are also highly negatively correlated with the emotion of disgust. All
the above correlations have a significance value (p) of less than 0.0001. We corroborate that
the musicians engaging in jazz have reduced levels of disgust and strong feelings of liking
and enjoyment and have the potential to foster a state of synchronicity and flow, wherein
they individually and collectively experience a harmonious alignment in their thoughts,
actions, and emotions. Correlation of the surprise emotion is also observed to be nega-
tive having values of r_elb_to_r_wri (−0.44), r_knee_to_r_ank (−0.41), neck_to_nose(−0.37),
l_sho_to_r_elb(−0.36) and l_elb_to_l_wri(−0.36) with a significance value (p) of less than
0.0001. This can be understood as an implication where being less surprised, having an-
ticipation, prior instrument practice, and being well-rehearsed can be directly connected
to being in a state of flow and synchronization. The musicians are more likely to be en-
tangled when they collectively practice more to attain perfect synchronization. Other
correlations with emotions of sadness, anger, and fear also prove to be negative implying
that synchronization in head, arm, and leg movements among musicians indicates strong
team entanglement and a state of flow with the musicians feeling more joyous.

6. Limitations

A key limitation of this work is that the evaluation is based on data from a relatively
small group of musicians. Hence, data scarcity is one of the limitations observed. Synchro-
nization estimation can also be improved by integrating multiple camera views. This way,
occlusion issues can be prevented and synchronization scores become more robust. For the
current data, we handled the occlusions by removing data points that had an obstructed
camera view as well as eliminating the snippets where the musicians were not seen to be
playing instruments explicitly.

7. Future Work and Conclusions

We presented a deep-learning approach for detecting group facial emotions leveraging
body synchrony scores as features extracted from real-time multi-person pose synchroniza-
tion software. We achieve a training and test accuracy of 61.467% and 66.168%, respectively.
We also were able to draw conclusions about the correlations between the collective facial
emotions of musicians and the synchronization between head, leg, and arm movements.
Future directions include predicting human emotions using a larger dataset containing
more musicians. We also envision implementing state-of-the-art deep learning models
and studying different modes of data for emotion recognition like physiological signals or
electrical signals generated by plants in the vicinity. This can help us discover interesting
relationships between body synchrony, multi-modal data, collective emotions, and group
flow. We aim to build emotion recognition models that use multiple modes of data to yield
a higher accuracy while also preserving human privacy and safety.
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