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Abstract: Space-borne gravitational wave detection satellite confronts many uncertain perturbations,
such as solar pressure, dilute atmospheric drag, etc. To realize an ultra-static and ultra-stable inertial
benchmark achieved by a test-mass (TM) being free to move inside a spacecraft (S/C), the drag-
free control system of S/C requires super high steady-state accuracies and dynamic performances.
The Active Disturbance Rejection Control (ADRC) technique has a certain capability in solving
problems with common perturbations, while there is still room for optimization in dealing with the
complicated drag-free control problem. When faced with complex noises, the steady-state accuracy of
the traditional control method is not good enough and the convergence speed of regulating process
is not fast enough. In this paper, the optimized Active Disturbance Rejection Control technique is
applied. With the extended state Kalman filter (ESKF) estimating the states and disturbances in real
time, a novel closed-loop control structure is designed by combining the linear quadratic regulator
(LQR) and ESKF, which can satisfy the design targets competently. The comparative analysis and
simulation results show that the LQR controller designed in this paper has a faster response and a
higher accuracy compared with the traditional nonlinear state error feedback (NSEF), which uses a
deformation of weighting components of classical PID. The new drag-free control structure proposed
in the paper can be used in future gravitational wave detection satellites.

Keywords: extended state Kalman filter; linear quadratic regulator; drag-free control

1. Introduction

Gravitational wave astronomy provides a new tool to explore black holes, dark matter,
the early universe, and the evolution of the universe. To detect gravitational waves in space,
a strategy involves deploying multiple satellites in mega-satellite formations to measure
tiny changes in the relative distances between satellites when the gravitational wave goes
through. However, the challenge lies in the weak characteristics (to the order of 10−21) in
the changes caused by gravitational waves, which can be easily influenced by extraneous
perturbations and noise. To address this issue, the typical approach is to employ drag-free
satellites: an inner test mass is shielded and free-falls along the geodesic of spacetime,
and the outer satellite counteracts non-conservative forces and tracks the test mass in a
sensitive axis. This setup creates an ultra-static and ultra-stable platform, with the test
mass serving as an inertial reference for the measurement of relative distances in space.
Using this approach, it is possible to obtain accurate and reliable measurements of distance
variation. And the variation represents the effect of gravitational waves.

In the drag-free control loop, there are many factors that can impact the effect of the
controller, such as external environmental disturbances, sensor measurement noise, process
noise, and other inevitable disturbances and noises. Models of these disturbances and
noises are hard to be built precisely, which makes it difficult to determine the appropriate
models for compensation. To address this challenge, the Extended State Observer (ESO)
method has emerged as an effective solution for modeling, estimating, and identifying

Sensors 2023, 23, 6766. https://doi.org/10.3390/s23156766 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23156766
https://doi.org/10.3390/s23156766
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23156766
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23156766?type=check_update&version=1


Sensors 2023, 23, 6766 2 of 18

disturbances in the drag-free control loop. Using the ESO method, it is possible to obtain
estimates of the disturbances, which can help the design of the controller. This method
has significant implications for the development of advanced control systems for drag-free
satellites, thereby improving performance and reliability.

The Active Disturbance Rejection Control (ADRC) technique, proposed by Han [1,2],
combines the “anti-disturbance” and “model independence” of PID control with the idea of
the state observer. The Extended State Observer (ESO) is the core of ADRC, providing a way
to estimate and compensate for disturbances and uncertainties. Huang [3,4] demonstrated
the design method and proof of convergence for nonlinear ESO of second- and third-
order systems, showing that it can achieve fast convergence without oscillation, even in the
presence of model uncertainty and disturbances. However, the complexity of nonlinear ESO
increases with the growth of the number of parameters, making tuning more challenging.
Despite this drawback, the effectiveness of nonlinear ESO in mitigating disturbances and
uncertainties makes it a promising technique for advanced control systems in various
applications. Gao [5] proposed a parameter design method for linearized ESOs based on
bandwidth, which effectively reduces the design threshold and improves the convenience
of the application. Yang [6] analyzed the observation error of the ESO for different forms
of disturbances and concludes that when the disturbance is bounded or its derivative is
bounded, ESO can effectively estimate it, and the observation error is bounded. In addition,
Jin [7], Chen [8], and Gan [9] analyzed the stability of the ESO using different methods,
and Shao [10] analyzed high-order ESOs by adding higher-order derivative of disturbance
as the extended state. Although increasing the extended order can effectively reduce the
estimation error of each state, increasing the order and bandwidth simultaneously also
affects the high-frequency noise suppression effect. Therefore, a trade-off between the
expansion order and bandwidth is needed to balance the estimation accuracy and the high-
frequency noise suppression effect. The Extended State Kalman filter (ESKF) proposed by
Xue [11] combines the advantages of both extended state observer and Kalman filter to filter
the noise and estimate the system state and disturbance in dealing with nonlinear systems
with strong nonlinearity, large initial estimation error, and severe noise. The Extended State
Kalman filter provides a potential solution to the problem of disturbance identification
for the drag-free control of gravitational wave detection satellites, when the conventional
filtering methods are not sufficient to estimate the disturbance.

The Linear Quadratic Regulator (LQR) is a widely used engineering tool in the
aerospace industry due to its ability to achieve optimal control under specific performance
requirements. Its simplicity in design has made it a popular choice for various applications,
such as quadrotors [12–16], hypersonic vehicles [17,18], airborne remote gimbal [19], and
satellite formation problems [20,21] etc.

In the field of control engineering, the Linear Quadratic Regulator (LQR) is widely
used for linear problems. To ensure the effectiveness of the controller, an accurate linear
model must be established or a nonlinear model should be linearized prior to the LQR
design. In cases where low control performance requirements are sufficient, typically
disturbances and noise are not handled directly but are instead compensated for through
control. In order to improve the robustness and disturbance resistance of the traditional
LQR controller, Lu [12] introduced the Extended State Observer (ESO) to estimate ran-
dom low-frequency disturbances and the estimation of ESO is used by LQR. Attitude
control of spacecraft with low precision requirements, disturbances, and noise are often
not preprocessed and are only compensated for through LQR controllers. For systems
with higher performance requirements, such as the six-degree-of-freedom attitude control
system described in Ref. [17], a combination of ESO and LQR is used to achieve higher
control accuracy and stronger disturbance resistance compared to using LQR control alone.
In Lin’s research [19], a standard nonlinear ESO was employed in combination with LQR to
estimate and compensate for multi-source perturbations, ultimately improving the control
of LQR for uncertain systems. While these studies successfully combined an extended
state observer with LQR control and achieved some improvement, they focused solely on
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the estimation and compensation of perturbations without considering the suppression
of noise.

The accuracy required for drag-free and attitude control in gravitational wave detec-
tion is crucial, so the impact of noise must be considered. Previous methods are insufficient
in dealing with the noise affecting gravitational wave detection satellites, and cannot esti-
mate the perturbations effectively. Those methods also suffer from longer setting times. To
design a successful control system, it is necessary to develop effective strategies to reduce
the noise impact on control performance. In this study, we propose a novel approach
that combines ESKF with LQR control. We use the state and disturbance estimated by
ESKF as the input information for the controller, ensuring optimized control. Our analysis
and simulations show that this new approach outperforms traditional solutions. It effec-
tively shortens the adjustment time, reduces the number of oscillations, compensates for
disturbances, and suppresses noise, ultimately achieving the desired design specifications.

The paper is organized as follows: in Section 2, a dynamic model of a single test mass
drag-free satellite is established. In Sections 3 and 4, the design process and calculation
methods of the ESKF and LQR are presented, respectively. In Section 5, the performance of
the system using the LQR controller and NSEF controller is compared through numerical
simulations, indicating that the overall performance of the LQR controller is superior to
that of the NSEF controller when using ESKF as the estimation method. The conclusion is
given in Section 6.

2. Dynamics Modeling

This paper takes a single test mass, a drag-free satellite in geocentric orbit as the
research subject, as is shown in Figure 1, where C indicates the center of mass of an object,
h represents the sensitive cavity, which is fixed to the satellite, then the position vector rh
from the center of the sensitive cavity to the center of mass (CoM) of the satellite is constant,
and the position vector of test mass relative to the satellite is r = rh + rrel . The relative
translation equations of motion in the inertial system are first transformed into the satellite
body coordinate system, similarly the relative attitude equations of motion are projected
into the TM body coordinate system, which is illustrated in Figure 2. Then a comprehensive
drag-free satellite dynamics model can be established as follows.

Figure 1. Relative positions of CoM of satellite, CoM of test mass, and center of cavity.

 

Figure 2. Coordinate system diagram.

ϕ̈sc = I−1
sc
(
TCsc + wTCsc + TDsc

)
, (1)
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(3)

where wTCsc indicates input noise, here assume that all input forces and moments acting
on the satellite, as well as the measurement output of the sensor, are subject to noise, TDsc
denotes the disturbance moment to the satellite, FDtm and FDsc denote the test mass and
the disturbance force on the satellite, respectively, and TDtm indicates the disturbance
moment to the test mass. The sc, tm, rel, C, D, and G subscripts indicate the S/C, Test
Mass, measurements RELated to the sensitive cavity, Control command, Disturbance, and
Gravity. The h superscript indicates the components in the sensitive cavity frame, and ATS
is the coordinate transformation from the satellite frame to the test mass frame.

The dynamic model is expressed in the form of state space equations which are
presented as follows:

Ẋ0 = A0X0 + B0(u + w + f )
Y = C0X0 + d

(4)

where

A0 =



03 I3 03 03 03 03
03 03 03 03 03 03
03 03 03 I3 03 03

03 03 −Ktrans
mtm

−Dtrans
mtm

03 03

03 03 03 03 03 03
03 03 03 03 I−1

tm Krot I−1
tm Drot


, B0 =



03 03 03
I−1
sc 03 03
03 03 03

03 − I3
msc

03

03 03 03
−I−1

sc 03 I−1
tm


,

C0 =

 I3 03 03 03 03 03
03 03 I3 03 03 03
03 03 03 03 I3 03


where Ktrans, Dtrans, Krot, Drot are the coupling coefficient matrices for translation and
rotation, respectively. u is the system control variable, w is input noise, d is measurement
noise, and f represents the total perturbation affecting the system, including the known
part and the unmodeled part.

The Gravitational Wave Detector-TianQin requires detection satellites in deep-space
orbit. The main disturbance on the satellite comes from solar pressure. To ensure a steady
power supply and minimize fluctuations in the satellite’s internal thermal environment for
ultra-stability, the drag-free satellite uses a body-attached battery array.

The expression of this perturbation is shown below:

~Fr = −kCRρSR

(
SR
m

)
~rs (5)

where CR indicates surface reflection coefficient, normally 1–1.44, ρSR indicates the solar
pressure near the Earth, 4.56× 10−6 N/m2 ,

(
SR
m

)
is the surface-to-mass ratio of the space-

craft, SR is the projected area of the spacecraft facing the sun,~rs is the unit vector indicating
the direction from the center of the Earth to the sun. The sun exposure factor, denoted as
k, is assumed to be 1 for the light area and 0 for the ground shadow area. The amplitude
spectral density of the solar pressure on the satellite is shown in Figure 3.
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Figure 3. Solar pressure amplitude spectrum density.

In a drag-free satellite with a single test mass, the displacement measurements between
the CoM of the TM and the CoM of the satellite, as well as the attitude measurements of the
TM relative to the satellite, are obtained by an inertial sensor. The attitude of the satellite
is determined through a star sensor, and the micro-propulsion provides the necessary
control forces and moments to maintain the desired position and attitude of the satellite.
At present, the typical micro-propulsion systems have a noise power spectral density of
1× 10−6 N/

√
Hz under open-loop condition [22]. Their corresponding power spectral

densities are presented in Figures 4–6.
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Figure 4. Electrostatic suspension actuation noise.

Based on the data of Ref. [23], it can be inferred that electrostatic actuation noise can
be treated as white noise in the frequency band needed for the detection of gravitational
waves by the TianQin detector.
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Figure 5. Thruster force noise.

In the case of capacitive displacement sensors, the noise levels for displacement
measurements are equal in the x, y, and z directions, while the noise levels for angle
measurements in the θ direction are one order of magnitude lower than those in the η and
φ directions [23]. Figure 6 displays the measurement noise in each direction.

10
0

10
-9

10
-8

10
-7

m
/

(H
z)

x

10
0

10
-7

ra
d

/
(H

z)

10
0

10
-9

10
-8

10
-7

m
/

(H
z)

y

10
0

10
-6

ra
d

/
(H

z)

10
0

Frequency(Hz)

10
-9

10
-8

10
-7

m
/

(H
z)

z

10
0

Frequency(Hz)

10
-6

ra
d

/
(H

z)

Figure 6. Inertial sensor measurement noise.

The spectral density curves of perturbation and noise are given in Figures 3–6, which
will be used as the basis for the modeling and simulation calculations later.

3. Extended State Kalman Filter Design

Achieving high accuracy of relative displacement and relative attitude control in a
noisy and disturbed environment requires multiple steps, including disturbance estimation,
noise suppression, and state control.
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The Extended State Kalman Filter (ESKF) can estimate nonlinear uncertainty. In cases
of initial error, uncertain dynamics (perturbation), and bounded noise, the perturbation is
estimated and compensated for by the extended state, and noise effects can be suppressed.
This paper uses ESKF to estimate disturbance forces and moments, such as solar pressure
on the satellite and anomalous electromagnetic forces and moments on the test mass. First,
we present the design scheme of ESKF, then apply it to uncertain disturbance estimation in
drag-free control.

3.1. Extended State Kalman Filter

For the following discrete system containing uncertain perturbations{
Wk+1 = AkWk + Bk f (Wk, k) + wk
Yk = CkWk + nk

, k = 0, 1, 2, . . . , (6)

where Wk is the system state, Ak, Bk are system matrices, Ck is the measurement matrix,
f (Wk, k) is the nonlinear uncertain part in the system (6), wk, nk are the process noise and
measurement noise, respectively, and Yk is the system measurement output. Treating
f (Wk, k) as an additional state variable fk, which is then estimated and compensated for.
The extended system is described as

[
Wk+1
fk+1

]
= Ak

′
[

Wk
fk

]
+ Bk

′Gk +

[
wk
0

]
Yk = Ck

′
[

Wk
fk

]
+ nk

(7)

where A′k =

[
Ak Bk
0 I

]
, B′k =

[
0
I

]
, C′k =

[
Ck 0

]
, fk = f (Wk, k), Gk

∆
= fk+1 − fk,

assume wk, nk are unrelated zero-mean Gaussian random series and E
(
nknk

T) ≤ Rk,

E
(
wkwk

T) ≤ Sk, E

([
W0 − Ŵ0

f0 − f̂0

][
W0 − Ŵ0

f0 − f̂0

]T)
≤ P0, Ŵ0 is the estimation of W0, f̂0

is the initial value of the nominal part of f (Wk, k), P0 is a known constant matrix, and
E(G2

i ) ≤ q̄i, i = 1, 2, . . ., qi is bounded.
According to the classical state observer theory, the extended state observer for the

extended state Equation (7) is shown below, where Xk+1 =

[
Wk+1
fk+1

]
X̂k+1 = AkX̂k + BkĜk − Kk

(
Yk − CkX̂k

)
(8)

Based on the given initial estimation X̂0 and initial value of covariance matrix P0,
we obtain the middle value of the estimated quantity X̂−k and update the value of the
covariance matrix Pk

−

X̂−k =A′kX̂k−1 + B′kuk−1 + BeĜk (9)

Pk
− = (1 + θ)A′kPk−1 A′k

T
+

(
1 +

1
θ

)
Q1,k−1 + Q2,k−1 (10)

where θ =

√
tr(Q1,0)
tr(P0)

is used to decouple the cross terms of estimation error and uncertainty,

Q1,0 = 4BeQ0Be
T, Q2,0 = B′kSkB′k

T, Sk is the variance of wk, Rk is the variance of nk, Ĝk is
the estimation of Gk, whose value is calculated by Ĝk = sat(Ḡk,

√
qi), where

sat( f , b) =

{ b f > b
f
−b

b > f > −b
−b > f

(11)
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by calculating Kk, update the estimation X̂k and the covariance matrix Pk

Kk = Pk
−C′k

T
(

C′kPk
−C′k

T
+ Rk

)−1
(12)

X̂k=X̂−k + Kk
(
Yk − C′kX̂−k

)
(13)

Pk = (I − KkC′k)Pk
−(I − KkC′k)

T + KkRkKk
T (14)

After that, calculate the control variable u0 based on the error between the state
estimate and the reference, then the calculated control variable u0 and the estimated value
f̂ of the disturbance are used to calculate the final control variable u, and the flow chart is
shown in Figure 7.

Figure 7. ESKF calculation flow chart.

3.2. Extended State Design of Drag-Free Control System

The complex space environment presents a challenge in accurately modeling and de-
scribing perturbations affecting on satellite and test masses. Conventional control methods
are model-dependent, and their performance can be severely affected by the inaccuracies
of the perturbation model. To address this issue, Section 3.1 proposes a method to expand
the perturbations into new states and create a new filter model. Then the perturbation can
be compensated and the noise can be suppressed.

The uncertain disturbance term is f = [TDsc, FDsc, TDtm]
T. TDsc represents the distur-

bance moments that the satellite is subjected to, FDsc represents the disturbance forces
that the satellite is subjected to, and TDtm represents the disturbance moment that TM
is subjected to. Those are treated as extended states. The state vector is taken as X =
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[ϕsc, ϕ̇sc, rrel , ṙrel , ϕrel , ϕ̇rel , TDsc, FDsc, TDtm]
T, Y = [ϕsc, rrel , ϕrel ]

T indicates related attitude
and displacement that can be measured.

According to Section 3.1, the extended state differential equation is obtained as

Ẋ = AX + B(u + w) + Be ḟ
Y = CX + d

(15)

where A =

[
A0 B0
0 I

]
, B =

[
B0
0

]
, C =

[
C0 0

]
, Be = [0, 0, 1]T, symbols has the same

physical meaning as in Equation (4).
The extended state Equation (15) is discretized to obtain the discrete difference equa-

tion model (16)

Xk+1 = AdXk + Bd(u + w) + BdGk

Yk = CdXk + dk
(16)

where Gk
∆
= fk+1 − fk.

The ESKF is designed according to the flowchart shown in Figure 7 to estimate the
kinematic state parameters and the unknown disturbances, while implementing feedback
control. Where qi = (max| fi+1 − fi|)2, Q0 = idiag(qi), i is the number of state vector.

4. Feedback Controller Design

Once the estimation of states and perturbations has been successfully obtained, the
next step is the selection of an appropriate controller. The Linear Quadratic Regulator
(LQR) is a control strategy designed to minimize a cost function. The optimal control
law is obtained through the design of the state feedback controller, which allows for the
completion of closed-loop optimal control in a fast, stable, and accurate manner.

The performance index for LQR control reflects the requirements for both state and
control quantities, and the cost function used in this paper is

J =
n

∑
0

(
x(k)TQx(k) + u(k)TRu(k)

)
(17)

The weighting matrix Q is semi-positive definite and R is positive definite, which are
set as a diagonal matrix in the subsequent simulation. For the first term in the cost function
J, each component is required to be small in the control process. The larger the weight in
Q means the stricter the constraint on the components; while the second term in the cost
function indicates the requirement for the control output, which is weighted according to
the different characteristics of each component.

The Ricatti equation PA + ATP − PBR−1BTP + Q = 0 is used to calculate P, then
based on K = R−1BTP, the feedback gain matrix is calculated, the control law of LQR is
chosen as u(k) = −Kx̂(k).

In order to maximize the effective time of gravitational wave detection and minimize
the output of thrusters (actuators), it is necessary to ensure that the detection satellite
is maintained in a free and stable flight for as long a time as possible. To achieve this
goal, the adjustment transition process of drag-free control needs to be as fast as possible,
allowing the detection system to quickly reach an ultra-static and ultra-stable state. Our
research shows that the LQR control strategy can satisfy the optimal control requirements,
enabling a rapid transition to a steady state and achieving the required control accuracy. By
appropriately designing the weights of each component, in addition to the values of Q and
R, it is possible to achieve a more refined control.
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Nonlinear error feedback is used in classical Active Disturbance Rejection Control [1],
mainly by rewriting the weighting of classical PID control into a nonlinear combination, as
shown in Equation (18)

f al(e, α, δ) =

{ e
δα−1 , |e| ≤ δ

sgn(e)|e|α, |e| > δ
(18)

It is a continuous power series function with linear segments near the origin, δ > 0
denotes the length of the interval of the linear segment, and e indicates the amount of error.

This function f al( ) is characterized by increasing the gain when the error is small and
using a small gain when the error is large, which prevents high-frequency chattering due
to excessive gain calculated when the error is small [24,25]. The control law for nonlinear
error feedback is

u = γ1 f al(e1, α1, δ) + γ2 f al(e2, α2, δ) + γ3 f al(e3, α3, δ) (19)

where e1(k) = r − x̂(k), e2(k) =
k
∑
0
(r− x̂(k)), e3 = ṙ − ˆ̇x(k). Parameter triples γ1, γ2, γ3

determine the final control variable, the value of δ is generally selected as the sampling
time for discrete systems, the value of α satisfies α ∈ (0, 1).

A simulation program using the combination of ESKF and LQR is developed, then the
comparison results of the combination of ESKF+NSEF and the combination of ESKF+LQR
is presented and analyzed in the next section.

5. Simulation Analysis

According to the discrete model (16), a block diagram of the drag-free satellite control
system is designed and presented in Figure 8. The measurement mechanism provides
information on the attitude angle of the satellite, the displacement, and the attitude of the
test mass relative to the center of the cavity. The output command of actuators and output
measurement information of the sensors are both inputs of ESKF. The ESKF estimates the
attitude, angular velocity, displacement, velocity, disturbance forces, and disturbance mo-
ments. By selecting an appropriate controller with the ESKF, high-accuracy anti-disturbance
control of the drag-free satellite/test mass dynamic system is achieved.

 

Figure 8. ESKF-based ADRC system design.

First, we consider the LQR controller. The ESKF filter design discussed in Section 3
was simulated in MATLAB with a time step of 0.01 s. The ESKF consists of 27 states, which
are divided into three groups of nine states each. After the ESKF output was stable and
tracking accurately. The LQR control algorithm was then employed for designing the
control law, and the corresponding simulation results were obtained.

Initial conditions of simulation:
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The perturbation forces and moments of the satellite are modeled as constant superpo-
sition sinusoidal perturbations with phase differences in each axial direction. Specifically:

FDsc =

 −12.8 + 7.7× sin(ωdt)
−12.8 + 7.7× sin(ωdt + 2π

3 )

−12.8 + 7.7× sin(ωdt + 4π
3 )

×10−7(N), the disturbance moment to the satellite

is modeled as TDsc =

 −1.2 + 6.6× sin(ωdt)
−1.2 + 6.6× sin

(
ωdt + 2π

3
)

−1.2 + 6.6× sin
(

ωdt + 4π
3

)
×10−6(N ·m), moment of distur-

bance to the test mass is TDtm =

 −1.2 + 7.7× sin(ωdt)
−1.2 + 7.7× sin

(
ωdt + 2π

3
)

−1.2 + 7.7× sin
(

ωdt + 4π
3

)
×10−12(N ·m), where

ωd = 1.2× 10−3 Hz. The simulation program will achieve real-time estimation of the
extended state for the above perturbations, and the results of the error analysis of the
estimation are given later. The expectation of the input noise of the thrusters providing
force and moment to the satellite are 1× 10−9 N/

√
Hz and 1× 10−9 N ·m/

√
Hz, respec-

tively. The input noise expectation of the electrostatic actuator providing the test mass
control torque is 1× 10−15 N ·m/

√
Hz, the expectation of the measurement noise of the

star sensor providing satellite attitude measurement is set as 1× 10−7 rad/
√

Hz. And the
expectation of displacement measurement noise of inertial sensor is 1× 10−9 m/

√
Hz, the

expectation of attitude measurement noise is 1× 10−8 rad/
√

Hz. To meet the requirements
of gravitational wave detection, the control loop’s design objective is set as follows: the
setting time should be less than 1 min, and the amplitude spectral density of the relative
displacement between test mass and satellite should both be less than 10−8 m/

√
Hz within

the detection frequency band.
The performance of the combination of LQR and ESKF is evaluated initially. Subse-

quently, the performance of using the combination of LQR and ESKF is compared with the
performance of the combination of NSEF and ESKF in terms of control accuracy and setting
time. The intrinsic reasons for any differences observed are analyzed, and recommendations
for engineering design are provided.

5.1. ESFK+LQR

By utilizing the ESKF-estimated states as input, we designed an LQR controller based
on Equation (17). The initial value of state estimation was X̂0 = [0, 0, 0, 0, 0, 0, 0, 0, 0]T, and
the values of Q and R were selected as R = 1× 10−4diag(I3, 10I3, I3). It should be noted
that a larger value of Q can facilitate faster convergence of the states for the LQR controller.

5.1.1. Satellite Attitude

Figure 9 demonstrates the effectiveness of the ESKF and LQR controllers in controlling
the attitude angle of the satellite. The results show that the attitude angle was successfully
controlled from the initial ϕsc = [7× 10−5, 0, 0]T rad to ±3× 10−8 rad for all three attitude
angles with a setting time of about 7 s, achieving the desired control target. The estimation
error of the attitude angle was measured to be ±2× 10−8 rad, while the estimation error
of the attitude angular velocity and disturbance moment were ±2 × 10−10 rad/s and
±1× 10−5 N ·m, respectively.
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Figure 9. Simulation results of satellite attitude. (a) Estimation error of the attitude angle. (b) Estima-
tion error of the attitude angular velocity. (c) Estimation error of disturbance moment. (d) Attitude
control results.

The amplitude spectral density curves for each attitude angle control error are pre-
sented in Figure 10. Based on the results shown in Figure 10, it can be observed that within
the measurement bandwidth, the amplitude spectral density of the satellite’s attitude
control error conforms to the design requirements of 10−7 rad/

√
Hz.
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Figure 10. Amplitude spectral density of attitude of the satellite.
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5.1.2. Test Mass and Satellite Relative Displacement

The results in Figure 11 show that the relative displacement was successfully con-
trolled from rrel = [0.0005, 0.0009,−0.0006]T m to ±2× 10−9 m for all three axes within an
adjustment time of 20 s, achieving the desired control target. The position estimation error
was measured to be ±2.2× 10−9 m, while the velocity estimation error and disturbance
estimation error were ±4× 10−10 m/s and ±4× 10−8 N, respectively.

The amplitude spectral density curves for each axial direction are presented in Figure 12.
Based on the observations from Figure 12, it can be concluded that the kinematic indexes
of the translation within the frequency band satisfy the design requirements and achieve
10−8 m/

√
Hz.
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Figure 11. Simulation results of relative displacement between test mass and satellite. (a) Estimation
error of the relative displacement. (b) Estimation error of the velocity. (c) Estimation error of
disturbance. (d) Control results of relative displacement.

5.1.3. Relative Attitude between Test Mass and Satellite

Figure 13 shows the simulation results of ESKF and LQR controller dealing with the
relative attitude between test mass and satellite. Based on the results from Figure 13, it
can be concluded that the ESKF and LQR controllers designed in this paper were capable
of controlling the relative attitude between the test mass and the satellite from ϕrel =
[0, 4× 10−5, 0]T rad to ±5× 10−8 rad for all three axes. The control result was found to
be essentially oscillation-free, with an adjustment time of about 6s, achieving the desired
control target. The estimation error of the attitude angle was measured to be ±5× 10−8 rad,
while the estimation errors of the attitude angular velocity and disturbance moment were
±6× 10−8 rad/s and ±2× 10−11 N ·m, respectively.
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Figure 12. Amplitude spectral density of relative displacement.
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Figure 13. Simulation results of relative attitude between test mass and satellite. (a) Estimation error
of the relative attitude. (b) Estimation error of the attitude angular velocity. (c) Estimation error of
disturbance moment. (d) Relative attitude control results.

The amplitude spectral density curves for each attitude angle are presented in Figure 14.
The amplitude spectral densities are lower than 5 × 10−8 rad/

√
Hz in the whole fre-

quency band.
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Figure 14. Amplitude Spectral Density of the related attitude between test mass and satellite.

5.2. Comparison Evaluation

To demonstrate the efficacy of the designed method, we present a simulation to
compare ESKF+LQR with ESKF+NSEF. This allows us to illustrate the functions of our
objectives and evaluate their performance against an established method. Simulation
results is given in Figures 15–17
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Figure 15. Simulation result of satellite attitude (pitch angle) between LQR and NSEF. (a) Control
result in time domain. (b) Comparison of Amplitude Spectral Density.

Since the convergence facility of the f al( ) function used in NSEF is mainly based
on the value of α, while the proof of certain physical relation is extremely complicated,
the value of α is determined by rule of thumb. Based on the method in Ref. [26], we take
α1 = α2 = α3 = 0.5 in simulation. The simulation results of relative displacement of the
x-axis are shown in Figure 16, while the control accuracy is satisfied, and the convergence
process of ESKF+LQR was found to be much faster than that of ESKF+NSEF.
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Figure 16. Simulation result of relative displacement (x-axis) between LQR and NSEF. (a) Control
result in the time domain. (b) Comparison of Amplitude Spectral Density.
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Figure 17. Simulation result of relative attitude (yaw angle) between LQR and NSEF. (a) Control
result in time domain. (b) Comparison of Amplitude Spectral Density.

The RMS of the two approaches is listed in Table 1. Additionally, the LQR controller
was observed to produce negligible oscillations in the system, which can be advantageous
in terms of reducing energy consumption and extending the effective time of gravitational
wave signal detection.

Table 1. RMS of two different control approaches.

Axis ESKF+LQR ESKF+NSEF

satellite attitude (pitch) 6.3076 × 10−9 rad 7.4918 × 10−9 rad
satellite attitude (yaw) 7.2104 × 10−9 rad 5.9713 × 10−9 rad
satellite attitude (roll) 7.4293 × 10−9 rad 4.7966 × 10−9 rad

relative displacement (x) 4.5918 × 10−10 m 8.9468 × 10−10 m
relative displacement (y) 4.5422 × 10−10 m 9.3517 × 10−10 m
relative displacement (z) 4.7442 × 10−10 m 9.4479 × 10−10 m
relative attitude (pitch) 1.0859 × 10−10 rad 2.7201 × 10−8 rad
relative attitude (yaw) 1.0480 × 10−10 rad 3.1758 × 10−8 rad
relative attitude (roll) 1.0299 × 10−10 rad 3.2608 × 10−8 rad

6. Conclusions

Integrating perturbations into states vector, the ESKF method demonstrates the capa-
bility to accurately estimate the state and disturbance of the drag-free satellite dynamics,
and effectively suppressing handling noise. This approach lays the foundation for the
controller to achieve accurate adjustment of the system state, and it is recommended to
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consider the ESKF method as a viable alternative for estimating uncertain disturbances in
future drag-free engineering designs.

The LQR controller’s feedback parameter matrix can be rigorously derived using the
generalized index to ensure optimal control performance. By combining the reasonable
values of the state covariance matrix, the designed gain matrix guarantees the convergence
speed of the system state, while the accurate estimation of ESKF enhances the relative
attitude control accuracy by an order of magnitude.

For the relative displacement, the adjustment time of NSEF fails to reach the control
task requirements. This is mainly due to the relatively slow control process of the relative
kinematic parameters between the satellite and the test mass in NSEF, and the lack of a
complete theoretical method to adjust and optimize the nonlinear error feedback parameters.

In summary, the ESKF+LQR control approach enables the system to reach a steady
state rapidly and smoothly, thereby increasing the free flight time available for gravitational
wave observation. This is more in line with the desired observation duration for gravita-
tional wave detection. In comparison to the combination of ESKF+NSEF, the combination of
ESKF+LQR is capable of adjusting to the reference target swiftly and reducing oscillations,
leading to a reduction in thruster mass consumption.
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