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Abstract: Good feature engineering is a prerequisite for accurate classification, especially in challeng-
ing scenarios such as detecting the breathing of living persons trapped under building rubble using
bioradar. Unlike monitoring patients’ breathing through the air, the measuring conditions of a rescue
bioradar are very complex. The ultimate goal of search and rescue is to determine the presence of a
living person, which requires extracting representative features that can distinguish measurements
with the presence of a person and without. To address this challenge, we conducted a bioradar
test scenario under laboratory conditions and decomposed the radar signal into different range
intervals to derive multiple virtual scenes from the real one. We then extracted physical and statistical
quantitative features that represent a measurement, aiming to find those features that are robust to
the complexity of rescue-radar measuring conditions, including different rubble sites, breathing rates,
signal strengths, and short-duration disturbances. To this end, we utilized two methods, Analysis
of Variance (ANOVA), and Minimum Redundancy Maximum Relevance (MRMR), to analyze the
significance of the extracted features. We then trained the classification model using a linear kernel
support vector machine (SVM). As the main result of this work, we identified an optimal feature set
of four features based on the feature ranking and the improvement in the classification accuracy of
the SVM model. These four features are related to four different physical quantities and independent
from different rubble sites.

Keywords: rescue radar; life detection; binary classification; feature engineering; one-way analysis
of variance (ANOVA); minimum redundancy maximum relevance (MRMR); ground penetrating
radar (GPR); respiratory signal; support vector machine (SVM)

1. Introduction

In disasters like earthquakes, people trapped under rubble may survive if rescued in
time. Therefore, it is critical to deploy all possible urban search and rescue forces quickly.
While rescue dogs are highly effective in finding victims due to their superior sense of smell,
they can be misled by the dead, disturbed by gas leaks, and become fatigued or injured.
Compared with other search techniques, such as infrared cameras and geophones, radars can
emit waves that penetrate through rubble layers. Using the Doppler effect, a radar can detect
the chest movement of living persons when they breathe. Such radars are called bioradars. By
equipping unmanned aerial systems (UAS) with bioradars, rescue teams can efficiently search
large disaster areas, increasing the chances of locating survivors quickly [1–3].

Bioradars designed for medical and biometric applications transmit and receive radio
frequency (RF) waves in the air. They can detect changes in vital signs with high accuracy
by using high operation frequencies such as the popular 2.4 GHz, 5.8 GHz, and 24 GHz
ISM bands [4,5]. In contrast, ground-penetrating bioradars for post-disaster search face
numerous challenges due to the harsh and complex operating environment [6]. One of

Sensors 2023, 23, 6771. https://doi.org/10.3390/s23156771 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23156771
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3987-6731
https://orcid.org/0000-0002-0114-9056
https://orcid.org/0000-0002-5068-8929
https://orcid.org/0000-0002-4806-9838
https://doi.org/10.3390/s23156771
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23156771?type=check_update&version=2


Sensors 2023, 23, 6771 2 of 21

the challenges is the high signal attenuation when RF waves propagate through rubble
layers. Additionally, reflections between different layers of rubble cause energy loss and
reduce the signal-to-noise ratio. Moreover, disturbances such as walking by individuals
or operating machines can significantly degrade the signal quality. Even small changes in
body position, such as arm movement, can also cause discontinuity of the reflected signal.
Last but crucial, each disaster site has a different material composition and distribution,
making the calibration of bioradar measurements difficult or impossible.

Many research studies have primarily focused on accurately identifying the frequen-
cies of a person’s breathing and heartbeat signals in a high-attenuation environment while
disregarding the diversity of disaster sites and the impact of the disturbances in actual post-
disaster operations [6–8]. Scientific publications in this field often use complex diagrams,
such as Fourier transform (FFT) spectra and continuous wavelet transform (CWT) time-
frequency distributions, to visualize signal processing results. However, these diagrams
are not helpful for first responders who need concise information during rescue operations,
where the primary objective is to determine whether a survivor has been detected, which is
a binary classification problem.

The objective of this contribution is to design an automated life-detection algorithm
that can overcome the challenges mentioned earlier. To achieve this objective, three stages
are essential, as shown in Figure 1. First, it is necessary to collect a high-quality dataset by
conducting systematic measurements in environments resembling post-disaster conditions.
Second, the signals detected by the bioradar must be thoroughly examined to discover
variables that can distinguish between measurements with and without the presence of a
trapped person. These quantitative or qualitative variables, which result from measure-
ments and are used to model the outcome, are known as features in machine learning
terminology [9,10]. Finally, an appropriate machine learning model should be trained,
taking into account the features’ characteristics and various model limitations.

Stage I: 

Collect a High-Quality 

Data Set

Stage II: 

Implement E ec ve Features

Stage III: 

Train an Appropriate 

Machine-Learning Model
Signal 

Processing

Feature

Engineering

Figure 1. The three stages to design an automated life-detection algorithm.

The second stage, especially the feature engineering part, is the most time-consuming
step in developing a machine-learning algorithm and often impacts the outcome quality
more than the machine-learning model used [11]. Good features can express significant
class differences. Models with too many features are less interpretable, computationally
inefficient, and may suffer from overfitting [10,12]. The process of finding the optimal set
of features that improve the model effectiveness is called feature engineering [10].

Which features are optimal depends largely on the application. There are many
different classification applications using Doppler radar recorded breathing signals. Studies
for different applications have chosen different features. Miao et al. used breath rate, short-
time energy, and variance of short-time energy as features to classify normal breathing and
three types of breathing disorders [13]. Ma et al. reported a method for distinguishing a
standing human being from a dog in through-wall radar measurements. They have defined
12 features, including features corresponding to energy, time domain, and frequency
domains [14]. Zhang et al. extracted 63 features from radar-captured respiratory and
heartbeat signals and retained the 26 most significant features to classify four emotions:
happy, relaxed, sad, and afraid [15]. Lin et al. defined eight time-domain features from
radar-captured heartbeat signals to train a user authentication system [16]. Rahman et
al. extracted ten time-domain features from radar-captured respiratory signals for subject
identification [17].
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To our best knowledge, this contribution reports the first attempt at systematically
engineering features for a ground-penetrating bioradar application. Additionally, it is likely
the first work that generates multiple virtual scenes from a single real scene, exploiting
multipath propagation to expand the dataset’s size. To further enhance our understanding,
we also conducted an investigation into how various factors, such as different individuals,
body positions, slight movements, and signal strengths, affect the features.

For the convenience of reading, we denote all features we study in non-italic font and
all other variables in italic font.

2. Measuring Principle and Method Overview
2.1. Bioradar Measuring Principle

When we breathe, our chest wall moves rhythmically. The chest displacement can be
approximated by a sine function x(t) = xmax sin(2π frespt), where fresp is the respiratory
rate. The velocity v(t) of the chest motion is the derivative of x(t) to time:

v(t) =
dx(t)

dt
= 2π frespxmax cos(2π frespt). (1)

This periodic velocity variation results in a periodically changing Doppler frequency
fD in the reflected radar signal [18]:

fD =
dφ(t)
2πdt

=
2
λ

v(t) =
4π

λ
frespxmax cos(2π frespt). (2)

Throughout a one-minute measurement, the respiratory rate fresp remains relatively
stable, while the value and sign of the Doppler frequency fD exhibit periodic changes.

Figure 2 depicts the complex operational environment of a rescue bioradar. There are
usually many moving entities in disaster areas, such as first responders, rescue dogs, and
machines. They may interfere with the bioradar measurements. However, by employing
a range window, we can separate the signal of the trapped individual from interfering
signals that occur at different distance intervals. The range resolution ∆R depends on the
bandwidth BW of the applied radar signal and the propagation velocity c of electromagnetic
(EM) waves in medi:.

∆R =
c

2 · BW
. (3)

range 

window

: time static echo

: time varying echo

Bioradar

UAS

Rx signal
Tx signal

wireless 

communication

k· R 

Figure 2. Illustration of a bioradar operation scenario. A person is trapped underneath rubble piles.
A bioradar is placed by an UAS on top of the rubble pile. All objects in the environment reflect the
transmitted radar signal. A first responder, a rescue dog, a working excavator and a vibrating tree are
out of the range window.
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Due to the unknown composition of the material and cavities beneath the rubble
surface, it is impossible to obtain an accurate value for the actual c, and therefore the value
of ∆R is hard to determine. However, it is certain that the range resolution ∆R will be
smaller when measuring through the rubble than in the air.

2.2. Workflow and Outline of this Contribution

To achieve the automatic classifier, we developed a workflow to accomplish the three
stages introduced in Figure 1, as depicted in Figure 3. During stage I, we will use the
bioradar system developed in a previous study [8] to collect data by taking measurements
in a laboratory experiment simulating a post-disaster scene. This experiment is further
detailed in Section 3.

Stage III: 

train a ML-

model

Feature Extrac on

power-related

frequency-related

me-related

2nd  f-related

Signal Processing

FFT

CWT

physical?

sta s cal?

Feature Selec on

one way-ANOVA

MRMR

Classi er Training

SVM

Output: a ML-model

to classify new data

Input:re ected radar signal

Feature Engineering

Preprocessing

IFFT, HP- ltering

Stage I: collect signals

Stage II: implement features

Figure 3. The workflow of this contribution, which is an expansion of the workflow given in Figure 1.

Stage II involves four steps. The first two steps, preprocessing of raw data and prelim-
inary signal processing with Fourier transform (FFT) and continuous wavelet transform
(CWT), were also introduced in detail in [8]. To bring readers into the topic of feature
engineering, we will use a “with person” measurement as an example to introduce the
signal processing routines in Section 3.2 briefly.

Feature engineering is the focus of the work. It involves two main steps: feature
extraction and feature selection [19]. While feature selection can be made scientifically
using mathematical methods, feature extraction is often a creative process requiring domain
expertise and a deep understanding of the data [10].

Although the extraction is a creative process, some directions can guide us to extract
candidate features more systematically. In the case of radar sensor signals, features can be
divided into physical and statistical features. For time-varying signals, features can be de-
rived from time-domain, frequency-domain, and time-varying-frequency representations [19].
Furthermore, according to their associated physical quantities, they can be categorized into
time-related, frequency-related, and power-related features. In Section 4, the extraction of
candidate features using these categories will be introduced in detail.

Feature selection is a process in machine learning where a subset of relevant features
is selected from a larger set of extracted features. This is important because it can improve
the accuracy and efficiency of machine learning models. Two commonly used methods for
feature selection are one-way analysis of variance (ANOVA) [20] and minimum redundancy
and maximum relevance (MRMR) [21]. In Section 5, we employ these methods to select
important features. We will also explain the basics of one-way ANOVA and MRMR and
demonstrate how they can be used to rank the extracted features. We select an optimal set
of four features based on their rankings from the one-way ANOVA and MRMR methods,
as well as their cross-validation accuracies when used in different combinations.
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In the third stage, the selected features will be used to train a machine-learning model
that can accurately classify the measurements. Given the complex measuring conditions
of bioradar and the continuous nature of the features we have studied, certain machine-
learning models are better suited for our problem than others. Nearest neighbor models
and logistic regression are not suitable for our problem due to their sensitivity to outliers
and requirement for linearly separable data, respectively [9,10].

Several models without these constraints can be applied to our problem. The accuracy
and performance of a classifier are heavily influenced by the features used, so the focus of
this contribution is primarily on feature engineering. We ultimately chose to use SVM due to
its robustness and ability to produce easily interpretable decision boundaries [22,23], which
is particularly useful for a problem with complex measuring conditions and continuous
features. In Section 6, the results of this work are presented, including the hyperplane
functions of the trained SVM models and the effect of signal prominence ratio and test
person’s body position on the detection accuracy.

3. Data Collection
3.1. Experiment

To collect measurement data for training the classification model, we built an exper-
imental set-up in our laboratory to simulate a building ruin with cavities. We used the
frequency comb continuous wave (FCCW) bioradar developed in [8]. The bioradar sends
and receives a FCCW signal with a bandwidth of about 60 MHz in the 1.3 GHz band.
Figure 4 shows the construction of the experimental set-up. The wall opposite the set-up is
four meters away, and there is a corridor outside where people occasionally walk by.

Rx antennaTx antenna
Bioradar 

(adi-SDR)

measure 

direction

(a) (b) (c)

Figure 4. The experimental set-up. In the center is an office table with five bags of broken bricks,
three bags are in a plastic box, and two are on the side. Under the table, there are two metal beams.
(a) A bioradar and two antennas are on the top of the box. (b) Side view of the set-up. A test
person can hide underneath the table. One long side of the set-up is close to a wall with a heater.
(c) Body position 1: sitting.

In order to obtain robust features, the dataset needs to have sufficient diversity. Fur-
thermore, the number of measurements shall be much higher than the number of features
to reduce overfitting and enable cross-validation. For this contribution, we have taken
207 measurements of 20 test persons with the set-up. The test persons include 14 males and
6 females aged 20 to 65. In actual collapsed buildings, victims can be trapped in any body
position. We are interested in whether people in certain body positions are easier to detect
than others. Therefore, we have instructed the testers to adopt a different body position in
each test. Five different body positions are investigated: sitting, right lateral, left lateral,
supine, and prone, as illustrated in Figures 4c and 5a–d. About 20% of the measurements
are in a sitting position. The left and right lateral positions have 10%, respectively. The
supine position takes the most measurements, with about 40% of all measurements. The
rest 20% are in the prone position. The number of measurements across these positions
is not the same because we guess most victims are in a lying-down body position when
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trapped. People in the supine position face the radar and can breathe most relaxedly.
Furthermore, we expect the left and right lateral positions to have similar detection success
rates. To balance the dataset, 226 control measurements without a test person are conducted
with the same set-up.

(a) (b) (c) (d)

Figure 5. (a) Body position 2: right lateral. (b) Body position 3: left lateral. (c) Body position 4: supine.
(d) Body position 5: prone.

3.2. Obtaining Multiple Virtual Scenes Using Multipath-Reflections

Multipath-reflection is unavoidable for ground-penetrating bioradar applications
because every interface in the rubble reflects radar waves. Depending on the scenario’s
construction and the trapped survivor’s body position, the strongest signal may take a
longer transmission and reflection path to the person than the fastest propagation path.
As illustrated in Figure 6, even though the green path is longer than the rose-red path, its
returned signal may be stronger due to less attenuation.

inhale

multipath

reflections

Figure 6. Schematic diagram of the laboratory with experimental set-up. A test person lies in a “right
lateral” position. The blue arrows illustrate the deformation of the human body during inhalation.
The transmission and reflection of RF waves can take any path in the room. Here we illustrate some
possible paths with yellow, rose-red, and green colors. In the illustration, the rose-red colored path is
the shortest, RF waves propagate through the box with brick bags and the table, hit the person’s waist
then return. The green path is the longest, however, the waves in this path mainly travel through the
air, reaching and reflecting perpendicular to the person’s chest.

Although multipath propagation can cause signal interference and distortion and is
annoying in many applications, we can exploit it to derive multiple virtual scenes from
the real one. As described in [8], by using an inverse Fourier transform (IFFT), we can
decompose the received frequency comb into different range intervals.

Figure 7a shows the first three sub-signals of a “with person” measurement. These
sub-signals have different strengths but exhibit the same periodicity. Each range interval
can be considered as a different test scenario. Each horizontal color strip in Figure 7b is
the Fourier transform of the sub-signal in the corresponding range interval. We denote
the frequency with the maximum magnitude in the frequency range [0.08, 1] Hz as the
FFT-determined respiratory frequency ffft.
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Figure 7. A measurement of “with person”. (a) Sub-signals of the first three range intervals, high-pass
filtered. (b) Frequency—range plot. In the range 1 to 5, the FFT-determined respiratory frequency
ffft is labeled.

In this measurement, for range-2 to range-5, ffft is detected at 0.3 Hz. However, in range-
1, it is detected at 0.1 Hz due to a low-frequency remainder despite the applied high-pass
filter, which can also be seen in the FFT spectrum shown in Figure 8a. Apart from the static
remainder, signal discontinuities can cause FFT distortion, leading to inaccurate determination
of the respiratory frequency. These signal disruptions may arise from factors such as temporary
breath-holding or body movement. To overcome this challenge, we utilize a second transform,
the continuous wavelet transform (CWT), which enables us to track quasi-periodic components
over time closely. The time-frequency distributions (TFD) of the CWT of the three sub-signals
shown in Figure 7a are given in Figure 8b and Figure 9a,b, respectively.

0 0.2 0.4 0.6 0.8 1
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0.04
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(a) (b)

Figure 8. A measurement of “with person”. (a) FFT of the high-pass filtered signal of the first three
range bins. (b) CWT of range 1. The biggest peak at each time point is highlighted with the white
curve, fcwt. The mode and mean of fcwt is noted on the plot with a dotted line, respectively.

To estimate the respiratory rate from CWT, we first define a measure called peak
factor PF[n] for time point n in the TFD. The detailed definition can be found in [8]. The
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strongest peak at n has the largest PF[n], which is PFmax[n]. The frequency value of these
peaks, f (PFmax[n]), builds a 1D-curve, as illustrated as the white curve in the TFD. In the
following, we denote this curve by fcwt.

fcwt = f (PFmax[n]). (4)

Interestingly, fcwt curves in range-1 and range-2 sub-signals have jump discontinuities
in the middle of the measurement but not in range-3. If we compare with Figure 7a, we
can see that in the time domain, there are also small perturbations in the middle of the
sub-signals of range-1 and range-2, but not in range-3. That indicates that the person
probably moved a bit, but the movement is perpendicular to the arriving wave in range-3.
Therefore, it has no impact on the sub-signal in range-3.

(a) (b)

Figure 9. The “with person” measurement shown in Figure 8. (a) CWT of range 2. (b) CWT of range 3.
The biggest peak f_cwt at each time point is highlighted with the white curve, fcwt. The mode and
mean of fcwt is noted on the plot with a dotted line, respectively.

The frequency comb we use has 32 tones. Theoretically, we can use up to 32/2 = 16 sub-
signals of one measurement to represent 16 measurements. For this contribution, we use the first
five sub-signals. By doing so, we can construct a dataset with (207+226) ·5 = 2165 measurements.

4. Feature Extraction

We start the feature extraction with the fundamental division: physical and statistical.
Physical features are those variables meant to accurately characterize (describe) the signal
of interest, which in the case of rescue bioradars is the breathing signal. Statistical features,
in contrast, do not provide any direct physical description of the breathing signal. We
first extract physical features from the transformations detailed in Section 3, and focus on
analyzing signals in the frequency range of [0.08, 1] Hz.

4.1. Physical Features Related to Respiratory Rate

The estimated respiratory rate using FFT, denoted as f_fft, is a physical feature. We
denote it now using non-italic font to emphasize its status as a candidate feature. The
FFT spectrum exhibits its maximum magnitude Xmax at the frequency f_fft. However,
assuming that f_fft is the actual respiratory signal is incorrect. The reason is three-fold: first,
the FFT spectrum always has a maximum value regardless of whether there is a victim;
second, even if the signal does contain a breathing signal, due to interference, the breathing
frequency may not be precisely the frequency with the largest magnitude; third, the human
breathing rate is not strictly constant. Therefore, we cannot specify the signal, as well as the
signal-to-noise ratio (SNR). Instead, we use signal prominence ratio (PR(f_fft)), a related
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metric that reflects the ratio of the signal power at f_fft to the average power of other points
in the FFT magnitude spectrum X(k).

PR(f_fft) =
X2

max

(∑L
k=1 |X(k)|2 − X2

max)/(L− 1)
, (5)

where k is the index of discrete frequency in [0.08, 1] Hz and L is the number of points in
this frequency range.

We can also estimate the respiratory rate from the time-frequency distribution obtained
using CWT. The mode value of the curve fcwt (Equation (4)) represents the dominant
frequency of the signal and is a relatively robust and accurate parameter to describe the
person’s respiratory rate during a measurement.

f_cwt_mode = mode( fcwt). (6)

Figure 9 shows that, even with perturbations in between, f_cwt_mode in range-2
is very close to f_cwt_mode in range-3. In contrast to f_cwt_mode, all disturbances and
noise will affect the mean value of the fcwt curve. The duration of the f_cwt_mode within
a measurement, TD_cwt_mode, relates to the stability of the measured breath and can
describe the quality of the respiration detection. Considering the inconstant nature of
human breath, we define TD_cwt_mode as the duration of fcwt in the frequency interval
f_cwt_mode ± 0.05 Hz, normalized by the total measuring time Tmeas.

TD_cwt_mode =
T( fcwt = f_cwt_mode± 0.05 Hz)

Tmeas
· 100%. (7)

We chose a fixed interval width of 0.1 Hz instead of a floating value dependent
on the f_cwt_mode because the average standard deviation of fcwt for “with person” is
approximately half of that for “without person”. In our later analysis, we will demonstrate
that the mean standard deviation of fcwt for “with person” measurements is 0.09 Hz,
which is approximately equal to the interval width of 0.1 Hz, whereas for “without person”
measurements, it is 0.19 Hz. Consequently, we can expect that with an interval width of
0.1 Hz, the TD_cwt_mode would exhibit statistically significant differences between the
two classes of measurements.

4.2. Statistical Features

While statistical features may not have a direct physical interpretation of the breathing
signal, they can help distinguish between signals with and without a person. For example,
the standard deviation of fcwt, denoted with std(f_cwt), can describe the signal’s fluctu-
ation from its mean [24]. A low value of std(f_cwt) indicates that the signal’s energy is
concentrated over the measurement period, which could suggest the presence of a person
in the rubble. Statistical features like std(f_cwt) are helpful because they can detect patterns
in the signal that may not be visible through physical features alone.

An example of the misleading nature of relying solely on extracted physical features
can be seen in a “without person” measurement. Figure 10 shows that, for the first three
range bins, f_fft has been determined as different values, ranging from 0.1 to 0.19 Hz, while
the f_cwt_mode of range-1 is determined as 0.261 Hz. Although these frequency values fall
within the breathing rate range of a normal relaxed human being, they do not represent a
true breathing signal. In a measurement that genuinely captures breathing, the respiratory
frequencies determined with different transforms should have relatively similar values. To
address this issue, we define a normalized difference between f_fft and f_cwt_mode:

∆f(fft, cwt_mode) =
|f_fft− f_cwt_mode|

(f_fft + f_cwt_mode)/2
· 100%. (8)
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Figure 10. A “without person” measurement. (a) FFT of the high-pass filtered signal of the first three
range bins. (b) CWT of range 1.

It is a statistical feature that is derived from two frequency-related physical features.
Another statistical feature is the mean value of the fcwt curve:

f_cwt_mean = mean( f (PFmax[n])). (9)

In contrast to f_cwt_mode (Equation (6)), f_cwt_mean is affected by all noise and distur-
bances present in the measurement. Since we are investigating the frequency range of [0.08, 1]
Hz,and most people breathe at a rate slower than 0.4 Hz, for a “with person” measurement,
f_cwt_mean tends to have a higher value than f_cwt_mode, as shown in Figure 9. Conversely,
for a “without person” measurement, where only noise of different kinds is present, f_cwt_mean
tends to be close to the middle of the analyzed frequency range. For instance, in the signal
illustrated in Figure 10, the f_cwt_mean is 0.454 Hz. Analogous to the mode-value-related
features, we can define the corresponding TD_cwt_mean and ∆f(fft, cwt_mean).

4.3. Summary and Analysis of Extracted Features

Table 1 lists the nine features that we have defined along with their mean µ and
standard deviation σ for all “with person” and “without person" observations. The type
column denotes the physical (phy.) or statistical (stat.) nature of the feature, as well as
whether it is derived from the frequency domain (FD) or time-frequency domain (TFD).
Furthermore, P, F, T, and F2 stand for power-related, frequency-related, time-related, and
secondary frequency-related features, respectively. We have grouped these features into
four categories based on their associated physical quantity type (P, F, T, or F2). Later, we
will select one feature from each category to reduce redundancy.

The mean and standard deviation are the most basic statistical measures. For a numeric
dataset with a Gaussian distribution, they are sufficient. The features we selected, however,
have unknown distributions. A box plot using median and quartiles can graphically display
any distribution’s concentration, skewness, and outliers. Figure 11 shows the boxplots of
the nine selected features for observations with and without persons. Features of the same
category are listed together.

The box in the box plot represents the interquartile range, which includes 50% of the
samples. The distance between the boxes representing “with person” and “without person”
indicates the classification potential of each feature. A larger distance between the boxes
suggests a stronger potential for classification. For instance, the boxes for f_cwt_mean
are further apart than those for f_cwt_mode, which implies that f_cwt_mean is a more
significant feature than f_cwt_mode.
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All features, except for f_fft, have non-overlapping boxes, indicating a clear distinction
between the two classes based on these features. The lack of separation in f_fft’s boxes
suggests that it has limited classification potential. It is important to note that the high-pass
filter used in the preprocessing stage has a cut-off frequency of 0.04 Hz, which can leave a
static offset residue in the spectrum, as a result, in “without person” measurements, the
lower edge of our frequency range of interest, 0.08 Hz, is often detected as f_fft.

Table 1. Nine extracted features.

# Feature Notation Type Meaning With Person Without Person
µ σ µ σ

1 PR(f_fft) phy. FD-P prominence ratio in dB 15.52 dB 4.26 dB 9.89 dB 2.96 dB
2 std(f_cwt) stat. TFD-P standard deviation of f_cwt 0.09 Hz 0.07 Hz 0.19 Hz 0.03 Hz

3 f_fft phy. FD-F frequency with max(FFT) 0.22 Hz 0.08 Hz 0.18 Hz 0.12 Hz
4 f_cwt_mean stat. TFD-F mean value of f_cwt 0.28 Hz 0.08 Hz 0.51 Hz 0.06 Hz
5 f_cwt_mode phy. TFD-F mode value of f_cwt 0.24 Hz 0.10 Hz 0.46 Hz 0.19 Hz

6 TD_cwt_mean stat. TFD-T norm. duration of f_cwt_mean 62.9% 37.1% 17.2% 9.4%
7 TD_cwt_mode phy. TFD-T norm. duration of f_cwt_mode 71.2% 26.8% 25.2% 8.7%

8 ∆f(fft, cwt_mean) stat. F2 norm. diff. btw. f_fft and f_cwt_mean 29.8% 35.2% 101.7% 30.2%
9 ∆f(fft, cwt_mode) stat. F2 norm. diff. btw. f_fft and f_cwt_mode 23.9% 34.1% 88.2% 41.7%

P: power-related F: frequency-related T: time-related F2: 2nd F-related

Figure 11. Boxplots of nine features for observations with and without persons, respectively. The
median of a feature is shown as the line inside the box. The lower and upper quartiles are shown as
the bottom and top edges of the box, respectively. The distance between the top and bottom edges is
the interquartile range (IQR). Outliers are shown as circles, and they are values that are more than
1.5 · IQR away from the edges of the box. The whiskers are lines that connect the box edges to the
nonoutlier maximum and the nonoutlier minimum.

5. Feature Selection

The boxplots give us an intuitive overview about the distributions of the candidate
features. However, to select the optimal feature set, we need some numeric methods to
calculate the significance of each feature and compare them. In this section, we investigate
the significance of the nine extracted candidate features using two feature ranking methods.
One is a univariate method: Analysis of Variance (ANOVA), and one is a multivariate
method: Minimum Redundancy Maximum Relevance (MRMR). Based on the ranking of
the features and the classification accuracy of different feature combinations, we can select
an optimal feature set with minimal size.
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5.1. Basics of One-Way ANOVA

ANOVA is widely used for hypothesis testing [25]. In feature engineering, the one-way
ANOVA is utilized to analyze the significance of features individually by comparing the
within-group and between-group variances of one feature. The null hypothesis H0 states
that the sample means of different classes do not differ significantly [20]. ANOVA utilizes
the F-test statistic, which is the ratio of the mean square between groups (MSG) to the
mean square error (MSE) [25]:

F =
MSG
MSE

=
SSG/d f G

(SST − SSG)/d f E
. (10)

The larger the F, the more substantial the evidence against the H0. The one-way
ANOVA tests one feature at each time. MSG and MSE are obtained by dividing the
sum of squares between groups (SSG) and the sum of squared errors (SSE) by their
respective degrees of freedom d f G and d f E. SSE is the difference between the total sum of
squares (SST) and SSG. For a binary classification problem with N0 observations of group
0 and N1 observations of group 1, the total sum of squares SST and the sum of squares
between groups SSG of a feature v are defined as [25]:

SST =
N0+N1

∑
i=1

(vi − v)2, (11)

SSG = N0(v0 − v)2 + N1(v1 − v)2, (12)

where v0 and v1 are the means of group 0 and group 1 are, respectively. v is the overall
mean of the dataset. As there are only two groups for binary classification, d f G = 2− 1 = 1
and d f E = N0 + N1 − 2 [25].

An F-distribution is defined with the two degrees of freedoms: d f G and d f E [25].
Figure 12 shows the F-distribution for our data, with d f G = 1 and d f E = 2163. The blue F
here is an illustrative example. The F-statistics of our nine candidate features are all much
greater than 5.

infinity

F

upper tail, area = p

Figure 12. A F-distribution with d f G = 1 and d f E = 2163. The blue F is an illustrative example.
The p-value is the area of the upper tail.

The area of the right hand side region of the F-statistic, the so-called upper-tail, is the
p-value, which describes the probability that H0 is true. The lower the p-value, the more
critical the feature [25]. In Matlab, the one-way ANOVA scores a feature by its − ln(p).
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5.2. Basics of MRMR

The Minimum Redundancy Maximum Relevance (MRMR) Algorithm [21,26] is based
on the computation of mutual information. Two variables, u and v, can both be features, or
one is a feature, and the other is the response. p(u) and p(v) are their probability distribu-
tions, respectively. p(u, v) is their joint probability distribution. The mutual information I
of u and v is defined as the relative entropy from the product p(u)p(v) to p(u, v)

I(u, v) = DKL(p(u, v)||p(u)p(v)) = ∑
i,j

p(ui, vj) log
p(ui, vj)

p(ui)p(vj)
, (13)

where DKL represents the operator of relative entropy, also known as the Kullback–Leibler
divergence. Here we use the f scmrmr function in Matlab R2022a, which estimates the
mutual information I for each pair of variables using an adaptive algorithm [26]. Suppose
we have a feature set S with M features. For feature u, its redundancy Wu is defined as the
average of I between u and every other feature z in S and its relevance Vu is the I between
u and the response y:

Wu =
1
M ∑

z∈S
I(u, z), (14)

Vu = I(u, y). (15)

The MRMR score of a feature u is given by the quotient of its Vu and Wu, the mutual
information quotient MIQ:

MIQu = Vu/Wu. (16)

5.3. Ranking Results of Feature Importance

One-way ANOVA scores each feature independently. MRMR scores each feature
depending on all other features. Table 2 shows the rankings and scores for the nine features
given by one-way ANOVA and MRMR. In both rankings, f_fft has the lowest score, which
matches our observation from the box plots in Figure 11.

Table 2. Feature rankings and scores.

Ranking One-Way ANOVA MRMR
Feature Score Feature Score

1 ∆f(fft, cwt_mean) Inf. f_cwt_mean 0.51
2 TD_cwt_mode Inf. PR(f_fft) 0.42
3 f_cwt_mean Inf. TD_cwt_mode 0.36
4 std(f_cwt) 687.98 ∆f(fft, cwt_mode) 0.34
5 TD_cwt_mean 604.74 std(f_cwt) 0.32
6 ∆f(fft, cwt_mode) 580.65 ∆f(fft, cwt_mean) 0.29
7 PR(f_fft) 510.40 f_cwt_mode 0.28
8 f_cwt_mode 467.40 TD_cwt_mean 0.24
9 f_fft 33.26 f_fft 0.12

Figure 13 shows a scatterplot of the two top-scoring features according to one-way
ANOVA and MRMR, respectively. Each scatter represents an observation. We can see
that in the two scatterplots, the observations of “with person” and “without person” are
roughly divided into two clusters with some overlap. It is impossible to separate the two
clusters with a straight line or a polynomial curve.
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Figure 13. Scatter plot of the two top scoring features: (a) according to ANOVA ranking.
(b) according to MRMR ranking.

5.4. Investigate the Classification Accuracy of the Trained Models

To select an optimal feature set with the least number, we train support vector machine
(SVM) models with augmented features according to the two rankings and analyze the
accuracy and false rates of these models. To ensure reliable results, we utilize a five-fold
cross-validation approach by randomly splitting the dataset into equal-size folds. Our
analysis is focused solely on SVM models with linear kernels.

In the context of bioradar applications, we define “with person” as positive detection
and “without person” as negative detection. False predictions can occur in two ways: when
a “with person” measurement is classified as negative: false negative; or when a “without
person” measurement is classified as positive: false positive. We do not discuss which of these
two types of errors is more severe and set the misclassification cost to be equal for both cases.

Figure 14a shows the classification accuracies (ACC), false negative rates (FNR), and false
positive rates (FPR) of the trained SVM models. Figure 14b zooms in on the accuracies and
false rates, respectively. For both rankings, the classification accuracy improved significantly
by increasing the number of features from one to three. After three features, for MRMR
ranking, the most significant improvement of 0.6% occurs when the number of features is
increased from five to six, which indicates the 6th feature is essential. For the one-way ANOVA
ranking, the most significant improvement of 0.7% occurs at the 7th feature.

However, increasing the number of features did not constantly improve the prediction
accuracy of the SVM model. From Figure 14, we can see that the accuracy has no improve-
ment for more than seven features, indicating that redundant features exist. Furthermore,
for models using more than one feature, FNR is always higher than FPR. By increasing the
misclassification cost for FNR, the FNR will decrease, but the FPR will increase, and the
overall prediction accuracy will reduce.

Comparing Table 2, we can see that the [1, 2, 3, 7] feature set of ANOVA has exactly
the same features as the [1, 2, 3, 6] feature set of MRMR. They are [PR(f_fft), f_cwt_mean,
TD_cwt_mode, ∆f(fft, cwt_mean)]. Coincidentally, they are the assembly of the two highest-
scoring features in each ranking. We decided to use this four-feature set. Since they also
belong to the four different categories in Table 1, the redundancy of this set is minimal. The
accuracy of the model trained with this feature set is 95.7%.
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Figure 14. The classification accuracies (ACC), false negative rates (FNR), and false positive rates (FPR)
of the SVM model as the number of features increase. Features are added sequentially according to the
rank orders given by one-way ANOVA and MRMR, respectively. (a) overview (b) local zoom-in of (a).

To analyze if we have collected enough measurements for feature engineering, we want
to investigate whether we will obtain the same optimal feature set with a smaller dataset.
To do so, we randomly divided the 433 measurements dataset into five groups, four groups
with 87 measurements each and one with 85 measurements, so each group contains about
20% of the total measurements. The division also maintained consistency in the proportion
of the two classes, with each group having less than a 2% difference in the percentage of
“with person” measurements from the overall ratio of 207/433 = 47.81%. By analyzing the
ranking of the nine candidate features using only the first 20%-group, the top four features
identified through MRMR are f_cwt_mean, ∆f(fft, cwt_mode), TD_cwt_mode, and PR(f_fft).
The ranking sequence differs from the results obtained using all measurements. However,
when the analysis included the first two groups, namely 40% of the measurements, the
ranking order of the top four features aligned exactly with the order obtained using the
entire dataset. When the dataset for analysis expanded to 60% and 80%, the results remained
unchanged. Notably, the top four features identified through ANOVA ranking for the
20% subset matched those obtained using the complete dataset. These results indicate that
achieving the same selected feature-set outcome is possible using just 40% of our collected
measurements. With 433 measurements, our dataset is more than sufficient for accurate
analysis and feature selection.

6. Results and Discussions
6.1. Hyperplane of Solved SVM Model

The dimensionality of a model is determined by the number of features used. A solved
binary SVM model has a decision boundary, the so-called hyperplane, that optimally
separates the training data into two classes. The dimension of a hyperplane is the problem
space’s dimension minus one [27]. Therefore, the hyperplanes for 1D, 2D, and 3D-SVM
models are points, lines, and planes, respectively. In an SVM model that employs M
features, each observation x is represented by an M-dimensional feature vector. When
using a linear kernel in the SVM model, the score f (x) will be a linear function of the
observation x [9]

f (x) =
(

x− µ

σ

)
β

s
+ b, (17)



Sensors 2023, 23, 6771 16 of 21

where µ and σ are the training dataset’s mean and standard deviation, respectively, β is the
weight of the features in the set. µ, σ and β are all M-by-1 vectors. The kernel scale s and
model bias b are scalar parameters. Regardless of the model dimension, the function of the
hyperplane is

f (x) = 0. (18)

The classification of a new data vector x is determined by the sign of its corresponding
score f (x). Table 3 presents the parameters of the trained linear support vector machine
(LSVM) models using two, three, or four features from the selected feature set.

Table 3. Parameters of SVM models trained with linear kernels with different numbers of features.

2D-LSVM 3D-LSVM 4D-LSVM

s b s b s b
0.11 −0.17 0.25 −0.62 0.43 −0.69

feature µ σ β β β

PR(f_fft) 12.58 4.60 −0.09 −0.19 −0.31

f_cwt_mean 0.40 0.14 0.25 0.50 0.79

TD_cwt_mode 0.47 0.30 / −0.26 −0.41

∆f(fft, cwt_mean) 0.67 0.49 / / 0.18

accuracy / 94.6% 95.2% 95.7%

As the same training dataset is used for all models, the parameters µ and σ remain
unchanged. However, because the dataset is randomly partitioned for training and testing,
a trained model of the same dimension may have slight variations in the kernel scale s,
bias b, and weight β. Figure 15 demonstrates the scatter plots and decision boundaries
of the 2D-LSVM model and the 3D-LSVM model. It can be seen that the two classes of
observations can be roughly separated by the hyperplane.
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Figure 15. Scatter plots of the data and support vectors for the trained models. (a) The decision boundary
of the 2D-LSVM model is a straight line. (b) The decision boundary of the 3D-LSVM model is a plane.

For the 4D-LSVM model, we cannot visualize the 4D scatter plot and the 3D hyper-
plane. However, as illustrated in Figure 16, we can transform the 4D-feature space into
a 1D-function as described in Equation (17), and the hyperplane is the point f (x) = 0.
The observations with f (x) < 0 are classified as “with person” and the observations with
f (x) > 0 are classified as “without person”. The larger the magnitude of f (x), the more
confident the prediction is.
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Figure 16. For 4D-LSVM, the observations can be wrapped into a 1D space according to the Equation (17).
The decision boundary is the point f (x) = 0.

Tables 4 and 5 show the results of a “with person” measurement and a “without
person” measurement, respectively. The predictions are made using the trained 4D-LSVM
model. The five sub-signals of the “with person” measurement are all correctly classified.
For the “without person” measurement, the second range sub-signal is misclassified, but it
has the smallest | f (x)|.

Table 4. Feature values of the “with person” measurement shown in Figures 8 and 9. The predictions
are made using the trained 4D-LSVM model.

PR(f_fft) f_cwt_mean TD_cwt_mode ∆f(fft,
cwt_mean) f (x) Prediction

range-1 13.39 0.32 0.37 1.08 −1.25 with person
range-2 17.83 0.34 0.70 0.11 −3.62 with person
range-3 16.28 0.32 0.69 0.05 −3.66 with person
range-4 14.54 0.32 0.74 0.05 −3.55 with person
range-5 17.25 0.40 0.13 0.28 −0.72 with person

Table 5. Feature values and predictions of the “without person” measurement shown in Figure 10.

PR(f_fft) f_cwt_mean TD_cwt_mode ∆f(fft,
cwt_mean) f (x) Prediction

range-1 10.20 0.45 0.23 0.81 1.24 without person
range-2 11.59 0.35 0.35 1.14 −0.46 with person
range-3 10.67 0.44 0.25 0.97 1.04 without person
range-4 11.35 0.55 0.26 0.81 2.27 without person
range-5 11.12 0.53 0.26 1.38 2.53 without person

6.2. Impact of Prominence Ratio on False Rate

Among the four features of the selected set, the signal prominence ratio PR(f_fft) is
a special one. Like SNR, PR(f_fft) describes the prominence of a signal relative to the
background and thus determines the credibility of other features. Here, we investigate
the impact of PR(f_fft) on detection accuracy and question whether it will be possible
to detect breathing when PR(f_fft) is small. We divide the observations into five groups
according to their PR(f_fft) values and use different colors to mark the two classes, as
illustrated in Figure 17a. The PR(f_fft) distribution for all observations is approximately
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Gaussian distributed. This is the same as what we learned from Figure 11; the majority
of “with person” observations have higher PR(f_fft) than “without person” observations.
Notably, there are only three “with person” observations for PR(f_fft) < 5 dB, which is less
than the number of sub-signals of a measurement, five. Conversely, all observations with
PR(f_fft) > 20 dB are “with person”.
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Figure 17. (a) The number of observations with different PR(f_fft) ranges. (b) The false rate of the
4D-LSVM model for different PR(f_fft) ranges.

Figure 17b shows the false rate of different PR(f_fft) groups. The lower the PR(f_fft),
the higher the false negative rate (FNR). However, in this experiment, breathing is still de-
tectable even for the lowest PR(f_fft) group. Out of the 59 observations in the PR(f_fft) < 5 dB
group, only three are “with person”, but only one of those three was misclassified, re-
sulting in an FNR of 33.3%. As PR(f_fft) increases, FNR reduces, and FPR grows. For
PR(f_fft) > 20 dB, there is no “without person” observation, and all “with person” observa-
tions are correctly classified. Therefore, both FPR and FNR are zero.

6.3. Effect of Body Position on Breathing Detection in This Particular Experiment

Furthermore, we are interested in whether the body position of the test person affects
the detection accuracy in this particular experiment. To investigate this question, we count
the number of false negative classifications for each pose separately, as shown in Figure 18.
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Figure 18. False-negative classified observations and corresponding body positions. The percentage
of measurements taken in position sitting, right lateral, left lateral, supine, and prone are about 20%,
10%, 10%, 40%, and 20%, respectively.

The radar measures downwards. In the supine and prone positions, the chest or
back movement of the test person is axial to the radar, resulting in the most significant
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change in the radar cross-section. Measurements of these two body positions have also the
lowest FNR. Similarly, we would expect that in the sitting position, the chest movement
is perpendicular to the propagation direction of the radar wave, which causes a minimal
change in the radar cross-section, therefore, is hardest to detect. However, observations of
the left lateral position have the lowest accuracy. Their FNR is nearly doubled compared
to the observations of the right lateral position, which seems strange but consistent with
our discussion in Section 3.2. The experimental set-up is asymmetric and closer to the wall
with the heater on the left side of the lying test person. The space on the right side is more
open, and radar waves reach the person more easily from the right side than from the left.

From this study, we can say that the body position itself does not affect the detection
accuracy, but rather the combination of the construction of the measuring scene and the
body position of the trapped person does.

7. Conclusions

This contribution presents a systematic feature engineering approach for search and
rescue bioradar applications. Through this process, we have identified an optimal feature
set of four features related to four different physical quantities. These features possess
consistent analytical meaning and the optimal feature set will stay significant and will
not be influenced by the specific measurement scenario. This will efficiently enhance the
classification’s reliability and accuracy.

Using a support vector machine (SVM), we trained a classifier model with an analytical
decision boundary function that can be easily employed to classify new data automatically.
The feature engineering process and visualized SVM hyperplanes also helped us better
understand the application and bioradar signals.

While the complexity of rescue-bioradar measuring conditions makes it impossible
to construct a comprehensive training dataset that covers all possible scenarios, our work
represents the first attempt to achieve representative features despite this complexity.
However, it is crucial to conduct further experiments close to actual post-disaster conditions,
incorporating different building materials and constructions, to verify the significance of
our selected feature set and enhance the robustness of the model. Additionally, for future
iterations of training, expanding the dataset to include measurements of human infants
and children will be essential. Only by continuing to refine and extend the dataset we can
improve the detection success rate in practical urban search and rescue operations.
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