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Abstract: Blockchain technology is a decentralized ledger that allows the development of applications
without the need for a trusted third party. As service-oriented computing continues to evolve,
the concept of Blockchain as a Service (BaaS) has emerged, providing a simplified approach to
building blockchain-based applications. The growing demand for blockchain services has resulted in
numerous options with overlapping functionalities, making it difficult to select the most reliable ones
for users. Choosing the best-trusted blockchain peers is a challenging task due to the sparsity of data
caused by the multitude of available options. To address the aforementioned issues, we propose a
novel collaborative filtering-based matrix completion model called Graph Attention Collaborative
Filtering (GATCF), which leverages both graph attention and collaborative filtering techniques to
recover the missing values in the data matrix effectively. By incorporating graph attention into
the matrix completion process, GATCF can effectively capture the underlying dependencies and
interactions between users or peers, and thus mitigate the data sparsity scenarios. We conduct
extensive experiments on a large-scale dataset to assess our performance. Results show that our
proposed method achieves higher recovery accuracy.

Keywords: blockchain services; collaborative filtering; graph attention; reliability prediction

1. Introduction

Blockchain, a decentralized distributed database technology that records and validates
transactions and service-oriented computing (SOC) is a software design approach that
breaks down applications into reusable services that can be developed, deployed and
managed independently. In addition, blockchain may also enable potential improvements
in secure embedded systems [1] and dynamic hardware resource allocation [2]. As an
integral component of software system development, blockchain technology provides
communication, data storage, data mining, and computation services. Microsoft and
IBM [3] have introduced uBaaS (Unified Blockchain as a Service) [3], which is based on
the concept of service-oriented computing. Blockchain technology has demonstrated
its effectiveness in a variety of industries [4], including finance, banking, bitcoin, and
healthcare [5]. In the BaaS paradigm, blockchain-based applications can be constructed
by invoking numerous blockchain services through the IoT [6]. This approach enables
developers to rapidly validate their models and concepts, facilitating the faster development
and deployment of blockchain-based applications.

As a benefit, the growth of unified blockchain technology and SOC has led to a prolif-
eration of Blockchain-as-a-Service platforms for domains like the Internet of things, edge
computing, and web services. Because the number of services deployed on the blockchain
has dramatically increased, it has become confusing for people to select the most suit-
able blockchain services. Finding the most reliable blockchain service among functionally
similar ones poses a special challenge in constructing highly reliable blockchain-based
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applications. One useful approach to achieve this is to utilize the nonfunctional prop-
erties of services to rank and select the most reliable ones. Reliability is considered an
essential nonfunctional feature for service selection [7]. These properties are typically used
to evaluate and measure the performance and reliability of different blockchain services.
However, when a blockchain service recommender system suggests services that a user
has not previously used, the reliability values that the user relies on are unknown. In such
situations, predicting the unknown reliability of the service is crucial to determine whether
the recommended service is appropriate for the user. In real-world scenarios, the number
of blockchain peers can exceed 20,000, making it impractical for a single user to establish
simultaneous connections with all peers and evaluate their reliability. As a result, users
rely on predictive methods to assess the reliability of blockchain peers. According to these
problems, how to design a method to obtain the unknown reliability values of candidate
blockchain services without invoking them is still an issue.

To address this, some challenges must be taken into consideration:

• Higher-order Relationships. Traditional graph neural networks may have limitations
in utilizing collaborative information due to their difficulty in modeling higher-order
relationships. These networks typically capture only local n-order neighbor relation-
ships, resulting in a lack of ability to model multi-hop connections or higher-order
relationships and a consequent loss of synergy information. This loss may negatively
impact the discovery of potential patterns and relationships in graph data, as interac-
tions between nodes often involve multi-hop relationships. Focusing solely on n-order
neighbor information may not accurately capture global structures. Therefore, it is cru-
cial to develop a graph extraction architecture that excels at leveraging collaborative
information, enabling enhanced extraction of synergistic insights.

• High Sparsity. In high-sparsity scenarios, the performance of both traditional and
state-of-the-art neural network models is suboptimal. The presence of sparsely ob-
served data during the initial phase of reliability prediction systems can have signifi-
cant implications if the accuracy of the predictive model is inadequate. This may lead
to adverse outcomes; for example, establishing connections with unreliable blockchain
peers can result in resource wastage and even substantial financial losses, potentially
amounting to millions of dollars in cryptocurrencies. Therefore, there is an urgent
need for an effective reliability prediction model that can operate robustly in highly
sparse scenarios.

In the context of blockchain services, collaborative filtering has emerged as a widely
adopted approach in QoS-based services recommender systems. This involves learning
about user interactions from their historical records. In this paper, we proposed a novel
model named Graph Attention Collaborative Filtering (GATCF), which mainly utilizes the
graph attention mechanism and collaborative filtering techniques to predict the reliability
of user–peer interactions. Our model leverages the graph attention mechanism to effec-
tively capture the dependencies and interactions between user and peer nodes, alleviating
the data sparsity problem. The model includes an embedding transfer module and an
interaction module for extracting graph structural features and modeling the relationships
between potential factor vectors of users and peers, respectively. In order to evaluate the
effectiveness of our proposed framework and demonstrate its superiority over existing
reliability prediction models, we conducted experiments on a real-world dataset. The main
technical contributions are summarized as follows:

• We propose GATCF, a model that employs a graph attention mechanism to predict the
reliability of blockchain peers. Our framework outperforms most existing approaches
in terms of prediction performance.

• We introduce a novel model that combines graph attention mechanisms with collab-
orative filtering, and investigate the impact of different interaction functions on the
overall performance of the model.

• We extensively evaluate our proposed method on a large-scale real-world dataset,
demonstrating the superiority of our proposed work. Specifically, our method out-
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performs the majority of the existing methods in blockchain services, indicating its
promising potential in practical applications.

The remainder of this paper is organized as follows. We review related literature in
Section 2. Section 3 introduces the problem formulation and the system model design
overview. Section 4 presents our detailed design and complete solution. Section 5 evaluates
our model performance under different settings. Section 6 draws the conclusion.

2. Related Work

Collaborative filtering (CF) is a widely used technique for predicting the quality of ser-
vice (QoS) in recommender systems. That can also be used to predict the reliability of peers.
However, the method of collecting scattered user raw data and uploading it to the cloud
platform for modeling has the risk of leaking privacy. Many people have been working
on improving the reliability of the blockchain over the years. Liang et al. [8] introduced a
blockchain system for safeguarding circuit copyright using homomorphic encryption. The
system ensures secure and scalable circuit copyright protection by ensuring the accurate
execution of smart contracts within the blockchain. Lei et al. [9] proposed a reputation-
based Byzantine fault tolerance (RBFT) algorithm that employs a reputation model to assess
the behavior of each peer during a consensus process. The approach incorporates sparse
network monitoring to conduct performance profiling for large-scale systems. Previous
research on the blockchain has not focused extensively on a restricted number of peers in
the blockchain network. Instead, it has mainly concentrated on predicting the reliability of
blockchain systems.

In this work, we focus on collaborative filtering. Our inspiration comes from the
collaborative filtering algorithm under the QoS prediction task. Regarding the collabo-
rative filtering model on QoS prediction, we categorized them into three major methods.
(1) Memory-based methods, which calculate the similarity between users and services
using Pearson Correlation Coefficient (PCC) and predict missing values accordingly. Ex-
amples of these methods include UPCC [10], IPCC [11], and UIPCC [12], which combines
both UPCC and IPCC approaches for better prediction. (2) Model-based methods, which
learn the latent factors of users and services to predict missing values. Examples of these
methods include Matrix Factorization (MF) [13] and Probabilistic Matrix Factorization
(PMF) [14]. Classical model-based approaches like LN_LFM [15], CloudPred [16], and
AMF [17] incorporate additional side information. Moreover, the Context-Sensitive Matrix
Factorization approach (CSMF) [18] fully utilizes implicit and explicit contextual factors.
(3) Hybrid approaches, which combine the memory-based and model-based CF approaches
to achieve better prediction. These approaches are generally effective at estimating the
overall structure that relates simultaneously to most or all services and also capture the
totality of weak signals encompassed in all of a user’s QoS values. Recent studies combine
neural networks with matrix completion, taking advantage of their non-linearity fitting
ability to achieve more substantial collaborative information utilization. For instance,
He et al. [19] combined a neural network and matrix factorization to predict the missing
value. Wu et al. [20] proposed a Deep Neural Model (DNM), leveraging the rich contextual
features for multiple-attribute QoS prediction. Moreover, most previous studies have not
achieved good performance in blockchain systems under the sparse scenario since they
do not fully utilize structural features (e.g., graph structural features). Here, we exploit
the structural information more to achieve higher accuracy than the traditional method in
blockchain services.

We observed better state-of-the-art recovery performance achieved by graph neural
networks than that achieved by the memory-based one. Wang et al. [21] introduced a novel
recommendation framework termed Neural Graph Collaborative Filtering (NGCF) that
integrates the collaborative signal and connectivity information to the node embedding for
effective collaborative filtering. He et al. [22] further optimized the framework of the NGCF
and proposed LightGCN. Xu et al. [23] proposed ISPA-GNN, which leverages a novel
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graph-based collaborative filtering method with a subgraph sampling strategy. GNN-based
models are yelling the powerful performance for CF-related tasks.

The graph attention mechanism [24] aims to help better capture graph structure
features and has been shown to be a powerful tool for matrix decomposition and capture
of collaborative information from graph data information. Its main idea is that by learning
the relationship between nodes, different attention weights are assigned. This facilitates the
efficient aggregation of information from neighboring nodes and the weighted combination
of important neighboring node features with the representation of the target node, aiming to
achieve better performance results. Despite great success in traffic flow [25], recommender
system [26,27], and social network analysis [28,29] domains, we have no idea of the graph
attention mechanism proposed for matrix completion. In traffic flow forecasting tasks,
the authors of [30] showed that the attention mechanism can lead to better performance
compared with that achieved by combing the graph neural networks and the recurrent
neural networks model. We are now researching the attention mechanism in the neural
matrix completion model.

The above work is summarized in Table 1. To the best of our knowledge, this is the
first work to combine graph attention mechanisms and collaborative filtering to predict
reliability in blockchain services. We were inspired by [31], which leverages the graph
neural network and matrix factorization to estimate unknown reliability values in the
data matrix. We see the opportunity and feasibility of the graph attention mechanism to
incorporate graph-structured information. Therefore, we develop our GATCF method to
achieve this.

Table 1. Exploring the Advantages and Limitations of Previous Methods in Predictive Modeling.

Method Advantages Limitations

Memory-based

- Simple and easy to implement.
- Calculates similarity between
users and peers.
- Effectively utilizes local
information.

- Computation time for similarity
in large-scale systems.
- Lower prediction performance
for sparse datasets.
- Suffers from cold-start and
scalability problems.

Model-based

- Ability to utilize global
information.
- Capture potential features of
users and peers.

- Need for large amounts of
training data.
- High computational complexity,
and difficulty in handling
dynamically changing reliability
data.

Hybrid approaches

- Combination of memory-based
and model-based methods.
- Estimation of the overall
structure.

- Increases the complexity of the
model.
- Requires tuning of more
parameters.

Graph neural networks

- Better capture of graph structure
features.
- Advanced performance in
collaborative filtering.

- Requirement of significant
computational resources and
training data.
- Lower prediction performance
for sparse datasets.

Attention mechanism

- Effective capture of node
relationships and importance.
- Excellent performance in
multiple domains.

- Requirement of significant
computational resources and
training data.

3. Preliminary and Framework Overview

This section discusses preliminary data and provides an outlined overview of the
framework with mathematical notation as shown in Table 2.
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Table 2. Selected Notations and Definitions.

Notation Definition

yij The SuccessRate of user i to peer j.
Θ All the trainable weights in the matrix completion model.
ui The learned representation (i.e., embedding) of user i.
pj The learned representation of service j.
aij The similarity between two peers.
bij The interaction function of different models.
Ni The set of neighboring nodes connected to a given node i.
ã The initial feature vector of the user node.
b̃ The initial feature vector of the service node.
Wu The user’s embedding vector.
Wp The peer’s embedding vector.
σ The LeakyReLU activation function.
ui
′ , pj

′ The transferred embedding.
g The prediction layer of the model.
Θg The trainable parameters of the prediction layer.

3.1. Problem Definition

Definition: SuccessRate Value Calculation. We regard blockchain services as blockchain
peers composed of blockchain applications, while blockchain users are blockchain application
developers who utilize blockchain services. To calculate the success rate for a request, we
collect three QoS data points that serve as the foundation for the calculation. These data points
are as follows:

• Right Block Returns: The peer should return the correct block hash that corresponds
to the specified block height on the main blockchain. This ensures that the peer
possesses accurate and up-to-date information.

• Recent Block Height Returns: The peer’s response should include a block height
within an acceptable range of the highest block height in the batch. This criterion en-
sures the peer provides recent and relevant information. The parameter MaxBlockBack
determines the maximum allowed difference between the block height returned by the
peer and the highest block height in the batch. A value of 0 for MaxBlockBack indicates
that the peer is considered reliable only if it returns the highest block in the batch.

• Timely Response: The round-trip time (RTT) of the request sent to the peer should be
within an acceptable limit, denoted by MaxRTT. This criterion ensures that the peer
responds in a timely manner, indicating its responsiveness and availability.

If a blockchain peer Pj successfully responds to a batch request, it is recorded as a
success in the SuccessRequest ij category. Conversely, if the response is unsuccessful, it is
recorded as a failure in the FailureRequest ij category. The successful request rate of user i
to peer j is calculated as follows:

yij =
SuccessRequest ij

SuccessRequest ij + FailureRequest ij
, (1)

where yij denotes the SuccessRate of user i to peer j. By calculating the success rate, we
can determine the effectiveness of the interaction between requester ui and peer Pj. By
evaluating a peer’s performance against these criteria, the reliability of the peer can be
assessed, and it can be determined whether the peer is suitable for participating in the
blockchain network. These criteria help maintain the integrity and consistency of the
blockchain by ensuring reliable and up-to-date information exchange among peers.

Definition: SuccessRate Prediction. To predict SuccessRate values between users
and peers, a matrix is used where rows correspond to users and columns correspond to
peers. However, since the matrix is sparse, we use a set Ω = {(i, j)|Yij 6= 0} to indicate
the SuccessRate values between users and peers. Matrix completion is commonly used to
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infer the missing values by solving an optimization problem that minimizes the difference
between observed and predicted values. In previous studies, given a sparse matrix Y,
matrix completion has been used to infer the missing values by solving the following
optimization problem:

Θ = argmin
Θ

∑
(i,j)∈Ω

(yij − f (ui, pj|Θ))2, (2)

where Θ represents all the trainable weights in the matrix completion model, ui refers
to the representation (i.e., embedding) of user i, while pj refers to the representation
of peer j. These embeddings capture latent features that may be relevant to predicting
missing values. f represents the interaction function of the model. The goal of recovering
the sparsely observed data is to use the objective of matrix completion by focusing on
the two-factor embeddings.

3.2. Overview
3.2.1. Framework Overview

As illustrated in Figure 1, users send requests to their respective peers, and blockchain
services (peers) respond by providing feedback on the quality of service (QoS) data. The
feedback data comprises seven items, including the peer’s IP address, the user’s IP address,
request time cost, response time cost, bulk request time cost, block height, and block hash.
In the prediction server, the received feedback data is used to calculate the success rate
based on the submitted information. These calculated success rates are then utilized to
construct a user–service matrix representing the success rates for each user–service pair.
Due to the limitation that users cannot request all services, the resulting matrix is highly
sparse with numerous unknown values. To predict these unknown values, the GATCF
model leverages the input context information. By employing GATCF, the unknown success
rates can be estimated based on the known values. Once GATCF is applied, the request
success rates for all users and services can be obtained. Consequently, the reliability of
each blockchain service can be calculated using the service selector, which employs the
predicted success rates to make informed decisions.

Figure 1. Reliability Prediction Framework for Blockchain Services.

3.2.2. Solution Overview

After introducing the whole process, we are now focused on the training process.
Specifically, the training process in a stage has three main steps:

Step 1: Embedding. We initialize factor matrices for users and peers and retrieve
their corresponding embeddings based on input indices. The embeddings capture latent
features and characteristics of users and peers, providing a representation that allows
making predictions or recommendations.
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Step 2: Transfer. We construct bipartite graphs to capture complex relationships
and interdependencies among users, peers, and contextual features. By utilizing graph
convolution and message passing, we aggregate information from neighboring nodes.
Attention weights are calculated to determine the importance of nodes, enabling us to
update node embeddings. This process allows the transfer of learned graph structural
features and capture of important neighborhood signals.

Step 3: Interaction. We concatenate the user and peer embeddings to create an input
embedding matrix. We design a neural network-based prediction layer that models the
interaction between user and peer embeddings. This prediction layer uses a neural network
to capture complex relationships and produce the final score prediction value, allowing
prediction of missing values or making recommendations based on user–peer interactions
and contextual information.

GATCF achieves several advantages due to the graph attention mechanism and neural-
network-based interaction function design. Specifically, (1) the graph attention approach
involves an adaptive attention mechanism to model the relationship between nodes and
adjusts the attention weights according to the similarity between users or peers. This
enables the model to better capture the synergistic information between nodes and improve
the performance of graph neural networks. (2) The use of the neural network offers the
ability to learn arbitrary functions from data and possesses stronger nonlinear fitting
capabilities. By employing multilayer perceptrons to learn user–peer interaction functions,
neural network interaction functions can more accurately capture complex relationships
between users and peers, resulting in improved performance.

4. Details of GATCF

Similar to most matrix completion approaches, our method primarily comprises em-
bedding and interaction modules. Diverging from traditional approaches, we incorporate a
transfer module. The embedding module (Section 4.1) takes in index values and retrieves
the corresponding vectors from factor matrices. To incorporate graph patterns to achieve
higher accuracy, the core idea behind this is to transfer the learned graph structural features
via an attention mechanism. After the transformed embeddings are obtained, we input
them to the interaction module and then output a prediction. We use neural networks to
fully utilize the information encoded in embedding. The architecture is shown in Figure 2.

Recall that our goal is to extract collaborative information fully. Targeting the key
components, we design a transfer module (Section 4.2) and the neural network interaction
module (Section 4.3).

Figure 2. Illustration of the proposed GATCF model.
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4.1. Embedding Module

Following the traditional collaborative filtering method, we let R denote the embedding
dimension. We first randomly initialized factor matrices (a.k.a embedding matrices) U ∈ RI×R,
P ∈ RJ×R, for users and peers, respectively. Concretely, given indices (i, j) as the input, we can
obtain the corresponding user i embedding and peer j embedding; ui is the i-th row of U, pj is
the j-th row of P. These embeddings capture latent features or characteristics of users and peers,
allowing the making of predictions or recommendations.

4.2. Transfer Module

In the context of reliability prediction on the blockchain, traditional methods often
overlook the interconnectedness of different contextual features. For instance, an au-
tonomous system may extend across multiple geographic regions or countries [7], while
certain peer providers exclusively cater to specific autonomous systems or operate within
specific geographic regions [31]. These intricate relationships can be accurately repre-
sented and modeled using graph structures. To capture the intricate connections between
users/peers and their associated contexts, we employ a bipartite graph structure. By lever-
aging the edges connecting users/peers and contexts, nodes within the graph can access
their neighboring nodes, allowing the extraction of important neighborhood signals.

In order to enhance the node features, it is crucial to convert the input embedding into
higher-level representations. This transformation process requires a reliable and trainable
linear transformation. To accomplish this, a shared linear transformation is employed,
which is parameterized by an embedding matrix denoted as W ∈ RF′×F. This matrix is
applied to each node individually. Subsequently, self-attention is performed on the nodes
using a shared attentional mechanism represented by a : RF′ ×RF′ → R, which computes
attention coefficients.

eij = a
(

W~hi, W~hj

)
. (3)

We incorporate the significance of node j′s features to node i through attention mecha-
nisms. In its general formulation, the model enables each node to attend to every other node
without considering the structural information. However, we introduce graph structure
by employing masked attention, which restricts the computation of the attention weights
(eij) to nodes j ∈ Ni, where Ni represents the neighborhood of node i in the graph. In our
model, we specifically consider the first-order neighbors of node i, including the node itself.
To make coefficients easily comparable across different nodes, we employ the softmax
function to normalize them.

aij = softmaxj
(
eij
)
=

exp
(
eij
)

∑k∈Ni
exp(eik)

. (4)

Based on preliminaries, we first construct undirected graphs consisting of user nodes,
user context nodes, peer nodes, and peer context nodes. Users belonging to the same
context are connected to a specific context node. In the graphs denoted as Gu and Gp, the
first-order neighbor nodes of user/peer nodes represent their contextual features, while the
second-order neighbor nodes refer to user/peer nodes with the same contextual features.

Secondly, we calculate the attention weights of each pair of nodes, user–user and
peer–peer, by calculating the attention weights. The algorithm for calculating the attention
weights between the nodes can be formulated as

aij =
exp

(
Leaky ReLU

(
ãT[Wuui‖Wuuj

]))
∑k∈Ni

exp(LeakyReLU(ãT [Wuui‖Wuuk]))
, (5)

bij =
exp

(
LeakyReLU

(
b̃>
[
Wppi‖Wppj

]))
∑k∈Ni

exp
(
LeakyReLU

(
b̃>
[
Wppi‖Wppk

])) , (6)
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where aij represents the similarity between two users and bij represents the similarity
between two peers. Ni denotes the set of neighboring nodes connected to a given node
i, ã represents the initial feature vector of the user node, b̃ represents the initial feature
vector of the peer node, ui represents the user’s embedding vector, and pi represents the
peer’s embedding vector. Wu and Wp are the trainable weight of linear transformation in
the transfer module. The || symbol denotes the concatenation operation and T represents
transposition. LeakyReLU is represented by the following equation:

LeakyReLU = max(0, x) + leak ∗min(0, x), (7)

where leak is the hyperparameter that controls the slope of the negative part, which is a
constant, less than 1.0, and is usually set to a smaller positive number.

After attention weight is calculated, we weigh and sum the feature vector of each node
with the feature vectors of its neighboring nodes to obtain the new feature vector of that
node. Formally, the update formula for the feature vector can be written as

ui
′ = σ

(
∑

j∈Ni

aijWuj

)
, (8)

pj
′ = σ

 ∑
i∈Nj

bijWpi

, (9)

where σ is the LeakyReLU activation function. ui
′ and pj

′ are the transferred embedding.
To help the model better focus on the important part of the input user embedding

and peer embedding, similar to [32], we now extend our mechanism to employ multi-head
attention. Fundamentally, k-independent attention mechanisms execute the transformation
depicted in Equations (8) and (9). Subsequently, their outputs are amalgamated through
concatenation, yielding the ultimate output feature representation.

ui
′ = ‖K

k=1σ

(
∑

j∈Ni

ak
ijWu

kuj

)
, (10)

pj
′ = ‖K

k=1σ

 ∑
i∈Nj

bk
ijWp

kpi

, (11)

where ak
ij and bk

ij are normalized attention coefficients computed by kth user attention

mechanism(ak) and kth peer attention mechanism (bk). σ is the LeakyReLU activation
function. Wu

k and Wp
k are the corresponding trainable weight of the input linear trans-

formation. We suppose that the final outputs ui
′ and pj

′ consist of K × R features for
each node.

In particular, when using multi-head attention on the final layer of the network for
prediction, concatenation is not a viable option. Instead, we use an averaging operation:

ui
′ = σ

(
1
K

K

∑
k=1

∑
j∈Ni

ak
ijWu

kuj

)
, (12)

pj
′ = σ

 1
K

K

∑
k=1

∑
i∈Nj

bk
ijWp

kpi

, (13)

where k is the number of heads in the transfer module.
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4.3. Interaction Module

In our matrix completion, we turn our attention to modeling the relationship rep-
resenting the interaction between the user and their peer’s embedding vectors. We can
directly employ the inner-product-based interaction function to predict the missing value,
formulated as

ŷij = σ

(
R

∑
r=1

uir pjr

)
, (14)

where σ(x) = 1/(1 + exp(−x)) is a non-linear activation function, mostly used to enable
the model to capture non-linearity interaction patterns. This method forces the module to
focus on embeddings without interfering with the interaction function. However, there
are many other kinds of more expressive interaction forms. For example, Cheng et al. [33]
proposed that cross-product features between historical user behaviors and candidate
items are widely used in click-through rate prediction. To obtain higher accuracy, complex
relationships need to be modeled. It could not be more appropriate to employ a neural-
network-based interaction function. The deep interest network [34] highlights that user
interests vary and an attention-based network structure can produce different user vectors
for different candidate items. Therefore, in order to improve the accuracy of reliability
prediction for nearby users and peers, we leverage the neural network interaction function
instead of the inner product interaction function. Concretely, we first concatenate the user
embeddings and peer embeddings together:

H = U′ || P′, (15)

where U′ and P′ are the transferred embedding of the user and peer. H is the input
embedding of the prediction layer which is introduced further. || is the concatenation
operation in this process. After obtaining the input embeddings, the neural-network-based
prediction layer is constructed and shown in Figure 3. Specifically, the prediction layer is
expressed in the following formula:

ŷ = g(H|Θg), (16)

where g is the prediction layer of the model, and Θg is the trainable parameters of the
prediction layer. ŷ represents the final prediction value.

Figure 3. The Prediction Layer.
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4.4. Model Training

With all modules introduced, we now consider how to train our model to complete
the entire matrix. Specifically, the matrix completion process minimizes loss L as

L = ∑
i,j∈Σ

(
yij − f (i, j | Θ)

)
; (17)

this is a mean absolute error between the predictions and the labels. Θ is the trainable
parameters of the model. yij represents the SuccessRate of user i to peer j. f denotes
the entire modules. By minimizing this loss function using optimization algorithms, the
GATCF model can learn to complete the missing entries in the matrix accurately.

4.5. Complete Solution

The execution process of GATCF can be described as follows. The GATCF (Graph
Attention collaborative filtering) model is a complete solution that combines matrix fac-
torization, graph attention mechanism, and neural networks. It captures latent features of
users and peers through the Embedding Module, incorporating graph patterns and neigh-
borhood information via the transfer module. After obtaining ultimate embeddings, we
can predict the missing value by the interaction function. The interaction module models
the interaction between user and peer embeddings using a neural network-based function.
This comprehensive approach enhances collaborative filtering and improves reliability
prediction, making the GATCF model a powerful solution for various recommendation
and prediction tasks. To maintain optimal model performance, we initiate both the training
and estimation processes in response to retraining conditions.

5. Experiments

In this section, the authors describe the experiment settings and objectives for eval-
uating the performance of their proposed GATCF framework. They aim to answer the
following research questions:

• RQ1 How well does GATCF perform in the real world?
• RQ2 How do different components affect GATCF?
• RQ3 How do interaction modules affect GATCF?
• RQ4 How do hyper-parameters affect GATCF?

5.1. Experiment Settings
5.1.1. Datasets

In our study, we utilized a real-world dataset originally proposed in [7]. This com-
prehensive dataset encompasses 100 blockchain users and 200 blockchain peers, collected
using a framework [35] that includes a data collector and log parser. This framework allows
developers convenient storage of data in their own database instead of on the blockchain.
The blockchain peers in this dataset span 21 countries, while the users hail from 15 different
nations. With over 2 million test cases, this dataset provides a rich source of information
for our analysis.

5.1.2. Baselines

We compare our model with three types of methods, including two classical memory-
based collaborative filtering methods and two hybrid-based collaborative filtering methods:

• UMEAN [7]: This is a user-based approach that employs the average success rate of
the current requester on other blockchain peers for the prediction.

• IMEAN [7]: This is an item-based approach that employs the average success rate of
the blockchain peers observed by other requesters for the prediction.

• UPCC [10]: This is a user-based collaborative filtering approach that employs PCC
(Pearson Correlation Coefficient) to calculate similarities between users, then predicts
missing values by considering the similar user and its neighbors.
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• IPCC [11]: This is a memory-based method that is similar to UPCC and also uses pcc
to calculate similarities between peers and identifies the peers’ neighbors to predict
the missing value.

• UIPCC [12]: This is a memory-based method that combines the mechanics of UPCC
and IPCC to predict missing values.

• PMF [14]: This is one of the basic algorithms for recommender systems that handle
very sparse and unbalanced data sets well by complete treatment of Bayes’ theorem.

• MF [13]: This is a basic matrix factorization model that expresses the connection be-
tween the user and the item by using the inner product to interact with the user-specific
radial quantity with the item factor, without utilizing context or bayes’ theorem.

• MNCF [36]: This is a model that combines a neural network with matrix factorization
to perform collaborative filtering for the latent feature vectors of users and introduces
multi-task learning for sharing different parameters.

• FL-MFGM [37]: This is a privacy-preserving and high-accuracy blockchain reliability
prediction model that protects user privacy by uploading the gradients of matrix
factorization based on federated learning architecture.

• GraphMF [31]: This is a graph neural network-based model which combines GNNs
and collaborative filtering to extract features to estimate missing QoS values in the
data matrix.

5.1.3. Metrics

Let yij and ŷij denote the ground-truth value and the estimated value. N denotes the
number of testing samples. Ω denotes the indices of unobserved values. To evaluate the
recovery performance on unobserved values, two commonly used metrics are applied:

• Mean Absolute Error. MAE is calculated by

MAE =
1
N ∑

(i.j)∈Ω̄

|yij − ŷij|. (18)

• Root Mean Square Error. RMSE takes the form

RMSE =
∑(i.j)∈Ω̄ |yij − ŷij|

∑(i.j)∈Ω̄ |yij|
. (19)

For both metrics, MAE and RMSE, smaller values indicate better prediction performance.

5.2. Implementation Details

The GATCF https://github.com/ZengYuXiang7/GATCF (accessed on 8 May 2023)
is implemented in PyTorch and performance evaluation on a workstation equipped with
a 2.30 GHz Intel Core i7-11800H CPU (Santa Clara, CA, USA) and 32 GB of memory, as
well as an NVIDIA GeForce RTX 3080 laptop GPU (Santa Clara, CA, USA) with 16 GB of
memory, running on Ubuntu 18.04. To prevent overfitting, the maximum number of epochs
was set to 100, and early stopping was employed with a patience value of 20. The batch
size for the model was set to 4096 and the AdamW [38] optimizer was used to optimize all
models. We tested our proposed model 20 times in every density and took the average of
the twenty.

5.3. Data Preprocessing

We use MaxRTT to represent the maximum tolerable request round-trip time and
MaxBlockBack to represent the maximum tolerable return block backward relative to the
latest block. By adjusting the parameters of MaxBlockBack and MaxRTT, we can simulate
real-world scenarios in our blockchain system. For example, when evaluating accuracy
in situations with stringent requirements for confirming blockchain data, we set four
different combinations of MaxBlockBack and MaxRTT for our experiments: (MaxBlock-

https://github.com/ZengYuXiang7/GATCF
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Back = 0, MaxRTT = 1000), (MaxBlockBack = 12, MaxRTT = 1000), (MaxBlockBack = 12,
MaxRTT = 2000), and (MaxBlockBack = 100, MaxRTT = 5000). These settings allow accurate
assessment of the performance of our system under a range of conditions, and details are
shown in Table 3.

Regarding the datasets mentioned above, we divide them into two disjoint sets: (1) the
training set, used to train our model and baselines, and (2) the test set, applied to evaluate
model performance and report the experiment results.

Table 3. Different settings of MaxBlockBack and MaxRTT.

Dataset Setting 1 2 3 4

MaxBlockBack 0 12 12 100
MaxRTT 1000 1000 2000 5000

5.4. Performance Comparison (RQ1)

Table 4 compares the performance of the GATCF model with baseline approaches
across different datasets, and several key observations can be made. The GATCF model
outperforms the baseline methods by achieving lower MAE and RMSE values across four
different datasets and evaluation levels, indicating its superiority in accurately predicting
user–peer reliability with reduced errors. Firstly, in the “MaxBlockBack = 0, MaxRTT = 1000”
setting, the GATCF model consistently achieves the lowest MAE and RMSE values across
all evaluation levels, indicating its superior predictive accuracy and minimized errors. This
signifies that the GATCF model is highly effective in capturing and modeling complex
relationships between users and peers in scenarios with minimal block backlogs and round-
trip times. Similarly, in the “MaxBlockBack = 12, MaxRTT = 1000” and “MaxBlockBack = 12,
MaxRTT = 2000” settings, the GATCF model outperforms the baseline methods, displaying
significantly lower MAE and RMSE values. This highlights the model’s capability to
accurately predict user–peer relationships when there is a moderate block backlog and
round-trip time. Furthermore, even in the challenging scenario of “MaxBlockBack = 100,
MaxRTT = 5000,” where the block backlog and round-trip time are relatively high, the
GATCF model consistently demonstrates the lowest MAE and RMSE values across all
evaluation levels. This indicates the model’s robustness and effectiveness in capturing the
intricate dynamics of user–peer relationships in such demanding scenarios. Specifically,
GATCF improves MAE over the best of baselines by 10.14%, 26.97%, 36.89%, and 75.39% on
four datasets and improves RMSE by 9.94%, 20.61%, 28.75% and 53.11% on four datasets.
This proves that GATCF is very effective in learning complex and non-linear graph patterns
under a low matrix density.

Through the conducted experiment, we determine a key feature of GATCF—
effectiveness. Regarding the other models, they are all weaker than GATCF in the sparse
case, although they are all able to achieve excellent performance at high sampling den-
sities according to studies conducted to examine them. The exceptional performance of
the GATCF model can be attributed to its innovative graph attention mechanism (GAT)
architecture, which leverages multiple attention heads to capture diverse dependencies
and interactions between users and peers. By effectively attending to relevant features and
relationships, the GATCF model can make highly accurate predictions.
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Table 4. Comparison of MAE and RMSE among GATCF and baseline approaches.

Datasets Model
MAE RMSE

1% 2% 3% 4% 5% 1% 2% 3% 4% 5%

0-1000

UMEAN 0.3782 0.3624 0.3423 0.3349 0.3282 0.4713 0.4421 0.4061 0.3909 0.3787
IMEAN 0.2027 0.1368 0.1049 0.0799 0.0748 0.3398 0.2582 0.2012 0.1458 0.1320
UPCC 0.3782 0.3621 0.3399 0.3257 0.3026 0.4713 0.4419 0.4044 0.3841 0.3591
IPCC 0.2027 0.1368 0.1049 0.0794 0.0735 0.3398 0.2583 0.2013 0.1460 0.1325

UPICC 0.1987 0.1392 0.1028 0.0874 0.0816 0.3261 0.2470 0.1800 0.1435 0.1312
PMF 0.7098 0.7057 0.7022 0.6986 0.6954 0.7190 0.7167 0.7148 0.7129 0.7112
MF 0.4155 0.2580 0.1807 0.1465 0.1210 0.5309 0.3794 0.2761 0.2242 0.1760

MNCF 0.3894 0.1589 0.1188 0.0910 0.0755 0.4208 0.2565 0.2048 0.1651 0.1420
MFGM 0.4145 0.3213 0.1875 0.1144 0.0854 0.5364 0.4447 0.2755 0.1694 0.1276

GraphMF 0.2249 0.1514 0.1085 0.0910 0.0796 0.3026 0.2256 0.1687 0.1419 0.1278
GATCF 0.1886 0.1242 0.0901 0.0793 0.0726 0.2777 0.2052 0.1682 0.1332 0.1247

12-1000

UMEAN 0.4297 0.4033 0.3781 0.3667 0.3604 0.5337 0.4936 0.4503 0.4270 0.4131
IMEAN 0.2701 0.1728 0.1227 0.0974 0.0869 0.4333 0.3211 0.2377 0.1866 0.1612
UPCC 0.4296 0.4031 0.3758 0.3585 0.3345 0.5337 0.4935 0.4487 0.4210 0.3938
IPCC 0.2701 0.1728 0.1228 0.0977 0.0879 0.4333 0.3211 0.2377 0.1867 0.1615

UPICC 0.2645 0.1748 0.1296 0.1067 0.0973 0.4138 0.3048 0.2276 0.1813 0.1587
PMF 0.7633 0.7615 0.7570 0.7519 0.7438 0.7749 0.7739 0.7715 0.7687 0.7668
MF 0.5496 0.3047 0.1997 0.1607 0.1455 0.6648 0.4630 0.2992 0.2367 0.2048

MNCF 0.4107 0.1928 0.1389 0.1041 0.0850 0.4373 0.3124 0.2428 0.1922 0.1651
MFGM 0.5380 0.4209 0.2209 0.1439 0.0918 0.6644 0.5448 0.3050 0.2041 0.1357

GraphMF 0.2545 0.1930 0.1162 0.0982 0.0809 0.3493 0.2780 0.1914 0.1589 0.1403
GATCF 0.2017 0.1361 0.1022 0.0861 0.0777 0.3025 0.2305 0.1835 0.1567 0.1281

12-2000

UMEAN 0.4455 0.4010 0.3765 0.3645 0.3613 0.5505 0.4916 0.4479 0.4245 0.4162
IMEAN 0.2676 0.1399 0.0854 0.0624 0.0535 0.4442 0.2913 0.1949 0.1320 0.1069
UPCC 0.4455 0.4006 0.3736 0.3541 0.3312 0.5505 0.4913 0.4458 0.4168 0.3937
IPCC 0.2676 0.1399 0.0855 0.0626 0.0541 0.4442 0.2913 0.1949 0.1320 0.1072

UPICC 0.2652 0.1455 0.0959 0.0752 0.0665 0.4246 0.2762 0.1871 0.1311 0.1089
PMF 0.7878 0.7815 0.7763 0.7722 0.7671 0.7923 0.7889 0.7862 0.7840 0.7813
MF 0.5878 0.3048 0.1832 0.1325 0.1164 0.6985 0.4501 0.2927 0.2050 0.1668

MNCF 0.4134 0.1998 0.1351 0.0961 0.0754 0.4399 0.3204 0.2381 0.1856 0.1490
MFGM 0.5796 0.4087 0.2130 0.1058 0.0653 0.6953 0.5267 0.2935 0.1474 0.0916

GraphMF 0.2437 0.1531 0.0931 0.0699 0.0547 0.3357 0.2409 0.1507 0.1072 0.0897
GATCF 0.1782 0.1022 0.0730 0.0576 0.0506 0.2847 0.1871 0.1372 0.1037 0.0886

100-5000

UMEAN 0.4130 0.3252 0.2749 0.2635 0.2555 0.5293 0.4317 0.3592 0.3382 0.3253
IMEAN 0.3178 0.1561 0.0860 0.0686 0.0511 0.5001 0.3261 0.2037 0.1625 0.1114
UPCC 0.4129 0.3249 0.2729 0.2572 0.2360 0.5293 0.4315 0.3576 0.3329 0.3089
IPCC 0.3178 0.1561 0.0861 0.0589 0.0494 0.5001 0.3261 0.2037 0.1318 0.1065

UPICC 0.3102 0.1568 0.0907 0.0643 0.0560 0.4724 0.3041 0.1912 0.1274 0.1049
PMF 0.7991 0.7915 0.7904 0.7877 0.7832 0.8052 0.8012 0.8006 0.7992 0.7968
MF 0.7093 0.3175 0.1895 0.1371 0.1172 0.7804 0.4609 0.3012 0.2000 0.1575

MNCF 0.4041 0.2221 0.1573 0.1050 0.0788 0.4345 0.3446 0.2716 0.1990 0.1586
MFGM 0.7039 0.4324 0.2033 0.0944 0.0636 0.7815 0.5255 0.2616 0.1259 0.0884

GraphMF 0.1954 0.1568 0.0878 0.0715 0.0459 0.2935 0.2465 0.1521 0.1157 0.0780
GATCF 0.1501 0.0890 0.0624 0.0525 0.0444 0.2433 0.1610 0.1172 0.0982 0.0753

5.5. Ablation Study (RQ2)

To show the effectiveness of our attention-based transfer module in extracting more
collaborative information, we compare the GATCF with its variant GATCF-m, which only
uses a neural-network-based interaction module. Figure 4 shows the recovery performance
of our GATCF (w/attention) with its variant GATCF-m (w/o attention). In four scenarios,
GATCF’s performance consistently surpasses its variant without the attention transfer
module under different sampling ratios. Specifically, regardless of the specific variations in
“MaxBlockBack” and “MaxRTT” parameters, incorporating an attention mechanism leads
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to lower MAE and RMSE values, indicating the model with attention consistently exhibits
superior predictive capabilities with lower error values.
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Figure 4. Ablation study on Attention Modules.

5.6. Impact of the Interaction Module (RQ3)

In this section, we focus on the impact of the interaction function module. The
interaction function can capture some potential factors between user embeddings and peer
embeddings. We investigate its influence on prediction accuracy via inner-product- or
neural-network-based interaction modules.

We also show other results in Figure 5. We learned that the performance of GATCF
with a neural-network-based interaction function achieves higher accuracy than GATCF
with an inner-product-based interaction function. Whether it is in the “MaxBlockBack = 0,
MaxRTT = 1000,” “MaxBlockBack = 12, MaxRTT = 1000,” “MaxBlockBack = 12,
MaxRTT = 2000,” or “MaxBlockBack = 100, MaxRTT = 5000” settings, the neural net-
work interaction method demonstrates lower MAE values, indicating higher accuracy. This
highlights the superiority of the neural network approach in capturing complex relation-
ships between users and peers. By effectively capturing and learning intricate patterns
and dependencies in user–peer data, the neural network method enables more accurate
predictions and reduces prediction errors. Moreover, we also observed some instability
in model training based on the interaction function of the inner product. Based on our
experiments, we reinforced our choice of neural network interaction functions.
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Figure 5. Performance of Error with Different Interaction Module.

5.7. Impact of the Hyper-Parameters (RQ4)

Impact of Dimension. Feature dimension represents how many hidden factors affect
the prediction values. It has a crucial impact on both the requirement for computational
resources and model accuracy. We fixed other hyperparameters, set the sampling ratio
to 5% on all datasets, and drew the recovery performance curve. In Figure 6, a key ob-
servation can be made. Firstly, in the “MaxBlockBack = 0, MaxRTT = 1000” setting, both
MAE and RMSE values show a decreasing trend as the dimensionality increases from 16
to 256. This indicates that increasing the dimensionality leads to improved model accuracy
and reduced prediction errors. Similarly, in the “MaxBlockBack=12, MaxRTT = 1000”,
“MaxBlockBack = 12, MaxRTT = 2000” and “MaxBlockBack = 100, MaxRTT = 5000” settings,
both MAE and RMSE values exhibit a decreasing trend as the dimensionality increases.
The results suggest that increasing the dimensionality has a positive impact on the per-
formance of the model in terms of MAE and RMSE. Higher dimensionalities enable the
model to capture more complex patterns and dependencies in user–eer relationships, re-
sulting in improved accuracy and reduced prediction errors, highlighting the importance
of considering higher dimensionalities in modeling user–peer relationships. Therefore, we
set the dimension to 256 for four different configuration datasets.

Impact of Attention Head. The number of heads indicates the number of heads in-
cluded in the multi-headed attention mechanism. It is an important hyperparameter in our
model. It determines memory consumption and affects training time and model accuracy.
In Figure 7, the results are as follows: for the “MaxBlockBack = 0, MaxRTT = 1000” setting,
the MAE and RMSE values exhibit fluctuations without a clear trend as the attention heads
increase. This suggests that the choice of attention head count has a limited impact on
the model’s performance in this specific scenario. However, in the “MaxBlockBack = 12,
MaxRTT = 1000”, “MaxBlockBack = 12, MaxRTT = 2000” and “MaxBlockBack = 100,
MaxRTT = 5000” settings, increasing the number of attention heads leads to higher MAE
and RMSE values, indicating a potential degradation in model performance. One possi-
ble reason for the decrease in model performance when the number of attention heads
increases is excessive attentional distraction. Therefore, it is advisable to use smaller at-
tention head counts in these cases to maintain better model accuracy. Notably, the model
achieves better performance when the attention head count is set to two for the “MaxBlock-



Sensors 2023, 23, 6775 17 of 20

Back = 0, MaxRTT = 1000,” “MaxBlockBack = 12, MaxRTT = 1000,” and “MaxBlockBack = 12,
MaxRTT = 2000” settings. In light of these findings, we recommend using an attention head
count of two for all datasets, as it consistently yields improved performance across multiple
settings. This decision ensures an optimal trade-off between accuracy and computational
efficiency, enhancing the overall effectiveness of the model.
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Figure 6. Analysis of Dimension.
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6. Conclusions and Future Work
6.1. Conclusions

In the BaaS environment, it is critical to select reliable blockchain services for develop-
ing blockchain-based applications. To achieve this, we propose a novel Graph Attention
Matrix Factorization (GATCF) method that achieves higher accurate prediction perfor-
mance in blockchain service reliability prediction. To achieve this, we first feed the users
and peers embedding to the embedding transfer module to extract more graph structural
features. Then, we leverage the interaction module to model the interaction relationship
between the user’s latent factor vector and the peer’s latent factor vector. Large-scale
experiments show that our GATCF outperforms all of the baseline models.

6.2. Future Work

For future work, we plan to extend our framework to handle more scenarios such as
dynamic data and heterogeneous data sources. (1) Dynamic data usually refers to data that
are constantly changing, such as real-time transaction information, real-time transaction
volume in a blockchain network, etc. These data need to be updated and processed in
real-time in order to reflect the latest information in a timely manner. (2) For heterogeneous
data, blockchain applications are becoming more and more common in enterprise business
operations, but most of the data in enterprise business activities come from different data
sources with inconsistent information representations and serious ambiguities between the
same blockchain, making it difficult to assess the consistency, trustworthiness, and value of
the information.

In our work, once we have thoroughly explored the performance of our model, we
will investigate other alternative methods that can achieve even higher levels of accuracy.
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