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Abstract: In recent years, environmental sound classification (ESC) has prevailed in many artificial
intelligence Internet of Things (AIoT) applications, as environmental sound contains a wealth of
information that can be used to detect particular events. However, existing ESC methods have high
computational complexity and are not suitable for deployment on AIoT devices with constrained
computing resources. Therefore, it is of great importance to propose a model with both high classifica-
tion accuracy and low computational complexity. In this work, a new ESC method named BSN-ESC is
proposed, including a big–small network-based ESC model that can assess the classification difficulty
level and adaptively activate a big or small network for classification as well as a pre-classification
processing technique with logmel spectrogram refining, which prevents distortion in the frequency-
domain characteristics of the sound clip at the joint part of two adjacent sound clips. With the
proposed methods, the computational complexity is significantly reduced, while the classification
accuracy is still high. The proposed BSN-ESC model is implemented on both CPU and FPGA to
evaluate its performance on both PC and embedded systems with the dataset ESC-50, which is the
most commonly used dataset. The proposed BSN-ESC model achieves the lowest computational
complexity with the number of floating-point operations (FLOPs) of only 0.123G, which represents a
reduction of up to 2309 times in computational complexity compared with state-of-the-art methods
while delivering a high classification accuracy of 89.25%. This work can achieve the realization of
ESC being applied to AIoT devices with constrained computational resources.

Keywords: environmental sound classification; low computational complexity; neural network; AIoT

1. Introduction

In recent years, environmental sound classification (ESC) has attracted increasing
research attention and is widely used in many artificial intelligence Internet of Things
(AIoT) applications, such as audio surveillance [1,2], wild animal monitoring [3], and smart
homes [4]. For example, in audio surveillance applications, ESC technology can be used for
the detection of security events, such as gun shots and screaming. In smart home applica-
tions, ESC technology can be used to alert parents when their babies cry [5]. ESC usually
consists of two parts: feature extraction and classification. For feature extraction, there
are some acoustic features that are often used, including the raw sound wave, frequency
spectrum [6], gammatone filterbank cepstral coefficient (GFCC) [7], mel-frequency cepstral
coefficient (MFCC) [8], and logmel spectrogram [9]. Among them, the logmel spectrogram
is used in our work. Firstly, it is not a good choice to use the raw wave of sound as the
input feature due to the large data amount with redundant information. Compared with
the MFCC, GFCC, and logmel spectrogram, the frequency spectrum lacks information in
the time domain. Compared with the MFCC and GFCC, the logmel is realized using almost
the same method as the MFCC/GFCC, with the only difference being that it eliminates
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the discrete cosine transform (DCT). Both the MFCC and the GFCC perform the DCT to
keep information on the spectral envelope, but it discards information on pitch. In fields
such as speech recognition or keyword spotting, which focus on the human voice, the
glottal vibration (related to pitch) is redundant information, so DCT can be performed to
discard information on pitch. However, in the ESC, information on pitch is also important
for the classification of sound events, and, thus, the DCT cannot be used. Eliminating
DCT can also significantly reduce computational complexity. Therefore, in recent years,
many state-of-the-art works have used logmel as the input feature. We have also followed
this trend.

For classification, the extracted features are classified into different environmental
sounds with a traditional machine learning-based or deep-learning-based classifier. Ma-
chine learning methods have been widely adopted in the ESC in the past. Some widely
used machine learning methods include decision tress (DT) in [10], K-nearest neighbors
(KNN), and support vector machine (SVM) in [11]. However, these methods cannot extract
and utilize effective feature information well, so the classification accuracy is limited [12].
To address this problem, deep learning methods, such as convolutional neural network
(CNN) and recurrent neural network (RNN), have been used to improve the classification
accuracy by learning the effective features from the training data automatically. However,
a major problem with neural network-based deep learning methods is that they usually
involve a large number of floating-point operations (FLOPs), resulting in a large amount of
processing time. This is a big challenge for the ESC being applied on AIoT devices with
constrained computational resources. In this work, a big–small network-based ESC method
(named BSN-ESC) has been proposed to significantly reduce the amount of computation
while achieving high classification accuracy. The main contributions of this work include
the following:

• A big–small network-based ESC model is proposed to reduce the amount of com-
putation while achieving high classification accuracy by assessing the classification
difficulty level of the input audio clip and adaptively activating a big or small network
for classification.

• A pre-classification processing technique with logmel spectrogram refining is proposed
to further improve the classification accuracy.

• The proposed BSN-ESC model is implemented on FPGA hardware for the evaluation
of processing time of AIoT devices.

• The proposed BSN-ESC method is evaluated on the commonly used ESC50 dataset.
Compared with several state-of-the-art methods, the number of FLOPs is significantly
reduced (up to 2309 times) while achieving a high classification accuracy of 89.25%.

• The rest of this paper is organized as follows. Section 2 reviews the related work.
Section 3 presents the details of the proposed BSN-ESC method. Section 4 presents
the hardware implementation of the BSN-ESC on the FPGA. Section 5 shows and
discusses the experimental results, and Section 6 concludes the paper.

2. Related Work

In the past, various traditional machine learning methods have been adopted for ESC.
For example, KNN and SVM have been used in [11], in which the outputs of both KNN
and SVM were converted into probabilistic scores, and then the two scores were fused into
a frame score. The classification accuracy obtained using the combination of KNN and
SVM is higher than that of using either of them alone. In addition, DT was adopted in [10],
in which the decision on each segment of the audio clip was averaged by the proposed
algorithm, with the decisions of the past segments based on the DT.

However, the limited classification accuracy was the common drawback of these tradi-
tional machine learning-based methods. The features used in these methods were usually
extracted manually through feature engineering, which was not only time consuming but
also inefficient in extracting effective features for achieving high accuracy. Actually, the
accuracy heavily depended on the designer’s experience.
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In recent years, the deep-learning-based methods based on the end-to-end neural
network have been proposed to improve the classification accuracy of ESC by automatically
learning the effective features from audio clips. One of the earliest deep learning models for
ESC was proposed in [13], named PiczakCNN, where a 2-D convolutional neural network
(CNN) was used to analyze the logmel features with two convolution layers and two
fully connected layers. Later, the image recognition network models, such as GoogleNet
and AlexNet [14], have been adopted for ESC as the logmel spectrograms extracted from
audio clips could also be regarded as images. Later, researchers began to apply techniques,
such as the data augmentation, transfer learning, and attention mechanism, to ESC in
order to improve the classification accuracy. The effects of data augmentation, such as
time stretching, pitching shifting, and background noise on the performance of ESC, were
studied in [15,16]. A multi-stream CNN with temporal attention has been proposed in [17]
to address the robustness issue cross different ESC tasks. Based on this method, a combined
temporal and channel attention mechanism has been proposed in [18] to enhance the
representative power of CNN by generating complementary information, which obtained
higher classification accuracy. Refs. [19–22] used modified network models from the
Residual Networks (ResNet) together with other innovative methods, which improved
the classification accuracy. Among them, Refs. [19,20] used modified network models
from the ResNet50 while [21,22] used modified network models from the ResNet18. [19]
showed that transfer learning with models pre-trained on ImageNet has proven to be
successful for ESC, and [20] proposed a new data augmentation technique of triplicating
and random-masking the input logmel spectrograms. A recognition method based on
multi-feature parameters and time-frequency attention module has been proposed in [21] to
extract the attention weight of the input feature spectrogram and to reduce the interference
coming from the background noise, and the irrelevant frequency band and [22] constructs
a feature generative replay model for ESC that can imitate the human memory process
without forgetting old knowledge when learning new knowledge to achieve the fusion
of the new and old task information. A method based on Mel-spectrogram separation
and long-distance self-calibration CNN has been proposed in [23], and it could retain the
original information of the feature map while extracting new features to protect the effective
information of the output layer in model training to improve the classification accuracy.

Compared with the traditional machine learning-based ESC methods, the afore-
mentioned deep-learning-based ESC methods based on end-to-end neural network have
achieved higher classification accuracy, but they have resulted in a significant increase in
the number of FLOPs, which has led to large processing times and power consumption.
Therefore, people began to investigate how to reduce the number of FLOPs in the deep
learning ESC methods. A one-dimensional (1D) convolutional neural network was pro-
posed in [24] to use two separable 1D convolution filters factorized from two-dimensional
(2D) convolution filters for reducing the computational complexity. In [25], a new convo-
lutional neural network architecture with the widening factor was developed to change
the number of parameters and FLOPs of systems, and a method based on an increase
in the stride size (from 2 to 4) of few convolutional layers was proposed to improve the
inference efficiency of CNN-based systems for ESC tasks. In [26], knowledge distillation
strategy, which takes advantage of the redundancy in the neural network, was proposed
to reduce the number of FLOPs. In [27,28], the standard convolutions were replaced with
the depthwise separable convolution (DSC) or hybrid convolution, which combines the
traditional convolution and DSC at different stages to further reduce the number of FLOPs.
The above methods reduce the number of FLOPs to some extent, but the reduction of
computational complexity is always accompanied by the loss of classification accuracy. In
addition, the computational complexity after reduction is still not enough to fit on AIoT
devices with heavily constrained computational resources and power budgets.
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3. Proposed ESC Method

This section presents our proposed ESC method, including a big–small network- based
ESC model (named BSN-ESC) for reducing the amount of the computation while achieving
high classification accuracy, as well as a pre-classification processing technique with logmel
spectrogram refining (PPTLSR) for further improving the classification accuracy.

Figure 1 shows the overall architecture of the proposed ESC method. It mainly consists
of two parts: the feature extraction part and the classification part. In the feature extraction
part, the short-time Fourier Transform (STFT) is first performed on the input audio clip
(usually several-second duration) and the sampling time is 23.2 ms per frame, with a
sampling number of 1024 and a sampling rate at 44.1 kHz. There is also a 50% overlap
between two neighboring frames. This is followed by the logmel computation, where a
number of frames after STFT goes through the mel filter bank with 128 triangular band-pass
filters and the log computation module. After that, the output of logmel computation is
processed by the PPTLSR module to obtain three logmel spectrograms of size (128 × 256).
The logmel spectrograms are then fed into the BSN-ESC model one-by-one for computation.
The details of each module are described as follows.
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Figure 1. Overall architecture of the proposed ESC method.

3.1. Proposed BSN-ESC Model

The existing end-to-end neural network models usually contain only one big network.
However, the classification difficulty level of input audio clips varies from one to another.
In other words, some audio clips are difficult to classify and need a big network to achieve
high accuracy, while some audio clips are easy to classify and need only a small network
to achieve high accuracy. Therefore, using a big network for all the audio clips is a
kind of waste in term of the amount of computation. Based on this observation and
analysis, we propose the BSN-ESC model, which can assess the classification difficulty
level and adaptively activate a big or a small network to significantly reduce the amount of
computation while maintaining high accuracy.

The BSN-ESC model mainly consists of three parts, as shown in Figure 2: the difficulty
level assessment network, the big classification network, and the small classification net-
work. For an input audio clip, the assessment network is used to assess its classification
difficulty level by training the network to classify the input audio clips into two classes
(i.e., Difficult or Easy). Then, for the ‘Difficult’ audio clip, the big classification network
will be activated to process it. For the ‘Easy’ audio clip, the small classification network
will be activated to process it. By extensive experiments, we have observed that most of
the audio clips can be classified into ‘Easy’. Therefore, the small classification network will
be activated much more frequently than the big network, leading to large saving of the
computation while maintaining high accuracy.
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Figure 2. Proposed BSN-ESC model.

The training process of the difficulty level assessment network and the big and small
classification network is shown in Figure 3. Firstly, we use the network shown in Table 1
as our baseline network. The audio clips in the training dataset are fed into the baseline
network to obtain the accuracy result for each environmental sound class. Then, a pre-
defined accuracy threshold is used to divide the environmental sound classes into the
‘Difficult’ class and ‘Easy’ class. For example, there are five environmental sound classes
A, B, C, D, and E, and their accuracies are 0.89, 0.92, 0.72, 0.85, and 0.97. If the accuracy
threshold is set to 0.88, all the audio clips belonging to A, B, and E are labelled as ‘Easy’
classes because the accuracies of these classes are higher than the threshold, and all the
audio clips belonging to C and D are labelled as ‘Difficult’ classes because the accuracies
of these classes are lower than the threshold. All the labelled audio clips are then used to
train the difficulty level assessment network. After that, the big and small classification
network are also trained independently using the audio clips in the training dataset. In our
experiment, for simplification, we directly used the baseline network as the big classification
network. The detailed structures of the three network are shown in Table 1. Following
previous work [24], the big and small network contain both normal convolution layers
and depthwise separable convolution layers to achieve relatively low complexity with
high accuracy, while the assessment network is much smaller as it is only used for 2-class
classification. During the testing, the assessment network will assess the difficulty level
of each of the input audio clips in the test dataset and adaptively activate the big or small
classification network.

Table 1. Detailed Structure of the Three Networks.

Difficulty Level
Assessment Nework

Big Classification
Network

Small Classification
Network

1 × 5 Standard Conv1 3 × 5 × 32 Standard Conv1 3 × 5 × 32 Separable Conv1
3 × 3 Maxpooling1 3 × 5 × 32 Separable Conv2 4 × 3 Maxpooling1
(easy/hard) FC-sigmoid 4 × 3 Maxpooling1 3 × 1 × 64 Standard Conv2

3 × 1 × 64 Standard Conv3 4 × 1 Maxpooling2
3 × 1 × 64 Separable Conv4 1 × 5 × 128 Separable Conv3
4 × 1 Maxpooling2 1 × 3 Maxpooling3
1 × 5 × 128 Standard Conv5 3 × 3 × 256 Separable Conv4
1 × 5 × 128 Standard Conv6 2 × 2 Maxpooling4
1 × 3 Maxpooling3 (# of classes) FC-softmax
(# of classes) FC-softmax
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3.2. Proposed PPTLSR Technique

The audio clip often contains silent parts with background noise at the start or the
end, which do not carry useful information but affect the classification accuracy. Therefore,
trimming the silent parts at the start or the end of a sound clip is a common pre-processing
technique in ESC to improve the accuracy. However, the lengths of the sound clips change
after trimming the silent parts. As the neural network model can only take sound clips
with uniform length, padding is required after the trimming. There are usually two ways of
padding, as shown in Figure 4a,b. One way is to pad zeros to the trimmed sound clip to the
uniform length. Another way is to pad the trimmed sound clip by repeating itself until the
uniform length is reached. After the padding, the logmel spectrogram of the sound clip is
generated and fed to the neural network for classification. Previous work showed that the
latter method can achieve higher accuracy than the former [18]. However, we have found
an issue in the latter method. The frequency-domain characteristics of the sound clip could
be distorted at the joint part of two adjacent sound clips because of frame-sliding operation
in the logmel spectrogram generation process. This will affect the classification accuracy.
In this work, instead of padding in the time domain, we proposed the PPTLSR technique,
in which the padding is performed after the logmel spectrogram generation, as shown in
Figure 4c. The logmel spectrogram of the sound clip is generated first, and then the logmel
spectrogram is repeated until the uniform length is reached. In this way, the distortion in
the frequency domain can be prevented, which helps improve the classification accuracy,
as can be seen in the section of experimental results.
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4. FPGA Based BSN-ESC Hardware Implementation

To evaluate its performance on PC and an embedded system, the proposed BSN-
ESC model has been implemented on both CPU and FPGA, respectively. For the FPGA
implementation, the BSN-ESC model has been implemented on a Xilinx ZCU104 FPGA
board with a Deep-Learning Processor Unit (DPU). The DPU is an IP core provided by
Xilinx FPGA for accelerating neural network. As shown in Figure 5, the DPU is used to
accelerate the BSN-ESC neural network, and the ARM core is used to implement the other
parts, including the pre-processing, logmel feature extraction, and post-processing. The
AXI bus is used for data transfer between the ARM and the DPU. An UART interface is
used to send the audio clip data from the dataset on the laptop to the FPGA, and send the
classification results from the FPGA back to the laptop.
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The Xilinx Vitis AI software is used to deploy the BSN-ESC neural network on the
DPU. It can finetune, quantify, and compile the trained models of neural networks into
instructions. The instruction and the weights are then loaded into the DPU for the accelera-
tion of the neural network. The extracted logmel features are sent to the DPU through the
AXI bus by the ARM core, and the classification results are read back by the ARM core after
the neural network computation is completed. Figure 6 shows the FPGA test setup and the
screenshot on PC. As shown in the screenshot, the proposed method is implemented on
ZCU104 FPGA board and the classification accuracy is 89.25%.
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5. Experiments and Discussion
5.1. Dataset

The commonly used public dataset ESC-50 [29] is used to evaluate the performance
of the proposed BSN-ESC method. The ESC-50 dataset is a labelled set of 2000 audio
clips made for the benchmark methods of environmental sound classification, containing
various types of sounds, such as “animals sounds”, “natural soundscapes and water
sounds”, “human, non-speech sounds”, “interior/domestic sounds”, and “exterior/urban
noises”. Each audio clip is 5 s long with a sampling frequency of 44.1 kHz, and the
2000 audio clips are divided into 50 classes (40 examples per class).

5.2. Pre-Processing and Data Augmentation

In the logmel pre-processing, each frame consists of 1024 sample points with 50%
overlap with the next frame. The number of frames X of a trimmed sound after logmel
module can be represented as in:

X = (t × 44100)/512 − 1, (1)

where t is the time length of the trimmed sound. The obtained logmel spectrogram with X
frames is then replicated several times until the number of frames reaches 512.

In order to make efficient use of the limited training data to improve the accuracy,
the logmel spectrogram with 512 frames is split into three new logmel spectrograms,
each containing 256 frames with 50% overlap. The size of the new logmel spectrogram
is 128 × 256. The process is shown in Figure 7.
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To further improve the accuracy, data augmentation methods, such as time mask-
ing [30] and mix-up [31], are adopted. By randomly setting the values of t frames in
a spectrogram to 0 and mixing two masked spectrograms with different proportional
coefficients, the new spectrograms are generated and added for data augmentation.

5.3. Training and Testing Method

In the training phase, each logmel spectrogram after splitting is sent to the neural
network for the weight training, while in testing phase 3, logmel spectrograms after split-
ting are sent to the neural network sequentially and their results are averaged to obtain a
classification result. N-fold cross-validation is adopted in the experiment, and the value
of N is 5. In other words, the ratio of the number of training samples and test samples is
4:1. We used the pytorch library to train the proposed model and used stochastic gradient
descent with Nesterov momentum of 0.9 to optimize the model parameters by minimiz-
ing the cross-entropy loss of a minibatch, which consists of 64 spectrograms. A total of
80 epochs are set for the training of the model. The learning rate is initialized to 0.01, and
for every 30 epochs, it is reduced by 10 times.

5.4. Results and Analysis

Figure 8 and Table 2 show the classification accuracy and processing time of
different methods. As shown in Figure 8, the proposed PPTLSR is applied on both the
big classification network and the small classification network individually and jointly.
For the performance of the PPTLSR on the big classification network, the accuracy of
“Padding after Trimming + Baseline Network” is 85.75%. The accuracy increases to
88.5% when “Replicating after Trimming + Baseline Network” is adopted. With the
“Proposed PPTLSR + Baseline Network”, the accuracy increases to 89.95%, and for the
performance of the PPTLSR on the small classification network, the accuracy is 83.5%
when using “Padding after Trimming” and increases to 86% when using “Replicating
after Trimming”. After adopting the proposed PPTLSR, the accuracy increases to
87.5%. With “Proposed PPTLSR + Proposed BSN-ESC Network”, which means the
PPTLSR is applied on the big and small network jointly, the accuracy slightly decreases
to 89.25% compared with that of the big classification network, but this reduces the
computational complexity by 3.4 times and reduces the processing time by 2.1 times,
as shown in Table 2. During the experiment, the big classification network has been
activated 62 times and the small classification network has been activated 338 times.
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Please note that in Table 2, the “proposed BSN-ESC Network” includes the big and
small classification network and the assessment network.
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Table 2. Processing Time and Computational Complexity of the Proposed Method.

Methods Processing Time Computational
Complexity

CPU FPGA (No. of FLOPs)

Proposed PPTLSR +Baseline Network 30.66 s 3.36 s 0.417 G
Proposed PPTLSR +Proposed

BSN-ESC Network 14.66 s 2.35 s 0.123 G

Table 3 compares the proposed method with the state-of-the-art work. As shown in
the table, the number of FLOPs of the compared work range from 0.249 G to 284.06 G,
while the proposed method has only 0.123 G FLOPS, which is the lowest, and 2309 times
less than [17]. This number of FLOPs (0.123 G) of the proposed method includes that of
the assessment network and the big and small classification network. According to the
difficulty level given by the assessment network, 15.75% of the audio clips are labelled as
‘Difficult’ class and activated the big classification network, while 84.25% of the audio clips
are labelled as ‘Easy’ class and activated the small classification network. Thus, the total
number of FLOPs is obtained by the formula shown below:

15.4% × 0.417 G (big) + 84.6% × 0.068 G (small) + 1.35 M (assessment) = 0.123 G, (2)
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Table 3. Comparison of the Proposed Method with the Existing Methods.

Methods
Classification Accuracy Computational Complexity

ESC-50 Dataset No. of FLOPs

Multi-Stream CNN [17] 2019 84.0% 284.060 G
ZhangCNN [18] 2019 86.5% 0.485 G
SoundCLR [19] 2021 92.9% 258.74 G
ESResNet [20] 2021 91.5% 183.36 G

LGTFB [24] 2020 86.2% 0.812 G
LCSED [27] 2022 83.0% 2.640 G
ULSED [28] 2022 88.3% 0.249 G

Multi-Feature CNN [21] 2022 89.0% 1.82 G
ERANN [25] 2022 89.2% 10.01 G
LSCNet [23] 2022 88.0% 0.65 G
FGR-ES [22] 2023 82.08% 1.82 G

Ours 89.25% 0.123 G

The classification accuracy of the proposed model is 89.25%, which is the third
highest and only lower than [19,20]. However, the number of FLOPS of the proposed
method is 2103 times less than [19] and 1491 times less than [20]. This shows that the
proposed method is able to achieve significant reduction on the computational complexity
while maintaining high accuracy. It is suitable for ESC on AIoT devices with constrained
computational resources.

6. Conclusions

In this work, a new ESC method named BSN-ESC is proposed to address the high
computational complexity of the existing ESC methods. The proposed BSN-ESC model
includes a big–small network-based ESC model that can assess the classification difficulty
level and adaptively activate a big or a small network for classification as well as a pre-
classification processing technique with logmel spectrogram refining that prevents the
distortion in the frequency-domain characteristics of the sound clip at the joint part of two
adjacent sound clips. The proposed BSN-ESC model achieves the lowest computational
complexity with the number of floating-point operations (FLOPs) of only 0.123G, which
represents a reduction up to 2309 times in computational complexity compared withe
state-of-the-art methods. In the meanwhile, the proposed BSN-ESC model delivers a high
classification accuracy of 89.25%, which is the third highest, but the number of FLOPs
of the other two methods are 2103 times and 1491 times higher than ours. In addition,
with our proposed logmel spectrogram refining technique, compared with the baseline
network, the computational complexity is reduced by 3.4 times and the processing time
is reduced by 2.1 times. This work can achieve the realization of ESC being applied to
AIoT devices with constrained computational resources. In the future, we will implement
the proposed lightweight algorithm on hardware, building a practical application in the
real-time environment.
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