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Abstract: Convolutional neural networks have achieved good results in target detection in many
application scenarios, but convolutional neural networks still face great challenges when facing
scenarios with small target sizes and complex background environments. To solve the problem
of low accuracy of infrared weak target detection in complex scenes, and considering the real-
time requirements of the detection task, we choose the YOLOv5s target detection algorithm for
improvement. We add the Bottleneck Transformer structure and CoordConv to the network to
optimize the model parameters and improve the performance of the detection network. Meanwhile, a
two-dimensional Gaussian distribution is used to describe the importance of pixel points in the target
frame, and the normalized Guassian Wasserstein distance (NWD) is used to measure the similarity
between the prediction frame and the true frame to characterize the loss function of weak targets,
which will help highlight the targets with flat positional deviation transformation and improve the
detection accuracy. Finally, through experimental verification, compared with other mainstream
detection algorithms, the improved algorithm in this paper significantly improves the target detection
accuracy, with the mAP reaching 96.7 percent, which is 2.2 percentage points higher compared
with Yolov5s.

Keywords: YOLOv5s; multi-head self-attention; CoordConv; NWD; target detection

1. Introduction

Infrared weak target detection is a key technology in the field of computer vision
and is widely used in military and civilian applications, such as aerospace, precision
guidance, infrared early warning, and drone detection [1]. At present, there are still many
difficulties in infrared weak target detection technology. First, the target is far away from
the IR detector, resulting in a small size for the target in the image, usually showing a few
pixels, a low signal-to-noise ratio for the target, a relatively weak signal, and a lack of rich,
detailed information [2]. In addition, long-distance imaging leads to a large image scene
span and a complex background environment, which is easily affected by external factors
such as weather and noise, resulting in the target being submerged in the background,
which increases the difficulty of weak target detection. Due to the above difficulties, the
existing weak target detection algorithms have limitations and have difficulty meeting
practical needs. Therefore, it is important to study accurate and fast infrared weak target
detection algorithms.

Traditional weak target detection algorithms are divided into single-frame detection
and multi-frame detection algorithms, The single-frame detection algorithm detects weak
targets within a single image frame, such as two-dimensional minimum mean square
filtering [3], mathematical morphological methods [4], and local contrast metrics [5]. The
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single-frame detection algorithm is low in complexity, has less computation, and is easy
to implement in hardware, but the anti-interference ability is poor, and it is difficult to
achieve good detection results in complex environments [6]. Multi-frame detection uses
the temporal and spatial information of multi-frame images combined with the motion
trajectory of the target to perform target detection. Examples include the 3D matched
filtering method [7], dynamic programming method [8], and particle filtering method [9].
The algorithm complexity of multi-frame detection is high, the amount of operations is
very large, and the real-time performance in the detection process is poor, so it is used less
in practical engineering.

In recent years, with the development of computer hardware and the maturation
of artificial intelligence technology, more and more scholars have applied deep learning
technology to weak target detection tasks. Convolutional neural networks rely on powerful
feature extraction capabilities and have achieved excellent performance in target detection.
Deep learning-based object detection algorithms are mainly divided into two-stage detec-
tion algorithms and one-stage detection algorithms [10]. Two-stage detection algorithms
require the pre-generation of candidate boxes, which have high algorithm complexity
and poor real-time performance. Common examples include Fast R-CNN [11] and Faster-
RCNN [12]. One-stage detection algorithms do not require the generation of candidate
boxes. They directly predict the category and position of the target through convolutional
neural networks, achieving end-to-end real-time detection. Examples include SSD [13] and
the YOLO series [14]. Deep learning-based detection algorithms have achieved excellent
detection results in detecting larger targets. However, when the target becomes smaller, the
detection accuracy of these algorithms still needs to be improved.

The YOLO algorithm was first proposed by Joseph Redmon in 2015, and its main
idea is to consider the target detection task as a regression problem which can predict both
the location and class of the target in the neural network. Thus far, the YOLO family of
algorithms has been updated to the eighth generation, and with its fast detection speed and
good detection accuracy, it has been applied to small target inspection by many scholars.
Xu et al. proposed a shape distance clustering (SDC) model in small target ship detection
to generate superior a priori frames and used lightweight cross-level modules (L-SCP)
and network pruning to reduce model computation [15]. Hu et al. applied channel and
spatial attention mechanisms in YOLOv4 to optimize feature representation in both the
spatial and channel dimensions, improving the accuracy of ship detection. They also used
a new loss function to improve training efficiency [16]. Kim et al. applied the efficient
channel attention mechanism (ECA-Net) to YOLOv5 and proposed an efficient channel
attention pyramid network, which achieved improved small object detection performance
at a lower cost [17]. Ye et al. utilized high-resolution feature layers to utilize shallow details
and location information and adopted a new feature fusion method to capture remote
contextual information of small targets and suppress shallow noise interference, effectively
improving the detection accuracy of small infrared targets [18]. Liu et al. introduced
coordinate attention in YOLOv5, allowing the network to focus more on the position
information of the target. They also added dilated convolution in the residual structure to
expand the receptive field and extract more target features [19]. Zhou et al. proposed the
YOLO-SASE detection algorithm, which takes super-resolution reconstructed images as
input and combines a multi-level perceptual field structure and an attention mechanism.
This method improves feature utilization [20]. Mou et al. improved the upsampling and
downsampling modules of YOLOv5 using the STD module and the CARAFE operator,
reducing feature loss during the scaling of images and achieving significant results [21].
Dai et al. improved the YOLOv5 loss function and the prediction frame filtering method
while adding an attention mechanism to the network. This method improves the detection
efficiency and accuracy of the algorithm [22].

The above algorithms have different improvements for small target detection and
provide ideas for this paper’s research on infrared weak small target detection. To improve
the accuracy of infrared weak target detection, this paper proposes an improved YOLOv5
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weak target detection algorithm that fuses the transformer and coordinate convolution.
The main contributions of this paper are as follows:

1. Introducing the Bottleneck Transformer module in the backbone section of YOLOv5s
using a multi-head self-attention mechanism to enhance the global modeling capabili-
ties of detection networks;

2. Adding CoordConv to the Neck section of YOLOv5s using the coordinate channel
allows the convolution to perceive the coordinates to some extent during the learning
process, improving detection accuracy;

3. Creating a two-dimensional Gaussian distribution in the target box to represent the
importance of the pixel points using the normalized Gaussian Wasserstein distance
instead of the CIOU as the similarity measure between the prediction frame and the
true frame, effectively enhancing the weak target detection capability;

4. In this paper, the improved YOLOv5s algorithm is experimentally compared with the
lightweight algorithms YOLOv3-tiny, YOLOv4-tiny, YOLOv4s, PP-YOLOEs, YOLOv7-
tiny, the algorithm in this paper performs better in terms of detection accuracy, with
an mAP reaching 0.967.

2. Materials and Methods
2.1. Yolov5 Target Detection Algorithm

YOLOv5, as the latest phase of the target detection algorithm, has a fast detection
speed and high recognition accuracy. Real-time detection can be achieved. The input image
after a convolutional neural network’s forward propagation can directly predict the target
bounding box and category. YOLOv5 is divided into four main sections: Input, Backbone,
Neck, and Head. For the preprocessing of data in the input section of YOLOv5, the image
data will first undergo Mosaic data enhancement, where several different images are
stitched together according to random scaling, random cropping, and random alignment to
increase the data sample, improving the algorithm’s robustness. At the same time, YOLOv5
will automatically calculate the anchor frame to match the target size. YOLOv5 uses
CSPDarknet53 as the Backbone, which consists of the convolution, CSP residual structure,
and SPPF for feature extraction. The Neck structure uses an FPN+PAN structure, with a
top-down feature map of the FPN structure conveying strong semantic information and
bottom-up transfer of the position characteristics from the PAN structure. The Neck fuses
the feature maps of each level and obtains three feature maps of different sizes. The final
output by the Head has the predicted information. The detection network structure of
YOLOv5 is shown in Figure 1.

The loss function of YOLOv5 consists of three parts: classification loss, confidence
loss, and localization loss. Among them, the binary cross-entropy loss is used for target
confidence loss and classification loss, and the CIOU loss is used for the localization loss.
The classification loss is used to calculate whether the anchor frame is accurate with the
corresponding category, the confidence loss is used to calculate the confidence level of the
network, and the localization loss is used to calculate the error between the predicted frame
and the real frame. The loss function is shown in Equation (1):

Loss = λ1Lcls + λ2Lobj + λ3LCIOU (1)

The CIOU loss takes into account the overlapping area of the two rectangular frames,
the distance between the center points, and the aspect ratios of the two rectangular frames.
In Equations (2)–(5), IOU denotes the ratio of the intersection area of rectangular boxes
A and B to the merging area, ρ represents the distance between the center points of the
rectangular box, c denotes the diagonal length of the outer rectangle of the two rectangular
boxes, v denotes the similarity of the aspect ratios of two rectangular boxes, α is the impact
factor, wgt and hgt indicate the width and height of the true frame, respectively, and wp and
hp indicate the width and height of the prediction box, respectively. When the degree of
overlap between the rectangular boxes is small, the smaller α is, the smaller the influence of
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v is in the loss function, and the optimization direction at this time is the distance between
the rectangular boxes. When the overlap between the rectangular boxes is large, the larger
α is, the greater the effect of v. The optimization direction is the width-to-height ratio
between the rectangular boxes:

IOU =
A ∩ B
A ∪ B

(2)

CIOU = IOU − ρ2

c2 − αv (3)

v =
4

π2

(
arctan

wgt

hgt
− arctan

wp

hp

)2
(4)

α=
v

1− IOU + v
(5)

Currently, YOLOv5’s authors offer five versions, depending on the needs of different
tasks: YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. The depth and width
of the network varies for each version. Smaller models have faster detection, and larger
models have better detection performance. The infrared weak target detection task requires
high detection accuracy in addition to the high real-time algorithm. The structure of
YOLOv5s is simple, and the model size is only 14 M, while the detection is fast and does
not reduce the accuracy too much compared with other algorithms, Therefore, YOLOv5s is
more suitable for infrared weak target detection task needs.

=

= Add

=

=

=Input

Ba
ck
bo

ne

Neck Head

Figure 1. YOLOv5 network structure. X indicates that there are X identical stacks of residual blocks.

2.2. Improve Yolov5s

To improve the detection accuracy of infrared weak targets, we improve and optimize
the YOLOv5s target detection algorithm. First, we add a Bottleneck Transformer to the
CSP residual structure of the Backbone network. Second, CoordConv is added to the
Neck structure, and CoordConv senses the position information by adding coordinate
channels, obtaining more informative feature maps and improving model generalization.
Finally, the CIOU loss function is changed to the normalized Guassian Wasserstein distance
(NWD) loss to reduce the sensitivity to the weak target position’s bias transformation. The
improved detection network is shown in Figure 2.
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Input

= Add

Neck Head

Backbone

Figure 2. Improved YOLOv5s network structure. We introduced the CSP Bottleneck Transformer
structure in the Backbone and added CoordConv to the Neck.

2.2.1. Bottleneck Transformer

Ordinary convolution operations can effectively extract local feature information.
However, in the task of target detection, global information is also very important. Using
convolutional neural networks requires more layers, and global modeling can be achieved
very easily and effectively using Transformer’s multi-head self-attention mechanism, im-
proving the performance of target detection. We combine the convolutional neural network
with the self-attention mechanism and utilize the self-attention mechanism to capture the
global dependency, which makes up for the limitations of the convolutional network, and
at the same time, the convolutional network can provide local spatial information for the
self-attention mechanism, which enriches the representation. Since the computational
amount of the self-attention mechanism is proportional to the size of the image, it will
consume a lot of computational resources when processing high-resolution images. While
the convolutional neural network obtains abstract and low-resolution feature maps after
several downsampling operations, self-attention is inserted in the low-resolution feature
maps, and the self-attention mechanism is utilized to process the information contained in
the feature maps captured by the convolution. The last CSP residual module of YOLOv5
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is a low-resolution feature map obtained after five downsamplings, replacing the 3 × 3
convolution in the residual network with a multi-head self-attention layer. We call this the
Bottleneck Transformer [23] structure, which achieves global computation of feature maps
without adding too much computation and improves the global modeling capability of the
model. The structure of the multi-head self-attention layer is shown in Figure 3.

(a)

(b) 

(c) 

Softmax

WQ：1×1 WK：1×1 Wv：1×1

Rh Rw

X H×W×d

Z

H*W×dH*W×H*W

H×W×d

H*W×H*W H*W×H*W

H×W×dH×W×dH×W×dH×1×d 1×W×d

k vqr

��� ���

Content-position Content-content

Self-Attention 
Layer

Add=

=

Figure 3. Design of Bottleneck Transformer. (a) Multi-head self-attention (MHSA) layer used in the
Bottleneck Transformer. (b) Bottleneck Transformer structure. (c) Bottleneck Transformer with added
CSP structure.

In the Figure 3, Rh and Rw are the relative position codes of the height and width,
respectively, q, k, and v stand for query, key, and value, respectively, + and × denote
element summation and matrix multiplication, respectively, and 1× 1 means point-by-
point convolution, with the input feature matrix having WQ, WK, and WV . The dimension
size is H ×W × d. We initialized the height and width of the two position codes Rh and
Rw, respectively, and added the broadcast mechanism to obtain the position code r. The
dimensions of the four parameters q, k, v, and r are H ×W × d, q and r are multiplied
by the matrix to obtain the content position output matrix, qrT , q, and k are multiplied
by the matrix to obtain the content position output matrix, and qkT , qrT , and qkT are
matrix summed and Softmax normalized. We obtained an HW × HW size attention matrix.
Finally, this was multiplied with the value projection v matrix to obtain the output value Z,
where the output Z aggregates the global information. The computation of the multi-head
self-attention layer was performed in parallel, and we used four heads. This can learn
global dependencies from different representation subspaces, and the global information
provided by self-attention can enhance the network’s semantic understanding of small
targets as well as provide a global guide to the target location, which facilitates targeting of
the target location.

2.2.2. CoordConv

In convolutional neural networks, ordinary convolution learns spatially localized
features with translational invariance, but it is unknown as to where in the image that
information is located. In order to be able to sense the location information effectively,
we added CoordConv [24] to the Neck structure of YOLOv5, whose structure is shown in
Figure 4. Compared with normal convolution, CoordConv adds two coordinate channels
to the input to represent the coordinate information of each pixel point: one for the x
coordinate and one for the y coordinate. Splicing the two coordinate channels with the
input channel followed by a convolution operation provides the network with spatial
information, which helps the network to understand the spatial correspondence of the
features in the image. With the spatial information, the network can build stronger spatial
modeling capabilities, enhance the understanding of local and global locations, and improve
location-based reasoning.
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(a) (b)
Figure 4. CoordConv structure diagram. (a) The calculation process of ordinary convolution. (b) The
calculation process of CoordConv.

If CoordConv convolution learns to coordinate information, then CoordConv has
certain translation dependence. If CoordConv does not learn to coordinate information,
then coordinate convolution is equivalent to ordinary convolution, which retains the
translation invariance of convolution, and thus CoordConv can choose whether to retain the
translation invariance of traditional convolution according to different task requirements.
In the infrared weak target detection task, the target is small, and the difference with the
background is not obvious. Its coordinate position in the image is especially important.
CoordConv takes the feature map with coordinate information as input, and the output gets
the feature map, which contains the content information and coordinate spatial information.
This can enhance the modeling of the weak target position information and enable the
network to extract the generalized features which do not depend on the absolute position
so as to improve the generalization ability of the model.

2.2.3. Normalized Gaussian Wasserstein Distance

Although the CIOU considers the overlap area, centroid distance, and aspect ratio, the
IOU-based metric is very sensitive to the position deviation of weak targets. Since targets
occupy fewer pixel points, a slight position deviation will cause a sharp change in the
IOU, which is not a problem for large-sized targets, and the CIOU is not the best method
for weak target detection tasks. To solve this problem, we use the normalized Gaussian
Wasserstein distance (NWD) method [25] to calculate the similarity between the predicted
frame and the real frame. For a weak target which has a shape approximating a circle
and whose size does not fill the entire wraparound box, there are other background pixels
inside the wraparound box, and the target’s pixels are mainly concentrated close to the
center of the wraparound box, with fewer target pixels at the boundaries. Therefore, the
enclosing frame can be modeled as a two-dimensional Gaussian distribution to represent
the importance of the distribution of target’s pixel points within the frame. Specifically,
the coordinates of the center point of a bounding box are

(
cx, cy

)
, the width is w, and the

height is h. Then, the equation of the tangent ellipse of the bounding box can be expressed
as follows:

(x− cx)
2(w

2
)2 +

(
y− cy

)2(
h
2

)2 =1 (6)
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The probability density function of a two-dimensional Gaussian distribution can be
expressed as follows:

f (X|µ, Σ) =
exp

(
− 1

2 (X− µ)TΣ−1(X− µ)
)

2π|Σ|
1
2

(7)

where X denotes the coordinates (x, y), µ denotes the mean vector, and Σ denotes the
covariance matrix. When (x− µ)TΣ−1(x− µ) = 1, the inner tangent ellipse of the bound-
ing box is the density profile of the 2D Gaussian distribution. Thus, the bounding box
R = (cx, cy, w, h) can be modeled as a two-dimensional Gaussian distribution N(µ, Σ). The
formula can be expressed as follows:

µ=

(
cx
cy

)
, Σ =

(
w2

4 0
0 h2

4

)
(8)

Therefore, we used the distribution distance between two Gaussian distributions to
represent the similarity between the predicted and real frames.

We used the Wasserstein distance from optimal transmission theory to compute the
distribution distance of two two-dimensional Gaussian distributions. For two 2D Gaussian
distributions µ1(m1, Σ1) and µ2(m2, Σ2), their Wasserstein distance can be defined as

W2
2 (µ1, µ2) = ‖m1 −m2‖2

2 +

∥∥∥∥Σ
1
2
1 − Σ

1
2
2

∥∥∥∥2

F
(9)

For two bounding boxes A = (cx1, cy1, w1, h1) and B = (cx2, cy2, w2, h2) with Gaussian
distributions N1 and N2, the Wassertein distance can be expressed as follows:

W2
2 (N1, N2) =

∥∥∥∥([cx1, cy1,
w1

2
,

w1

2

]T
,
[
cx2, cy2,

w2

2
,

w2

2

]T
)∥∥∥∥2

2
(10)

The distance metric is not used to represent the similarity, and thus it is normalized
to represent the similarity metric in exponential form as shown in Equations (11) and (12).
Compared with the IOU, the NWD-based method has a smoother positional deviation
transformation for weak targets, which is more suitable for weak target detection:

NWD(Na, Nb) = exp

−
√

W2
2 (Na, Nb)

C

 (11)

LossNWD = 1− NWD
(

Np, Ng
)

(12)

3. Results
3.1. Dataset

The datasets used in this study are the publicly available ground-to-air background
infrared weak UAV dataset [26] and the anti-UAV anti-drone challenge competition dataset.
There are 22 sequences of data in the dataset, and the image resolution size is 256 × 256.
However, some of the images in this dataset have high signal-to-noise ratios, large target
sizes in the images, rich details, clear edge contours, pure backgrounds, and no obvious
noise, as shown in Figure 5, and the image continuity is too high, making them not suitable
for weak target detection task requirements, Therefore, we eliminated high signal-to-noise
ratio images while extracting one image every five images at intervals to ensure that the
similarity between images was not too high. The video segments matching the weak
target feature size and relatively low signal-to-noise ratio were selected from the anti-UAV
anti-drone challenge data, and the videos were extracted into images every five frames and
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manually labeled using LabelImg software. Finally, 5358 pictures of different scenes were
obtained as the dataset. The sample numbers of the datasets for different scenes are shown
in Table 1.

Figure 5. High signal-to-noise ratio image.

Table 1. Background distribution of the dataset.

Background Woodland Mountain Sea Sky Roads Architecture

Quantity 1351 1439 427 348 823 970

In this dataset, the data of weak targets with different backgrounds are shown in
Figure 6. The data with the target background of sky and sea have a relatively high signal-
to-noise ratio, less background interference, and a simple detection task, so fewer data
samples were selected for this experiment. In the context of woodlands, mountains, roads,
and buildings, there is more background interference, and the target signal-to-noise ratio is
low, making detection relatively difficult. Thus, selecting more data samples for training
could improve the robustness and generalization performance of the detection network.

Figure 6. Sample dataset of six scenarios. The red boxes are real targets.
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3.2. Experimental Environment

In the training process, we divided the dataset into a training set, validation set, and
test set at a ratio of 7:2:1. Since the preset anchor box size of YOLOv5 is based on the
coco dataset, which does not meet the target size of this paper, we utilized the k-means++
algorithm to manually compute the size of the anchor box and obtain an anchor box
suitable for the weak target data and sizes, as well as replace the anchor box of the original
coco dataset. We used the development environment and training parameters shown in
Tables 2 and 3.

Table 2. Development environment.

Platform Configuration

Integrated development environment PyCharm
Scripting language Python3.9
Operating system Windows11

CPU I5-12400F
GPU NVIDIA GeForce RTX3060

Memory 16G
CUDA 11.7

Table 3. Training parameters.

Parameter Configuration

Optimizer SGD
Learning rate 0.01
Momentum 0.937

Decay 0.0005
Epochs 200

Batch size 32

3.3. Evaluation Metrics

To better evaluate the performance of the improved YOLOv5s algorithm, this paper
mainly uses the Precision, Recall, F1 score, and mean average precision (mAP) as the
evaluation metrics of the algorithm. Finally, P-R curves were drawn to evaluate the
algorithm’s performance.

The formula for Precision is

Precision =
TP

TP + FP
(13)

The precision rate indicates the percentage of samples identified as targets by the
target detection algorithm that are actually targets. TP denotes true cases, or the number
of samples predicted to be positive cases that are actually positive cases, and FP denotes
false positive cases, or the number of samples predicted to be positive cases but are actually
negative cases.

The formula for Recall is
Recall =

TP
TP + FN

(14)

Recall indicates how many of the samples that are actually targeted are accurately
detected. FN denotes the number of false negative cases, or the number of samples for
which the predicted negative cases are actually positive cases.

The formula for the F1 score is

F1 =
2× Precision× Recall

Precision + Recall
=

2TP
2TP + FP + FN

(15)
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Precision and recall are generally negatively correlated; the higher the precision,
the lower the recall. The F1 score can balance the impact of accuracy and recall and
comprehensively evaluate the detection model. The higher the F1 score, the better the
model performance.

The formula for calculating the average precision (AP) is

mAP = AP =
∫ 1

0
P(R)dR (16)

The relationship between precision and recall can be expressed as a P− R curve. The
area enclosed by the P− R curve and the coordinate axis is the average accuracy (AP) of
the target. The AP represents the average accuracy of the algorithm for a certain class of
targets, while the mAP represents the average of all classes of the AP. Since the detection
target is a single class, the AP is equal to the mAP.

3.4. Analysis of Results
3.4.1. Comparison of Different Algorithms

The weak target detection algorithm studied in this paper is mainly used in military
and civilian applications, which require high real-time performance of the algorithm.
Therefore, we used a one-stage detection algorithm to compare the performance with the
improved algorithm in this paper under the same conditions. The first-stage detection
algorithm is based on the YOLO series. The algorithm chosen for improvement in this
paper was the smaller model of YOLOv5s, and the algorithm we chose for comparison was
the lightweight detection network for each version of the YOLO series. Finally, we chose
YOLOv3-tiny, YOLOv4-tiny, YOLOv4s, YOLOv5s, PP-YOLOEs, and YOLOv7-tiny with the
same dataset for comparison with the algorithm in this paper. The results are shown in
Table 4:

Table 4. Comparison of algorithms.

Methods Precision Recall mAP0.5 F1 FPS Parameters GFLOPs

YOLO3-tiny 0.948 0.912 0.93 0.93 204 8,666,692 12.9
YOLOv4-tiny 0.74 0.5 0.55 0.59 190 6,056,606 16.4

YOLOv4s 0.938 0.879 0.919 0.91 127 9,110,630 20.6
YOLOv5s 0.961 0.936 0.945 0.95 149 7,012,822 15.8

PP-YOLOEs 0.942 0.849 0.902 0.89 106 8,352,038 13.9
YOLOv7-tiny 0.941 0.86 0.905 0.9 163 6,007,596 13.0
Our Method 0.965 0.956 0.967 0.96 131 9,800,278 21.2

From the data in the table, it can be seen that YOLOv4-tiny detection was poor and
far from the actual application requirements. The detection accuracy of YOLOv3-tiny
and YOLOv7-tiny was lower compared with YOLOv5s, and the YOLOv3-tiny network
structure was simpler and therefore faster. YOLOv4s is based on the network structure
of YOLOv4, and it was realized by reducing the number of channels and the amount of
residual structure stacking according to the design of YOLOv5s. Its detection results were
slightly lower compared with YOLOv5s. YOLOv5s works best in IR weak target detection.
PP-YOLOEs had a large gap between the precision and recall, resulting in poor mAP results
as well as a low detection speed compared with other algorithms. Although YOLOv7 is
an improved version of YOLOv5, the improved optimization of the YOLO algorithm is
based on the coco dataset, and the latest version of the YOLO algorithm is not necessarily
the most suitable one for the detection task in a particular scene. Overall, the improved
YOLOv5s detection algorithm in this paper performed best in terms of precision, recall,
mAP, and F1 scores, because the improved algorithm increased the number of parameters
and computation, thus decreasing the detection speed.
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3.4.2. Performance Comparison

We compared the performance of the YOLOv5s baseline algorithm with the improved
YOLOv5s algorithm. The P-R curves were drawn separately after training using the same
dataset, as shown in Figure 7. The P-R curve has the recall as the horizontal coordinate and
precision as the vertical coordinate, and the area enclosed by the curve represents the mAP,
which is used to evaluate the algorithm performance. It can be clearly seen in the figure
that the improved YOLOv5s algorithm has a significantly larger area and a 2.2 percent
improvement in its mAP compared with the P-R curve of the YOLOv5s baseline. It can
be concluded that the improved YOLOv5s algorithm is the best for the detection of weak
infrared targets, and the detection accuracy was significantly improved.

(a) YOLOv5s (b) Improve YOLOv5s

Figure 7. YOLOv5s P-R curve comparison.

We used TensorBoard to monitor the training data of the improved model during the
training process, as shown in Figure 8. A total of 200 epochs was set for training, and the
model performance metrics kept changing as the epochs increased. Among them, the mAP
converged relatively slowly in the early stage. After 100 epochs, the curve leveled off. The
improved YOLOv5s mAP was significantly higher than the YOLOv5s baseline network,
and the precision and recall curves both improved. The graphs of the localization loss
and confidence loss during training are shown in Figure 9. From the graphs, for both the
training and validation sets, we can see that improved YOLOv5s achieved better results
for both the confidence loss and localization loss, demonstrating the superiority of our
improved algorithm.

Figure 8. Precision, recall, and mAP comparison chart.

3.4.3. Comparison of Test Results

We evaluated the detection performance of the YOLOv5s baseline and the improved
YOLOv5s algorithm using data images from six different scenes: sky, mountain, water,
building, road, and forest. We tested them using the same parameters, and the results are
shown in Figure 10. YOLOv4-tiny and YOLOv7-tiny had false detections and missed detec-
tions. The detection recognition rate of the improved YOLOv5s algorithm was significantly
better than those for other algorithms.

Analysis showed that adding a multi-head self-attention mechanism and CoordConv
to the network structure of YOLOv5s can optimize the model parameters and make the
detection model more expressive. The NWD loss avoided the problem of the CIOU’s sensi-
tivity to position deviation of weak targets, which is more in line with the characteristics of
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weak targets and improves the recognition rate of weak targets. The experimental results
show that our proposed method achieved good detection results.

Figure 9. Comparison of loss curves.

（a） （b） （c） （d） （e） （f） （g）
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Figure 10. Comparison chart of detection results. (a) YOLOv3-tiny results. (b) YOLOv4-tiny results.
(c) YOLOv4s results. (d) YOLOv5s results. (e) PP-YOLOEs results. (f) YOLOv7-tiny results. (g) Our
method’s results.
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In the testing process, although our improved YOLOv5s algorithm achieved good de-
tection results while improving the detection accuracy, it also correspondingly reduced the
detection speed by a small amount and increased the number of parameters of the model.
The weak target detection approach of deep learning is based on being data-driven. There-
fore, the limitation of the data volume in this study still leaves the generalization ability of
the detection model inadequate, and YOLOv5 still has great room for improvement.

4. Conclusions

In summary, we studied how to improve the detection accuracy of infrared weak
targets in complex scenes. In this paper, we first selected sample data that met the require-
ments of infrared weak target detection tasks in various complex scenes from two datasets
and removed high signal-to-noise ratio images. We also used an interval multi-frame
sampling method to reduce the continuity and similarity between data. Secondly, we
improved and optimized the network structure of YOLOv5s by adding Bottleneck Trans-
former modules to the Backbone network of YOLOv5s, using the multi-head self-attention
mechanism to improve the global modeling ability of the detection network and adding
CoordConv to the Neck structure to perceive position information and improve the model’s
generalization ability. At the same time, we replaced the CIOU loss function with the
NWD loss. Finally, we compared the improved algorithm in this paper with YOLOv3-tiny,
YOLOv4-tiny, YOLOv4s, YOLOv5s, PP-YOLOEs, YOLOv7-tiny, etc. From the evaluation
index comparison table and P-R curve, we can see that the improved algorithm in this
paper had the best performance, with the mAP reaching 96.7 percent. Overall, the research
in this paper has improved the detection accuracy of infrared weak targets to a certain
extent and achieved its research purpose.
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