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Abstract: Unique identification of machine parts is critical to production and maintenance, repair and
overhaul (MRO) processes in the aerospace industry. Despite recent advances in automating these
identification processes, many are still performed manually. This is time-consuming, labour-intensive
and prone to error, particularly when dealing with visually similar objects that lack distinctive features
or markings or when dealing with parts that lack readable identifiers due to factors such as dirt,
wear and discolouration. Automation of these processes has the potential to alleviate these problems.
However, due to the high visual similarity of components in the aerospace industry, commonly used
object identifiers are not directly transferable to this domain. This work focuses on the challenging
component spectrum engine tubes and aims to understand which identification method using only
object-inherent properties can be applied to such problems. Therefore, this work investigates and
proposes a comprehensive set of methods using 2D image or 3D point cloud data, incorporating
digital image processing and deep learning approaches. Each of these methods is implemented to
address the identification problem. A comprehensive benchmark problem is presented, consisting
of a set of visually similar demonstrator tubes, which lack distinctive visual features or markers
and pose a challenge to the different methods. We evaluate the performance of each algorithm to
determine its potential applicability to the target domain and problem statement. Our results indicate
a clear superiority of 3D approaches over 2D image analysis approaches, with PointNet and point
cloud alignment achieving the best results in the benchmark.

Keywords: visual part identification; similar object; object-inherent features; machine vision; neural
networks

1. Introduction

For industrial applications, the unambiguous identification of parts is of great impor-
tance to allow efficient assembly and maintenance processes as well as traceability and
task supervision. Typically, industrial components are identified through their unique
serial or part number (P/N) that can, for example, be read from imprinted 1D/2D codes,
Radio-Frequency Identification (RFID) tags or attached stickers that indicate the com-
ponent type. A major challenge in part identification is that some components do not
feature a part number, and identifiers get lost or are unreadable due to dirt, wear and
discolouration. A possible solution is markerless identification using visual object-inherent
characteristics [1,2]. The identification tasks can become quite demanding for objects that
share a high degree of visual similarity if no distinct and unique features or markers
are present.

This work is motivated by aircraft maintenance, repair and overhaul (MRO) processes,
in which the major share of tasks is carried out manually and requires the expertise
and knowledge of a skilled and experienced employee. Aircraft engine tubes inspected
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during MRO processes form an especially demanding target domain for identification
as they share high visual similarity with each other and have multiple resting positions,
movable flanges and a non-unique colour scheme. After disassembly, engine tubes must
be cleaned before their inspection. The determination of the correct type is therefore
required to choose the corresponding cleaning and inspection procedures. Currently, the
identification task is performed manually through a visual check. During operation in
an aircraft, P/Ns often become unreadable or damaged, so the identification becomes
a time-consuming, personnel-intensive and error-prone task as component recognition
without distinct features is difficult. There is huge potential for improvement through
the application of modern identification techniques based on machine vision. Generally,
identifying industrial components without additional markers allows for multiple tasks
such as automated supervision of assembly tasks, quality control, part sorting [1,3] or
robotic bin picking to be carried out.

Advances in markerless object recognition can be used to develop all kinds of applica-
tions in areas such as production, logistics, maintenance and quality assurance in a wide
range of industries where the usage of markers is not feasible or inconvenient. Various
image processing and machine learning techniques can be used to identify such objects in
industrial processes. However, mainly due to the high visual similarity of components in
the aircraft industry, commonly used object identifiers lack direct transferability towards
this domain. With different approaches being successfully used for regular object identifi-
cation in principle, it is unclear which of those are applicable despite such challenges. In
the literature, there is very little information about the object recognition of highly similar
industrial objects [2,4]. Moreover, scene context can also influence performance, yet there is
only little available data dealing with industrial applications [5].

Therefore, this work presents an analysis and investigation of possible approaches
for identifying visually highly similar components. This contribution aims to close the
knowledge gap between the availability and applicability of possible recognition strategies
for this difficult target domain.

For this purpose, the properties of aircraft engine pipes are analysed and characterised,
and suitable approaches are implemented and then investigated concerning their potential
suitability for a target domain characterised by a high degree of similarity and few distinct
features. We aim to provide a proof-of-concept evaluation for different approaches solely
based on object-inherent properties and provide a comparison using a small test dataset. We
then assess and discuss the approaches’ difficulties to provide information on how to use
those for later practical applications, potential improvements and in further research. With
our contribution, we show that the proposed approaches are in principle suitable for identi-
fying such components despite the lack of characteristic visual features. We also propose a
human-in-the-loop system based on our findings suitable for practical application.

The rest of this paper is organised as follows: Section 2 introduces related work for
object identification in an industrial context with a focus on settings that feature objects with
a high degree of similarity among each other. Then, the identification concept and suitable
approaches alongside the dataset used for evaluation are presented in Section 3. We explain
and discuss possible approaches and methods to find those suitable for implementation
and perform a comparison with our test data. Following this, Section 4 describes the
implementation details and pipelines of the developed and investigated approaches. The
results obtained with the proposed identification techniques using our 2D and 3D test
datasets are presented in Section 5 alongside a discussion about possible improvements
and further work required. Then, this contribution is closed with a conclusion in Section 6
that summarizes the most important findings, discusses practical applicability and presents
a future outlook.

2. Related Work

For object recognition using 2D images, comparatively simple approaches such as
image feature matching, template matching or bag-of-visual-words pipelines can be used.
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Another possibility is to use object contours and silhouettes seen from a bird’s eye view
(BEV) or the calculation and comparison of geometric properties, such as the spatial extent.
In the context of industrial applications, Ref. [6] proposes the use of simple geometric
properties and contour outlines for the industrial sorting of regular geometric workpieces.
The application of template matching for a part-sorting system is demonstrated in [7] using
images from BEV perspective. The authors in [8,9] propose a framework for machine
product inspection based on features computed from colours and textures. A prototype
for object identification in logistics and warehouse management is presented in [1]. Their
system uses multiple cameras and a scale to gather the objects’ physical dimensions and
applies image feature matching for comparison with a pre-recorded database of known
objects. The detection of unique, characteristic image keypoints and their description with
algorithms such as Scale-Invariant Feature Transform (SIFT) [10] or Oriented FAST and
Rotated BRIEF (ORB) [11] and a following comparison with reference images establishing
correspondences is a common strategy often used for the processing of stereo images, object
detection and tracking or panorama stitching. The concept is further extended by [3] with
the introduction of a Convolutional Neural Network (CNN) for image processing.

Another commonly used method is direct image classification with neural networks
such as CNNs. The rising popularity of Deep Convolutional Neural Networks (DCNN)
led to an increase in openly available image classification architectures such as VGG [12],
ResNet [13], MobileNet [14], DenseNet [15] and InceptionNet [16]. With their capability to
handle complex scenes and a variety of use cases, their industrial applicability is sufficiently
proven. A major drawback is the required extensive training and the availability of training
data. In [17], this problem is addressed by using synthetic data. The successful use of
synthetic training data for the domain of aircraft production and logistic scenarios is
addressed by [18,19]. A variety of application scenarios for object identification of industrial
components with a high degree of similarity using CNNs are shown in [2,4,20–24]. A
very common application is the identification of fasteners and screws. In [4], the CNN-
based identification of screws, washers and nuts using greyscale images is demonstrated.
Another approach for screw-type classification in disassembly processes [23] employs
top-view images, Hough-transform to obtain screw candidate proposals and a CNN for
the final classification. A comparison of different CNN models for fastener and washer
categorisation in aircraft overhaul processes is presented in [24]. Other applications include
the visual identification of electric power fuses [20] and the classification of a variety of
electro-mechanical components that feature high intra- and inter-class similarity [22].

Similar to [17], the work of [2] focuses on classifying small parts such as screws and
nuts. Their novel contribution is the inclusion of a reference object in the identification
process with a CNN. The resulting heavily improved classification accuracy indicates
that this approach is promising. A related approach is employed in [21] that shows the
classification of bolts and nuts with a CNN and also uses a reference object for visual
calibration. The possible applicability of DCNN for identifying similar components can
also be inferred from the works of [17], where small-scale automotive parts are identified
through a multi-stage analysis pipeline. They compare different CNN architectures and
identify challenging component properties such as (1) similar geometric scale, (2) being
geometrically identical and only distinguishable by colour and (3) geometrically mirrored
parts. Following these challenges, the work of [25] contributes a methodology to identify
such identification challenges and suggests using multi-stage classification algorithms.

Sensor fusion of multiple perspectives and sensors is used in a system presented
by [17]. As this work focuses on a comparative study between multiple methods for similar
components, such a sophisticated and individually engineered multi-stage pipeline is out
of the scope of this work. Nevertheless, the challenges identified in that work remain valid
for the application domain that we address in this work. Further investigations regarding
the applicability of deep-learning-based architectures to such use cases are needed. In
addition, the emergence and promising results of transformer architectures may indicate a
suitable alternative to the limitations that result from the use of DCNNs and will also be
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investigated in this study as existing studies focus on CNNs for the given task. Another
alternative approach to the direct application of CNNs is the usage of siamese neural
networks as proposed in [26]. Such a system uses two neural networks with the same
weights to allow for the comparison of an image with a reference image by computing the
distance between the feature vectors.

Regarding the usage of 3D data, a database designed for industrial object identification
and pose estimation use cases is presented in [5] as there is a deficit of databases for
industrial use cases and scene context is considered an important factor for successful
object identification. The authors also apply shape-based 3D matching, point-pair voting
and RANdom SAmple Consensus (RANSAC)-based feature matching as exemplary object
recognition algorithms. An approach that detects geometric keypoints in point clouds and
compares them with 3D models is introduced in [27]. A pipeline for 3D object recognition
using only 2D camera images [28] combines scale-space and multiple virtual views from
Computer-Aided Design (CAD) data for matching. The identification of similar mechanical
parts in turbocharger CAD models using point clouds and a neural network is presented
in [29]. The authors evaluate the applicability of PointNet to identify components in
synthetically generated point clouds and show that it is suitable for such a task.

Based on the reviewed literature, it can be derived that the majority of the approaches
and concepts are limited in certain parameters, rendering them unsuitable for the identi-
fication task at hand. Most of the approaches are constrained to images taken from BEV
while investigating a target domain that has a limited spectrum of possible resting positions
such as screws, washers and nuts [2,4,21,23,24]. As we have a multitude of previously
unknown resting positions and quite complex pipe geometries, such approaches cannot be
employed. Others, such as [8,9,22], rely on the presence of textures and colours—a feature
not present within our target domain. Regarding the usage of 3D data for the classification
of highly similar objects, there is a clear lack of studies in the literature. The evaluation
in [29] shows that PointNet can be used for such a task, but the performance is assessed
using synthetically generated point clouds; a real-world experiment with recorded data to
prove applicability in practice is still missing.

3. Analysis, Concept Creation and Data Preparation

The investigated industrial use case that motivates this work deals with the iden-
tification of turbine pipes that need to undergo regular inspection, for which they are
disassembled and removed from the aircraft. Following, all parts are roughly cleaned
and pre-sorted to facilitate the subsequent identification and sorting required for cleaning
and thorough inspection. Currently, a skilled employee carries out the identification task
manually based on visual characteristics, markers and experience. To enable machine
vision identification using either 2D or 3D data, the properties of the target domain need to
be analysed to make a reasonable selection of suitable approaches. The following presents
an analysis of the target domain, explains the fundamental ideas of potential identification
methods and describes the selection made as well as the dataset used for evaluation.

3.1. Analysis of the Target Domain

The investigated target domain, exemplary images are displayed in Figure 1, consists
of aircraft turbine pipes that can be described as long, slender objects with lengths ranging
from a few centimetres up to about 80 cm. Most of the pipes have a much larger spatial
extent in width and length as compared to their height. Nevertheless, some pipes also
have significant extension in height and, therefore, a distinctively different appearance
depending on the perspective chosen. Most of the pipes have two ends, but manifold pipes
with multiple ends are also present. The pipe ends differ as there are threaded ends, fixed
screw flanges, movable screw flanges, spigots, sockets and mandrels. The pipe surface is
primarily metallic, highly reflective and without distinct textures. Discolouration, soiling
and wear occur commonly but irregularly and, therefore, cannot serve as unique features.
Due to an extension in all three spatial directions and the presence of flanges and mounting
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brackets, multiple resting positions are possible, as well as self-occlusion and casting of
shadows depending on the lighting conditions.

Figure 1. The target domain comprises aircraft engine pipes. They are characterized as long slender
objects and differ with respect to their ends, drillings and attached mounting brackets and flanges.
Discolouration, soling and wear of the textureless, metallic surface are common after flight operations.

Like in the current investigation and during the later practical application in MRO
processes, often no CAD data or technical drawings are available, thus a set of demonstrator
pipes is used for testing and evaluation purposes. First, a set of 15 2D demonstrator pipes
bent from stainless steel tubes with diameters of 6 mm (6 parts) and 8 mm (9 parts) was
available. All pipes had a metallic reflective surface and no further visible characteristics or
modifications. In addition, another 3D demonstrator set was used, which was composed
of ten 3D-printed pipes fabricated from black plastic with diameters of 8 mm, 12 mm and
15mm. For the sake of simplicity, no features such as flanges or threaded ends were added.
The only visible characteristics were fine grooves caused by the individual printing layers.

3.2. Selection of Approaches

Various approaches to processing 2D or 3D data are conceivable for the object iden-
tification task. Relevant criteria for the selection are mainly the expected performance
for the presented target domain and later applicability in MRO processes. In addition,
the availability of required data, algorithms for data processing and the enabling effort
are considered important factors. As the target domain is poorly studied, approaches
offering good traceability and understandability capabilities, as well as possibilities for
visualization, are preferred as they can provide useful information regarding their later
applicability and possible application limitations. Visual object recognition approaches
can be categorised into methods processing 2D data and algorithms designed for 3D data,
among which suitable techniques must be selected.

3.2.1. 2D Methods

As introduced in Section 2, comparatively simple approaches such as template match-
ing, a comparison of calculated geometric features (e.g., spatial extent or covered area) or
properties describing the contour or silhouette [6] using BEV images are conceivable for the
2D domain. In addition, the application of image feature matching [1,3] with algorithms
such as SIFT [10] and ORB [11] can be used to recognize known objects by comparison with
reference images establishing correspondences and evaluating the matching quality. For
image feature matching, the availability of unique image characteristics within the images,
as well as sufficient and realistic image captures, is essential.

In addition, AI-based solutions with CNNs [2–4,17] and transformer networks can
be used. With the help of neural networks, image content can be directly processed
and classified. However, this requires prior training with a sufficiently large dataset
that describes the target domain as completely as possible. To address the problem of
unavailable training data, synthetic generation is a possible solution [18,19].
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3.2.2. 3D Methods

Other promising approaches rely on processing 3D data, such as point clouds. In
principle, two methods for the task can be distinguished. The first uses a comparison of
acquired point clouds with reference point clouds establishing correspondences between
the recording and reference. Similar to 2D image feature matching, keypoints can be used
here to establish correspondences [27,30] or shape primitives found in the point clouds are
feasible for similarity assessment [31]. An evaluation of the matching quality allows to
determine whether the object of interest is contained within the recorded point cloud. The
second approach for 3D data uses neural networks for classification. Exemplary networks
are VoxNet [32], 3D ShapeNets [33], DeepShape [34] or PointNet [35] and its successor
PointNet++ [36]. Here, the neural networks are trained with huge amounts of training
data to allow direct classification of point clouds, given the training dataset sufficiently
represents the target domain.

3.2.3. Selection

A common problem with the 2D approaches is mediocre expectable performance.
The target domain dealt with during MRO processes is composed of 3D objects with
multiple resting positions, self-occlusions and strong differences in appearance based
on the chosen recording perspective. Additionally, only very few characteristic, unique
features or image keypoints that are needed for both the application of CNNs and image
feature matching approaches can be found on the pipes. Discolouration, damage and a
high visual resemblance to each other are major challenges for CNNs and image feature
matching approaches. Nevertheless, classification employing geometric properties and
pipe-specific features derived from the object contours and silhouettes seems promising
due to its simple calculation and the comprehensibility of the decision making using
such features. In addition, the application of a 2D transformer network seems promising
since such networks are capable of dividing the image into multiple patches and thus can
detect patterns despite multiple resting positions and views. As a simplification, only 2D
demonstrator pipes will be investigated for this purpose to evaluate principle applicability.

As it can be expected that 3D approaches are best suited for the identification task at
hand, two methods for processing 3D point clouds will be implemented and investigated
in detail. The first is based on the comparison of point clouds with a database using Fast
Point Feature Histogram (FPFH) keypoints. The FPFH feature descriptor [30] is a popular
and widely used 3D keypoint detection algorithm for which an implementation is available
in Open3D [37]. Matching and comparison with a reference can then be carried out through
point cloud registration and alignment and will be described in more detail in the following
section. The second promising option to be investigated is classification with a neural network.
PointNet [35] is chosen as an exemplary network as it is widely used in various domains, is
well documented and is also used for similar industrial object identification tasks [29].

3.3. Dataset

Over the course of this paper, two recorded and an additional synthetic dataset
are used. The first dataset contains 2D images and the second 3D point clouds. In the
following, these are referred to as 2D dataset and 3D dataset, respectively. For both datasets,
a class-balanced portion of 70% of the data is used as the train-split, and the remaining 30%
serves as the test-split. The synthetic 2D dataset contains additional computer-generated 2D
images to enable the training of data-driven approaches. For all datasets, we apply extensive
data augmentation described in more detail for each of the data-driven approaches to allow
the models to be capable of generalizing during training.

The 2D dataset is composed of BEV images of the 2D demonstrator pipes taken from
a fixed distance. Each pipe is assigned a class number ranging from 1 to 15. The pipes
are placed on different backgrounds that can be found in a workshop, namely a wooden
table surface, a white laboratory table surface and a workshop floor. For each pipe and
background, 10 images are taken, except for classes 1 and 12, as these lack diversity due
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to their simple geometry (straight tubes), so only 8 images each are taken. Exemplary
images can be found in Figure 2. It should be noted that the omission of some class 1
and 12 recordings leads to a slight class imbalance, which should generally be avoided for
data-driven approaches. However, the data quality should be sufficient for the intended
demonstration of potentially applicable methods and a subsequent discussion.

The 3D dataset is composed of point clouds of each 3D demonstrator pipe, designated
as classes 1 to 10. For each class, 20 recordings are obtained, resulting in a total of 200 point
clouds. The demonstrator pipes are digitized with an Intel D435i stereo camera mounted on
a frame in an oblique downward perspective while the pipes are lying on a white workshop
table. Between each recording, the pipes are moved, rotated and repositioned by hand. A
simple colour threshold segmentation algorithm is applied to extract the points belonging
to the pipes to obtain the final point clouds. Exemplary recordings and extracted point
clouds can be seen in Figure 2.

2D demonstrator pipes 3D demonstrator pipes

Figure 2. Exemplary images for both datasets. Left column: two images taken from the 2D dataset
containing 2D demonstrator pipes. Right two columns: two images and the respective extracted and
filtered point clouds of two pipes contained in the 3D dataset.

4. Classification Pipelines and Implementations

As indicated in the previous section, in total four methods will be implemented—two
methods for 2D images and two methods capable of processing point clouds. Besides
different working principles, the type of reference data required for identification differs in
particular. The 2D approaches and the PointNet neural network require realistic images or
point clouds, respectively. The method based on point cloud alignment, on the other hand,
depends on high-quality CAD data to be available.

4.1. Classification Using Geometry and Shape

The first approach is based on the description of the geometric properties of the
pipe silhouettes seen from BEV using random forests for classification. In addition to
generic features such as silhouette width, height, area or Hu-moments [38], domain-specific
features such as pipe length or diameter are taken into account. As in the literature, no
hand-crafted, domain-specific features for the target domain are presented; we derive such
and add some of them to our classification pipeline. We then assess whether those features
provide substantial benefits compared to automatic classification with generic geometric
properties. A major advantage of using random forests (RF) over a single decision tree
is that combining multiple predictions leads to a more reliable prediction since feature
outliers can be better filtered out. In addition, a probability score is computed and used to
assess the trustworthiness of predicted results.

4.1.1. Domain-Specific Features

The pipes in the target domain can be described as deformed and bent straight tubes
with attachments, such as flanges or mounting brackets. A simpler representation can
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be given in the form of a skeleton that describes its main geometry. Figure 3 illustrates
domain-specific features derived from the target domain, which are as follows:

• Length of longest branch: longest possible branch in the skeleton representation that
connects two arbitrary pipe ends;

• Minimum and maximum distance between two ends: largest and smallest Euclidean
distance between any of the pipe ends;

• Number of branches: number of pipe sections for multi-tube pipes or those having
flanges and connectors that appear as branches in the computed skeleton;

• Number of ends: number of pipe ends for multi-tube pipes;
• Number of straight parts: number of straight pipe sections;
• Angles: the angles at which the straight sections are angled to each other;
• Minimum, maximum and average pipe diameter;
• Histograms of branch lengths and pipe diameters.
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Figure 3. Illustration of domain-specific features. The lines in salmon colour represent the skeleton
that describes the pipes’ main geometry.

We propose to use skeletonization to determine the aforementioned domain-specific
features as a skeleton’s simple structure allows us to obtain them easily. For example,
diameters can be computed by determining the distance between the pipe’s main axis (the
skeleton) and its silhouette contour. Since the 2D demonstrator pipes are a highly simplified
representation of possibly much more complex pipes handled in MRO processes, only the
longest branch length, the maximum distance between two ends and the average diameter
are considered in the following for assessing the potential use of domain-specific features.

4.1.2. Pipeline

The pipeline for the geometric approach depicted in Figure 4 uses a random forest (RF)
classifier composed of 100 decision trees. The geometric features are computed from either
the pipe silhouettes (generic features) or the skeleton (domain-specific features), which is
obtained with the skeletonization algorithm from [39] implemented in scikit-image [40].
The recorded images are segmented using transfer learning with a modified UNet to obtain
the silhouettes, as explained in [41]. In principle, other segmentation methods, such as
chroma keying when using a monochrome background or contour detection with the
Hough-transform or Canny-edge algorithms, are also conceivable for segmentation.

To enable this approach, the random forests are trained using the 2D dataset train-split.
A possible data imbalance could be compensated for by applying class weights, but this
was not applied here due to the only weak imbalance present. First, geometric features are
computed and saved in a database, and then the database is used to train the RF’s weights.
After training, new samples can be classified by computing their geometric features and
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processing them with the trained RF classifier. To assess the usability and significance of
the domain-specific features, the RF classifier is built for three feature sets containing either
(1) all geometric features, (2) only generic features or (3) only domain-specific features.

Training

Application

area, spatial

expansion,

Hu-moments,

…

length of

branches,

diameter, …

trained

classifier

Build Database Build Classifier

class 6

Apply Classifier Estimate class

Segmentation Mask

Skeleton

Geometric

Parameters

Figure 4. The pipeline of the geometric approach. The input is a binary segmentation mask from which
the geometric properties are directly calculated or obtained with the help of a skeletonization algorithm.

4.2. Classification Using Transformer Networks

As revised in Section 2, DCNNs struggle to distinguish very similar objects. Recently
introduced transformer architectures are rising in popularity for vision applications. While
DCNNs extract features using convolutional layers from locally confined image regions,
vision transformers can employ attention between all image regions. With this global
attention mechanism, they can capture inter-regional dependencies and more complex
image features. With this capability to handle complex interactions between image regions,
they may be able to distinguish similar components.

The implementation of this work follows [42] in the Hugging Face (HF) framework [43].
The HF framework is a high-level API for PyTorch that provides a wide range of pre-trained
models and a simple interface for training and fine-tuning them. The HF framework is
used to load a pre-trained Vision Transformer (ViT) model [42] and then train it on the 2D
dataset. The image is split into patches, which are fed into a transformer encoder consisting
of a multi-head self-attention layer and a feed-forward layer. The multi-head self-attention
layer computes the attention between all patches, and the feed-forward layer computes an
output for the transformer layer. The ViT model is pre-trained on the ImageNet dataset [44]
and fine-tuned on the 2D dataset.

Due to heavy limitations regarding dataset size and class imbalance in the training
dataset, data augmentation was used with the following augmentations:

• RandomResizedCrop: randomly crops the image to a given size and aspect ratio;
• RandomHorizontalFlip: randomly flips the image horizontally;
• Normalize: normalizes the image with the given mean and standard deviation;
• ColorJitter: randomly changes the brightness, contrast, saturation and hue of the image;
• RandomRotation: randomly rotates the image by a given angle.

A hyperparameter study was performed to find suitable hyperparameters for the
ViT model:

1. Training batch size;
2. Learning rate;
3. Training epochs.

After the hyperparameter study, the best-performing hyperparameters were used to
train the final ViT model on the 2D dataset. The ViT model was then evaluated on the 2D
dataset test-split.
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4.3. Classification Based on Point Cloud Alignment

The fundamental idea of this approach is to use point cloud alignment techniques
originating from point cloud registration to find the best fit of a recorded point cloud P
with any of the k reference point clouds Qk saved in a database. The applied alignment
pipeline shown in Figure 5 and its initial parameters are based on the proposed pipeline for
point cloud registration [45] of the Open3D library. It is adjusted and extended to fit the
identification problem at hand. The database is built with CAD models from which point
clouds are computed using the Poisson disk sampling technique implemented in Open3D.

R
A

N
SA

C

IC
P

TRANSAC
fitnessRANSAC

TICP
fitnessICP

Source P

Repeat k times

Target Qk

Figure 5. The pipeline using point cloud alignment for object recognition. The recorded point
cloud P is aligned with every point cloud Qk saved in the database. First, a global alignment is
computed. Following this, the alignment is refined, and the matching metrics needed for classification
are computed.

In the first step, the recorded data are pre-processed. The recorded point cloud P is
downsampled to obtain Pdown, and the FPFH feature vectors are computed for each point
in Pdown. The downsampled point cloud and its feature vectors are then used to obtain a
transformation matrix T that gives a coarse alignment with each of the k downsampled
reference point clouds Qk,down. The alignment uses the RANSAC algorithm, configured
to pick three random feature points from Pdown to align them with the reference point
cloud Qk,down. RANSAC returns a transformation matrix T, and a set C =

{
(p, q)

}
of

corresponding point pairs where p ∈ Pdown and q ∈ Qdown. The alignment quality is
described with the alignment metrics fitness and inlier_rmse as defined in Equation (1). The
algorithm computes multiple transformation matrices T for each (Pdown, Qk,down) pair and
the best fit in terms of fitness is returned.

f itness =
Nc

Np
inlier_rmse =

√√√√√ ∑
(p,q)∈C

d2
p−q

Nc
(1)

In Equation (1), Nc is the number of inlier correspondences, and Np is the number of
points in Pdown (RANSAC) or P (ICP), respectively. For RANSAC, p ∈ Pdown and q ∈ Qdown,
whereas ICP is applied for the full points clouds, so p ∈ P and q ∈ Q.

The coarse alignment obtained with RANSAC is then iteratively refined using Iterative
Closest Point (ICP). The working procedure is as follows:

1. Find a correspondence set C =
{
(p, q)

}
of corresponding point pairs where p ∈ P

and q ∈ Q which have a distance smaller than a defined threshold.
2. Update the transformation T by minimizing an objective function. In this case, point-

to-point ICP algorithm with objective function E(T) = ∑
(p,q)∈C

∣∣p− Tq
∣∣2 is used.

After reaching a defined number of iterations or having too few relative improvements
in terms of fitness or inlier_rmse, the algorithm terminates and returns the final alignment
transformation matrix T. Once it has obtained the alignments with each reference model Qk
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and the corresponding fitness values, the object type is determined by utilizing the highest
fitness value among all alignments.

To enable the proposed pipeline, an extensive parameter grid search for the parameters
needed for downsampling, RANSAC and ICP is carried out using the dataset train-split.

4.4. Classification with PointNet

The next approach for part identification uses PointNet [35], a neural network designed
for the direct classification and semantic segmentation of point clouds. The implementation
is based on [46], and adjustments are made to allow hyperparameter optimization and com-
patibility with the available dataset. PointNet consumes raw point clouds, each composed
of a fixed number of points. The network internally computes a global feature vector and
outputs probability values for each class. A dense layer with a softmax activation function
is then used to determine the estimated class. To enable this approach, the neural network
needs to be trained on the target domain, and a set of suitable hyperparameters has to be
found. Since the network consumes point clouds representing the pipes only seen from the
current recording perspective, the network training shall contain as many different views
during training as possible.

For training and during hyperparameter optimization, the dataset train-split is used
and further divided into a set containing 11 point clouds per class used for training and a
validation set with 3 point clouds per class used to find the best set of hyperparameters. As
the amount of training and validation is limited due to few recordings per class, extensive
data augmentation is applied to both sets to improve the network generalization capabilities
and to extend the amount of available training and validation data. For each point cloud in
the dataset, multiple point clouds are created by randomly drawing a set of points. Further
augmentation is applied through random rotation, adding Gaussian noise and shuffling
the point order.

In the first step, the optimal model hyperparameters are found using a grid search.
The parameters are as follows:

• Number of points per point cloud n: determines the number of points drawn from
the database point clouds as it is unknown how many points are required to allow
the network to perform successful classification. The network input size is, therefore,
equal to n.

• Training batch size b: the training batch size is a trade-off between the extent of
weight variation and convergence during training.

• Data augmentation factor f : the amount of data augmentation refers to the number
of point clouds created from each recorded point cloud in the dataset. It is desirable
to have a large set of training samples, but the larger the training set, the longer the
network will take to train.

After the grid search, the network is trained with the found hyperparameters and
the best epoch is determined. In the last step, the dataset test-split is applied to verify the
performance and assess suitability for the target domain.

5. Results and Discussion

In the following, the approaches presented in the previous Section 4 will be examined
for their performance. For this purpose, the classifiers are built, trained and then checked
with the dataset test-split.

5.1. Classification Using Geometry and Shape

The application of the test data from the 2D dataset yields classification accuracies
of up to 99.2%, as presented in the first row of Table 1. That score can be achieved using
all (generic and domain-specific) features as well as using only generic features. It can be
deduced that, unlike anticipated, the additional domain-specific features do not contribute
the significant difference needed for classification. Nevertheless, using only domain-specific
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features (in total, three parameters) still yields an accuracy of 80.9%, but this is far below
the aforementioned scores.

Table 1. Classification scores for test data using geometry and shape-based approach.

Description All Features Only Generic Features Only Domain-Specific Features

2D dataset test-split 0.992 0.992 0.809
Chroma keying with green background 0.963 0.963 0.948

The reason for the insufficient performance using domain-specific features can be
found in their calculation and the strong fluctuations in their values. The skeletonization
algorithm consumes segmented images and thus essentially depends on the segmentation
quality. Frayed and rough edges or fragmented pipe sections lead to distorted skeletons
and erroneous feature values. Figure 6 shows that effect exemplarily, where the frayed
segmentation mask leads to a jagged skeleton and, therefore, to a pipe length much larger
than the nominal value. As an additional example, the calculated pipe diameters for
multiple pipes from all classes are plotted in Figure 7. It can be observed that no distinct
difference between 6 mm and 8 mm pipes is visible. To prove that the calculation of
domain-specific features using a skeletonization approach works in principle and can be
used for classification purposes, an additional dataset with the pipes being placed on a
green background is recorded. Using a monochrome background and chroma keying
segmentation leads to much smoother and cleaner segmentation masks. The classification
results are given in the lower row in Table 1. Even though the accuracies are lower for the
first two feature sets, a significant improvement can be achieved when using only domain-
specific features. The estimated diameters for that dataset are also plotted in Figure 7. Now,
a clear difference between the two diameter types is visible. A similar observation can be
made for the other domain-specific features: branch length and distance between endpoints.
Still, using only generic features yields better results, but, in principle, a classification using
only the three selected custom-made features is feasible.

Input Image Binary Segmentation Mask Skeleton

Figure 6. Misclassified class 2 pipe from 2D dataset due to an erroneous skeleton. The binary
segmentation mask obtained has jagged edges and leads to an unsmooth skeleton that has a path
length much larger than its nominal value.

As an interim conclusion, it can be stated that the classification based on geometry and
shape is possible in principle. Concerning the applicability to real pipes in MRO processes,
however, it should be mentioned at this point that strong simplifications were made by
using 2D images and 2D demonstrators. The possible poses of 3D components and the
resulting pose variety as well as possible self-occlusions and also the restriction to only
BEV recordings should be considered with regard to a possible application. Nevertheless,
it is shown that domain-specific features can be useful since only three feature types were
sufficient to achieve good classification results. It would also be conceivable to extend the
pipe-specific parameters to 3D input data, such as point clouds, and compute properties,
such as diameter, volume or length, in a similar manner using skeletonization.
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Figure 7. Computed diameters for 2D dataset and for an additional dataset recorded in front of
a green background to apply chroma keying segmentation. Each dot represents an individual
measurement. For the 2D dataset, no distinct diameter differences are visible. When using a green
background, 6 mm and 8 mm pipes are clearly distinguishable, but the diameters are underestimated.

5.2. Classification Using Transformer Networks

First, a hyperparameter search was conducted to find the best configuration for the ViT
Transformer. The varied hyperparameters are provided in Section 4.2. The transformer was
trained on an Nvidia A6000 GPU, with the HF framework [43]. The hyperparameter search
was carried out using the Optuna Hyperparameter Framework [47]. The hyperparameter
values that were investigated in the search are shown in Table 2, with model 24 resulting in
the best accuracy.

Table 2. Results of the hyperparameter search for the ViT Transformer.

Parameter Name Values Best Value (Trial 24)

number trials 30 -
batch size [8, 16, 32, 64, 128] 32

learning rate [0.000005, 0.0001] 0.00009688
epochs [30, 50, 100, 250] 250

5.2.1. Training and Results of Final Model

The final model was trained for 250 epochs using the hyperparameters from the
hyperparameter search. The training time was 30 min. The accuracies for training and
testing on the test dataset are shown in Table 3.

Table 3. Accuracies of the final ViT model training after 250 epochs.

Model Train Time accval acctest

24 30 min 0.53 0.42

synthetic + real 90 min 0.62 0.53

Application of the trained model on the test data yields the classification results shown
in Table 3. The acctest = 0.42 performance is noticeably worse than the accval = 0.53
performance. Since the accuracy is lower than those from other classification approaches, a
more detailed analysis of the results was conducted. For this, the confusion matrix was
used, which is shown in Figure 8.
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Figure 8. Confusion matrix of the ViT Transformer.

The confusion matrix reveals that the model is not able to classify several classes of
the problem reliably. Regarding misclassifications, it can be seen that the model frequently
suggests classes 2, 3, 4, 6, 14 and 15.

5.2.2. Improving ViT Transformer Results with Additional Synthetic Training Data

Due to the poor results of the ViT Transformer, additional synthetic training data
were generated to test whether the poor performance was due to the few training samples.
Synthetic data were generated using a previously reported toolbox from [18]. An additional
1000 samples were generated for each class. The training was carried out in two stages.
First, the model was trained on the synthetic data with the same hyperparameters as in the
previous training, as shown in Table 2. Afterwards, the model was fine-tuned on the real
data. The results are shown in Table 3 in the row labelled synthetic + real.

The results show that additional synthetic data improve the performance of the model.
The accval increases from 0.53 to 0.62, and acctest improves from 0.42 to 0.53. The confusion
matrix in Figure 8 shows that the model is now better at differentiating other classes from
classes 2, 3, 4 and 6 with fewer false positives towards those classes. The performance for
the classification of classes 7–13 is comparable to that of the real data model. Class 14 was
significantly less predicted compared to the previous model and greatly increased the overall
classification accuracy. Class 15 has the same misclassifications regarding class 10 as before.

5.2.3. Discussion of the ViT Transformer Model’s Performance

Since the accuracies of the vision transformer result in rates of 42% and 53%, no
successful use of the model in the addressed component classification use case could
be established. The initial assumption, a lack of training data being the cause of the
performance, and the attempt to mitigate this through synthetic data generation do improve
the results, but not to a great extent. The results of the synthetic data model are still
not sufficient for the industrial applicability of this use case. It is doubtful that further
synthetic or real data would improve the results to a vastly different level. An end-to-end
classification approach is thus not considered feasible.

However, since the network, in general, was able to learn how to differentiate between
certain classes and the results are not completely random, applicability to less demanding
use cases might be possible.

5.3. Classification Based on Point Cloud Alignment
5.3.1. Hyperparameters

As many parameters influence the alignment procedure, a hyperparameter study
using the dataset train-split was carried out to find the hyperparameters suitable for the
dataset at hand. An important parameter is the number of points nCAD that are sampled
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from the CAD reference models to obtain point clouds used for computing the keypoints
and alignment. Another parameter of interest is the number of iterations iransac and iicp
needed for proper alignment. Other parameters describe the FPFH neighbourhood size
and distance thresholds applied to point correspondences. Since those are very specific to
the dataset at hand, they are omitted in the following. An overview of the aforementioned
parameters and their values for the hyperparameter search can be found in Table 4.

Table 4. Investigated hyperparameters for the point cloud alignment approach.

Parameter Values Best Value

nCAD [100, 5000, 10,000] 100
iransac [1000, 50,000] 50,000

iicp [10, 30, 100] 100

An important observation is that it is beneficial to have a sparsely sampled point
cloud as a reference. It is not necessary to have thousands of points to find sufficient
correspondences for alignment. A second finding is that a high number of iterations
leads to higher-quality alignments with more reliable metrics and, consequently, also to
successful class estimates. Further work should be carried out regarding lower and upper
limits for that parameter, as it strongly determines the computational cost and time.

5.3.2. Global vs. Local Alignment

Another interesting result is the comparison of the class estimation using the fitness metric
from global registration with the RANSAC algorithm versus the subsequent refinement
using ICP. The classification scores for five runs are given in Table 5. It can be observed
that local refinement improves the accuracy by a huge margin and is therefore definitively
recommended. The successful alignment of an exemplary point cloud can be seen in Figure 9.

Since it is especially important to avoid false positives, a threshold can be used to
categorise predictions as invalid in case of low certainty, meaning relatively low fitness
values. Based on results with the dataset train-split during the hyperparameter study, a
value of 0.85 has proven to be suitable, as can be seen in Table 5.

Table 5. Classification scores on dataset train-split using the best hyperparameter combination and
fitness alignment metric. Each component is classified three times for the global score and five times
for the local score to reduce the effects of randomness. In addition, threshold values are applied to
categorise uncertain estimates as invalid and avoid false positives.

Result Global Local Local and Thresh. 0.85 Local and Thresh. 1

true positive 0.752 0.944 0.940 0.516
invalid - - 0.040 0.484

false positive 0.248 0.056 0.020 0

Global Alignment Local Alignment

Figure 9. Successful alignment of a class 8 point cloud (salmon colour) with its reference model (blue).
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5.3.3. Application of Test Data

To evaluate this approach, a threshold value of 0.85 was applied to minimize false
positives. Again, each point cloud in the test-split was classified five times to reduce the
effect of randomness occurring during the application of RANSAC. The true-positive rate
is 0.893, while the false-positive rate is 0.033. The remainder was categorised as invalid.
The first important finding is that the proposed approach is suitable for the target domain
and can provide a relatively reliable classification despite the absence of characteristics.
Furthermore, it can be shown that CAD data can be used as reference data.

Visualizing the false positives and invalid estimates, it turns out that the errors can
be clustered into some groups and are mainly caused due to inferior data quality. A
common issue is missing portions of the pipes, leading to erroneous alignments. Another
consequence is that the pipes look too similar in some cases because characteristic pipe
sections were recorded incorrectly, as visualized in Figure 10. Partial geometry overlap
of the pipes is a general challenge that could be addressed by tightening the alignment
hyperparameters. On the other hand, that would require better recording quality with
continuous and smooth surfaces. Nevertheless, it is shown that despite the partially low
recording quality and faulty recordings, the approach is, in principle, suitable for the
classification problem at hand.

Point Cloud Only Obtained Alignment with Class 6 Obtained Alignment with Class 7

Figure 10. Alignments of a recorded class 6 point cloud (salmon colour) with CAD reference models
(blue). In the upper left corner, portions of the pipe are missing due to inferior recording quality. For
both alignments, fitness scores of 1 are obtained, as the recorded point clouds align tightly with both
reference models so that all points are considered as inliers. The classification is therefore categorised
as invalid.

5.4. Classification with PointNet
5.4.1. Hyperparameter Optimization

The network was trained from scratch with each of the 18 parameter combinations
using grid search given the values in Table 6. To allow a better comparison of the validation
accuracies obtained in the last epoch, smoothing with an exponential moving average and
a factor of 0.85 was applied. The computing infrastructure uses a Nvidia GeForce RTX 3090
graphics card and Tensorflow 2.6.

The best validation accuracy accval,17 = 0.954 is obtained for model 17 with point
clouds of size n = 2048, training batch size b = 128 and as much data augmentation as
possible ( f = 100). Comparing the models’ validation accuracies, it can be observed that
larger point clouds and extensive data augmentation lead to significantly better perfor-
mance. The six worst models are those with very little data augmentation ( f = 10), while
the performance increases for larger n and f . Interestingly, the third best network with
much smaller n = 128, b = 32 and f = 100 still achieves accval,2 = 0.880 while taking
only about a quarter of the training time of model 17. Even though the performance of
model 2 is clearly lower, it is worth considering both models for training as the smaller,
lightweight model might also achieve an acceptable performance given sufficient training
while offering a largely reduced training time.
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Table 6. Hyperparameters for training PointNet.

Parameter Name Symbol Values Best Value (Model 17)

number of points n [128, 512, 2048] 2048
batch size b [32, 128] 128

augmentation factor f [10, 50, 100] 100

5.4.2. Training of Selected Models

Since it was found during the hyperparameter search that extensive data augmentation
leads to significant performance improvements, the extent of data augmentation was further
increased and set to f = 500 for training both models. After 800 epochs of training, the best
epoch was selected using the best validation accuracy accval . The results for training and
validation accuracies, acctrain and accval , are given in Table 7.

Table 7. Accuracies of selected models for best epoch after 800 epochs of training.

Model Train Time acctrain accval acctest acctest,noise

17 20 h 11 min 0.994 0.970 0.833 0.967
2 5 h 9 min 0.990 0.973 0.600 0.650

5.4.3. Application of Test Data

The application of the test-split using the best epochs for each model reveals an
unexpectedly high difference between the validation accuracy accval and test accuracy acctest
for both models; values are given in Table 7. The only difference between the validation and
test data is the data augmentation procedure applied only to the training and validation
data. Therefore, the reason must be found in the augmentation process that apparently
modifies the data too excessively. Since PointNet is designed to be point-order- and pose-
invariant, the added noise can be determined as the reason for the observed behaviour.
Adding the same amount of noise to the test data, the obtained accuracy acctest,noise increases
by a huge margin, as displayed in the right columns in Table 7. Initially, the noise was
thought to be a useful data augmentation technique, but it is shown here that the training
data differ too much from the application data. This is not necessarily a disadvantage,
as noise can be imagined as adding some variation during training, but it needs to be
considered for application as well. A second interesting observation is that the initial
assumption that the small model 2 might be capable of achieving satisfactory performance
is proven wrong. The small network with n = 128 points performs significantly worse than
the larger model 17. In the original paper about PointNet [35], the authors explain that there
exists a lower and an upper bound needed to yield the same global feature vector which is
used for classification. If the point cloud is sampled too sparsely, as seems to be the case
here, critical points are lost and the global feature vector changes. Further investigation
regarding this issue should be conducted in a separate study.

Taking a closer look at the misclassified point clouds with noise applied reveals
that the PointNet approach also seems to have problems with recordings that are split
into multiple point clusters due to inferior recording quality or missing portions of the
pipes. Nevertheless, for the larger model 17, only two point clouds were misclassified,
meaning that PointNet is capable of generalizing quite well, resulting in a better recognition
performance than the previous approach. In trying to identify and cluster the problems,
model 2 also suffers from recorded point clouds of poor recording quality and missing
portions of the pipe. Nevertheless, there are also point clouds for which no specific pattern
can be identified, so it is derived that the issues arise from the smaller input dimension and
the resulting information loss. It should be noted at this point that the classification using
PointNet performs better and is faster during application than using point cloud alignment,
but requires extensive training and computation power.
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6. Conclusions

In the course of this work, different approaches for the visual recognition and classifi-
cation of highly similar parts have been investigated and tested using a set of simplified
demonstrator pipes. It is shown that the classification task is possible even without dis-
tinct, characteristic visual features using modern computer vision and machine learning
techniques. While the most simple approach based on hand-crafted geometry and shape
features computed from 2D images works well for simple demonstrator pipes, it is deduced
that this technique is not directly applicable to real-world parts due to the expected poor
performance and lack of sufficient features resulting from the diverse resting positions
and possible occlusions. The experiments conducted with transformer networks suggest
that this approach has problems with the unambiguous recognition of the investigated
domain. In addition, pre-training with synthetic data does not notably boost the network’s
performance. Therefore, a practical application does not seem to be possible at the moment.

On the other hand, 3D approaches show great potential in classifying highly similar
components, with successful applications using both PointNet and point cloud alignment
approaches. The high recognition performance for the 3D demonstrator pipes having very
few distinct features shows that no prominent, visible characteristics are necessary. While
the performance using PointNet is slightly better, the point cloud alignment approach has
some individual advantages regarding the avoidance of false positives, good visualization
capabilities and simple extensibility of the classifier with additional CAD models, as no
training is required. The neural network, on the other hand, is very fast in processing the
point cloud to be analysed and can be trained with recorded point clouds, meaning that no
CAD models are necessary, but it requires a lengthy training phase. Serious disadvantages,
however, are the inadequate detection of incorrectly classified parts and the difficulty of
adding new components.

A combination of both approaches seems promising for a human-in-the-loop system
that can assist a human with the classification task and reduce the number of guesses, com-
parisons and cross-checks needed to determine the correct class. In such a system, PointNet
can be used for the initial classification, while the point cloud alignment approach can then
be employed to visualize the obtained result as illustrated in Figure 11a. Visualizing the
aligned CAD model with the recorded point cloud allows a human to verify very quickly
if the two parts are identical. The user then reviews and flags the visualization to avoid
misclassifications. In the long term, this also helps to record more flagged data for further
training and thus reduce required manual interaction in the future. However, there is
still a need for further research regarding the use of synthetic point cloud training data
based on CAD models and the reduction of false positives. In addition, research using a
bigger dataset and a study with recordings from real-world use-case-related pipes would
be beneficial to prove applicability in practice. Another interesting research area is the
explainability of neural networks, especially for highly similar components. Methods such
as SHapley Additive exPlanations (SHAP) [48] or Integrated Gradients [49], for example,
could be used for conducting such studies and help to gain a deeper understanding of the
decision making in neural networks for use cases with visually similar components. To
illustrate that point, the per-point importance of an exemplary recording is visualized in
Figure 11b. It can be observed that especially the pipe ends and the buckling in the rear have
high importance values and therefore contribute significantly to the final class estimate.

Possible enhancements, in general, include the improvement of image and point cloud
segmentation and the extension of the geometric approach to 3D data. The usage of a
pre-sorting stage based on simple geometric features also seems feasible and allows for
complexity to be reduced in later stages. In addition, visualization with CAD reference data,
as illustrated in Figure 11a, could be beneficial for later practical application as the applicant
can quickly assess if the reference and recording visually match. The improvement of the
point cloud recording quality, as well as the early filtering of low-quality recordings, can
also help to boost the performance of a later practical application. A clustering algorithm
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can help to determine if the recorded point cloud is separated into multiple clusters and is
therefore missing significant portions relevant for classification.

(a) (b)

Figure 11. (a) Possible enhancement using an alignment visualization with a CAD model mesh to
visualize the obtained alignment and allow the user to quickly assess whether the classification can
be trusted. (b) Future research activity regarding feature importance. Application of an integrated
gradients method to compute the contribution of each point to the classification result. The colours
visualize importance, while larger values indicate a higher contribution.
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