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Abstract: Corals play a crucial role as the primary habitat-building organisms within reef ecosystems,
forming expansive structures that extend over vast distances, akin to the way tall buildings define a
city’s skyline. However, coral reefs are vulnerable to damage and destruction due to their inherent
fragility and exposure to various threats, including the impacts of climate change. Similar to successful
city management, the utilization of advanced underwater videography, photogrammetric computer
vision, and machine learning can facilitate precise 3D modeling and the semantic mapping of coral
reefs, aiding in their careful management and conservation to ensure their survival. This study focuses
on generating detailed 3D mesh models, digital surface models, and orthomosaics of coral habitats
by utilizing underwater coral images and control points. Furthermore, an innovative multi-modal
deep neural network is designed to perform the pixel-wise semantic segmentation of orthomosaics,
enabling the projection of resulting semantic maps onto a 3D space. Notably, this study achieves a
significant milestone by accomplishing semantic fine-grained 3D modeling and rugosity evaluation
of coral reefs with millimeter-level accuracy, providing a potent means to understand coral reef
variations under climate change with high spatial and temporal resolution.

Keywords: underwater photogrammetry; deep learning; semantic segmentation; coral reefs;
3D analysis

1. Introduction

Coral reefs represent remarkable ecosystems in warm tropical and subtropical oceans,
characterized by exceptional biodiversity, structural complexity, and exceptionally high
primary productivity [1,2]. These reefs are vital natural resources for humanity and marine
ecosystems. However, coral reefs face escalating challenges from global climate change,
compounded by localized stressors such as sedimentation, resource extraction, over-fishing,
and land-based pollution [3,4]. Alarming statistics reveal that 14% of corals have been lost
over the past decade, and, 70–90% of corals could face extinction without effective global
warming control measures to limit the increase to within 1.5 ◦C by 2050 [5–7]. Coral reefs
face multiple causes of degradation under the aforementioned stresses, necessitating our
understanding and minimization of the pressures they endure. Advanced technologies
such as photogrammetric computer vision and machine learning are crucial for mapping,
monitoring, and modeling coral reefs to enhance our understanding and protection. Fur-
thermore, long-term observations and monitoring are necessary to identify habitats with a
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high survival potential for conservation. These efforts aim to scientifically assess suitable
habitats for sustaining coral reef ecosystems.

The conventional approach of conducting manual local in situ underwater surveys
has historically been the primary method for assessing coral distributions and growth
health. However, this method requires a significant investment of time during field diver
surveys, leading to limitations in the spatial and temporal scales at which ecological surveys
can be conducted [8]. Over the past decade, advancements in mapping benthic habitats
have been made through satellite and aerial photogrammetry and remote sensing tech-
niques [9–11]. These methods offer a rapid means of acquiring information for large-scale
coral-monitoring projects and enable the identification of various benthic function types
on coral reefs. Nonetheless, due to the water surface effect and pixel mixing, they cannot
provide detailed and accurate observations of the complex structures of coral reefs [8,12].
The emergence of underwater photogrammetry and unmanned underwater vehicles have
significantly enhanced data collection capabilities for underwater surveys, facilitating the
high-resolution monitoring of coral reef observations at millimeter-level precision and
enabling the observation of individual corals [13–15]. However, it also introduces chal-
lenges related to data processing bottlenecks and technical complexity, which are difficult
to handle manually using traditional methods [16]. Fortunately, recent rapid progress
in the repeatability and accessibility of photogrammetric computer vision and machine
learning-based automated tools has gradually alleviated some of these barriers [17]. As
a result, this progress holds potential in addressing long-standing monitoring challenges
associated with capturing rapid changes in coral reefs with high spatiotemporal resolution
and reproducibility. Furthermore, it aids in understanding the vulnerability and resilience
of coral reefs in the face of both global and local stressors [18,19].

In photogrammetric computer vision, many approaches have emerged, offering au-
tomated image-processing tools to generate high-resolution 3D models that effectively
capture the spatial structural complexity of coral reef ecosystems [20–23]. However, limited
by the performance of image processing algorithms and computer capabilities, the changes
and trends in coral cover have always been regarded as important biological indicators
by the scientific community. Consequently, coral reefs have typically been studied as
two-dimensional systems. However, it is evident that the percentage of coral cover is
insufficient to reflect the structural complexity of coral reefs. The three-dimensional nature
of coral reefs constitutes the diversity of the ecosystem, highlighting the necessity to study
structurally complex coral reefs accurately within a three-dimensional space [24]. For
evaluating the structural complexity of reefs at small-to-medium (such as millimeter to cen-
timeter) spatial scales, 3D rugosity is a valuable metric closely linked to the high organismic
diversity present on coral reefs [18,25]. The Vector Ruggedness Measure (VRM) stands as
a widely adopted metric for quantifying surface roughness, integrating the variations in
slope and aspect into a unified measurement [26,27]. During the past decade, Simultane-
ous Localization and Mapping (SLAM) or Structure-from-Motion (SfM) techniques have
been utilized to process underwater coral images, enabling the acquisition of fine-grained
3D reconstructions of coral reefs. These techniques have proven valuable in enhancing
our comprehension of various aspects, including the spatial clustering of species and the
impacts of disturbances on the complexity and community structure of coral reefs [28].

Photogrammetric techniques enable the accurate detailed 3D reconstruction of the
structure of coral reefs, but a further intelligent understanding of corals requires the uti-
lization of image-classification techniques. Significant advances in machine learning have
greatly improved image segmentation and object classification. Within modern machine
learning, recent progress has been achieved in training automated classifiers to classify
and segment underwater images for the purpose of quantifying species abundance in
marine ecosystems [17,29]. Traditional machine learning methods such as Support Vector
Machines (SVMs) and k-nearest neighbors, as well as new deep learning techniques, have
been used to estimate coral percent cover, which refers to the percentage of surface occu-
pied in the surveyed area by a given taxa or substrate when viewed from overhead [17].
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These classifiers demonstrate promising outcomes for most coral reef classes based on
local texture and color features. Notably, the best-performing traditional machine learn-
ing classifiers, specifically SVMs, exhibit high accuracy in classifying abundant classes,
reaching approximately 80% [30]. However, their accuracy significantly declines when
dealing with less common classes, and they are only capable of resolving coral classes
at the genus or functional group level. In recent studies, Convolutional Neural Network
(CNN)-based classifiers have shown superiority over traditional classifiers in segmenting
coral images [31]. Patch-based CNNs are one of the prevalent semantic segmentation meth-
ods [32]. However, it is important to note that patch-based CNN models have limitations
in terms of classification granularity, as they assign a single class label to an entire patch
within an image. To overcome this limitation, the Fully Convolutional Neural Network
(FCNN) was introduced, offering modifications to traditional CNNs that enable the full
semantic segmentation of input images at the pixel level [32–34]. Unlike patch-based CNN,
FCNN can provide a classification for each individual pixel within an image. In addition,
recently there has been the emergence of general-purpose large models for segmentation,
such as Segment Anything (SAM) [35], which have shown good performance in common
scenarios. However, their effectiveness is limited when applied to specific scenarios, indi-
cating the need for further research to enhance their performance. Advanced classification
techniques have been applied to classify 3D reconstructions of coral reefs, offering valuable
insights into the spatial distribution relationships among coral taxa and presenting more
realistic representations of organism biomass within coral reef systems compared to two-
dimensional metrics such as coral percent cover [17,20]. However, previous studies did
not take into account the use of underwater control points in the classification of 3D coral
reconstructions, nor did they consider pixel-wise semantic segmentation results to analyze
intraspecific and interspecific changes in corals. Therefore, it was impossible to accurately
monitor changes in coral reefs with high spatial accuracy over time.

To gain a thorough understanding of the variations and trends in coral reef growth,
we employ an underwater videography technique to capture detailed imagery of coral
reefs. This underwater visual information serves as the foundation for our proposed
approach, which combines the technical advantages of photogrammetric computer vision
and machine learning to achieve the fine-grained intelligent understanding of coral reef
growth. Initially, we leverage advanced photogrammetric computer vision technology
to reconstruct coral reefs in three dimensions. This process yields highly accurate and
high-resolution outputs such as underwater digital surface models (DSMs), orthomosaics,
dense point clouds, and 3D meshes. These outputs provide a representation that is closer
to a digital twin of the coral reef environment. Subsequently, we develop a novel deep
neural network specifically designed for the semantic segmentation of coral images. This
neural network takes patches of orthomosaics and DSMs as the input and intelligently
classifies the different components of coral reefs. By analyzing these segmented outcomes
across different time periods, we can obtain a deep understanding of the variations in coral
reef growth from multiple perspectives. Photogrammetric computer vision and machine
learning integration offer the in-depth exploration of coral reef ecosystems. This approach
can effectively support long-term monitoring and contributes to coral reef conservation
and management.

2. Materials and Methods

Our workflow for fine-grained coral reef growth monitoring is illustrated in Figure 1
and comprises three stages: data collection and preparation, photogrammetric processing,
and intelligent analysis. The first stage mainly involves the acquisition of underwater
images and relevant measurements of Ground Control Points (GCPs). Subsequently, pho-
togrammetric techniques are employed to process the data and generate a set of products,
including sparse point clouds, dense point clouds, mesh models, orthomosaics and DSMs.
By integrating the semantic segmentation results, intelligent analysis on coral reef growth
can be conducted.
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Figure 1. A monitoring workflow for fine-grained coral reef growth.

2.1. Data Collection and Preparation

This study was supported by the Moorea Island Digital Ecosystem Avatar (IDEA)
project, which was established in 2013 to create a digital avatar of islands. Moorea island is
the core of this project; it is a volcanic oceanic island about the size of San Francisco, with
about 10 enclosed coral reefs surrounding the entire island, and there are several of the
most complex ecosystems on Earth that can be used to study the impact of natural and
anthropogenic stressors on ecosystem processes. Its location is ideal for coral monitoring,
where a wide variety of coral observation data can be obtained. In cooperation with the
Gump Station, the data used in this study were collected at the fore reef using underwater
videography, as shown in Figure 2.
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Figure 2. The underwater in situ location and environment.

The device for collecting underwater images is an underwater camera system specially
designed for capturing underwater coral images, and its basic information is shown in
Table 1. Most underwater images were collected at a height of 2 m from the benthos. To
study detailed changes in coral reefs over time, we selected underwater images collected
in the same area in August 2018 and August 2019; additional information on underwater
images is shown in Table 2. These images were captured along a pre-planned route, and
the overlap between adjacent images mostly ranged from 70% to 85%, as shown in Figure 3.
As images captured underwater have certain color deviations due to complex lighting, we
performed radiometric correction on the acquired images [36]. Specifically, the optical flow
procedure introduced by Farneback [37] was firstly applied to estimate the displacements
of the red and blue channels with respect to the green channel. Subsequently, the displace-
ments between the channels were used to estimate the parameters of a correction model,
namely the collocation model [38]. Finally, the red and blue channels underwent correction,
and the color image was re-built.

Table 1. Basic information of the camera system.

Property Detail

System name PL51
Camera body PANASONIC LUMIX GH5S

Sensor type [dimensions(mm)] Four thirds [17.3 × 13]
Pixel size (µm) 4.6

Lens Lumix G 14 mm f/2.5
Underwater pressure housing Nauticam NA-GH5

Port lens Nauticam N85 3.5′′ wide angle dome-port
Resolution 3680 × 2760 pixels

Table 2. Additional information of acquired underwater coral images.

Property Detail

Year 2018 2019
Specific Date 22 August 21 August

Height from the benthos about 2 m
Imagery System PL51
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Figure 3. A schematic diagram illustrating the overlapping degree of image acquisition based on the
camera’s position and field of view. The green frames in the foreground of the figure represent the
position of the camera relative to the object on the coral seabed, while the background consists of the
densely colored point cloud of the coral seabed, reconstructed from the coral image.

The dominant coral species that grows in this study area is Pocillopora, which is highly
sensitive to the impacts of climate change. Consequently, this coral species is considered as
an exemplar for conducting coral semantic segmentation and change monitoring analysis.
The annotation of training data and ground truth for coral image segmentation on the
orthomosaics was performed by expert annotators. Each pixel in the orthomosaics was
categorized as live Pocillopora, dead Pocillopora, and background (comprising other corals,
sea rods, algae, stones, sand, etc.). Accurate photogrammetry and monitoring changes
in the 3D spatial structure of corals over time were achieved using underwater GCPs on
the coral seabed. In the study area, five GCPs are placed, each comprising an aluminum
target anchored at a stable position. These targets possess unique patterns that can be
automatically recognized and measured using a program. The coordinates of the GCPs
are measured using professional measuring instruments. These GCPs establish a single
reference datum over all measurement periods and support the self-calibration procedure
in bundle adjustment.

2.2. Photogrammetric Processing

The photogrammetric products are carried out through an improved photogram-
metric computer vision program based on OpenDroneMap, which is a rapidly evolving,
community-based open-source photogrammetry project [39]. As illustrated in the left side
of Figure 1, its main workflow begins with sparse reconstruction using input images and
GCPs to obtain camera poses and a sparse point cloud in the geodetic coordinate system.
Dense reconstruction follows to generate a dense point cloud of the scene, followed by
mesh construction. Finally, photogrammetric products, including orthomosaics and DSMs,
are generated.

SfM is a core technology for sparse reconstruction in original OpenDroneMap. The
accuracy of the SfM reconstruction is crucial for achieving a high-quality final model, which
primarily relies on the quality of feature extraction and matching [40]. Unlike common
scenes, coral reefs have many complex and similar structures, which can cause repetitive
patterns in the captured images and pose challenges for feature matching. If there are many
errors in feature matching, it will directly lead to unstable or even failed SfM reconstruc-
tion, which highlights the importance of the accuracy and robustness of feature extraction
and the matching of underwater coral reef images. In our improved photogrammetric
computer vision program based on OpenDroneMap, we conducted feature extraction
using RootSIFT [41], an enhanced version of Scale-Invariant Feature Transform (SIFT) [42]
that incorporates L1 normalization to enhance descriptor discriminative power, improve
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matching accuracy under varying illumination conditions, and stands as one of the most
widely used and reliable local feature description methods. For feature matching in original
OpenDroneMap, the Fast Library for Approximate Nearest Neighbors (FLANN) [43] is
commonly utilized. However, FLANN lacks robustness to outliers which can disrupt the
nearest neighbor search process, leading to inaccurate matches or affecting the overall
quality of feature matching results. In response to this issue, we introduced an advanced
adaptive local feature matching method, Adaptive Locally Affine Matching (AdaLAM) [44],
which incorporates adaptive thresholds to improve feature matching accuracy and ro-
bustness against varying image conditions and geometric transformations. As shown in
Figure 4, utilizing AdaLAM for feature matching yields a higher number of correct matches
and fewer incorrect matches. Specifically, in our experiments, AdaLAM increases the
number of correct matches by approximately 20%, leading to improved stability in SfM
reconstruction and higher network coverage of images. The average number of successful
feature matches per image and the average number of repeated observations per point are
calculated for comparison, as shown in Table 3. When using AdaLAM for feature matching,
it is evident that more successful matches can be obtained, while also increasing the number
of repeated observations, leading to a more reliable reconstruction.
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AdaLAM (Ours, second column). (1–4) show the results of four different pairs of overlapped images
using these two different feature-matching methods. The colors of the lines are random and used to
visually distinguish different matches.

Table 3. Sparse reconstruction results using different feature matching methods. Matched Features
refers to the average number of successful feature matches per image, and Repeated Observations refers
to the average number of repeated observations per point.

Year 2018 2019
Feature Matching Default AdaLAM Default AdaLAM

Matched Features 8497 9614 7641 8808
Repeated Observations 2.99 3.33 2.97 3.24

To enable the quantitative comparison of coral growth in the same location over time,
it is crucial to perform geo-referencing that transforms the initial arbitrary datum into a
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predefined coordinate reference system. As shown in Figure 1, we applied underwater
GCPs landmarks and established an underwater geodetic control network using green
lasers for leveling and distance measurement equipment (as shown in Figure 2). The
geospatial positions (latitude, longitude, and altitude) of GCP landmarks were known.
Each GCP can be observed in multiple images, and these observations are used to align
3D models and refine reconstructions, thereby transforming a free-network model into
an aligned model [45]. Specifically, five GCPs were deployed in the study area, with four
serving as control points for georeferencing and one acting as a check point for accuracy
assessment. By calculating the root mean square errors (RMSEs) of check points over the
two years, it was determined that the horizontal errors were within 4mm, and the total
errors were within 5 mm.

After performing sparse reconstruction, the fine structure of the coral reef was con-
structed through dense reconstruction, and three different reconstruction methods are
tested. The first method used the traditional Multi-View Stereo (MVS) algorithm [46]
integrated in OpenDroneMap, specifically OpenMVS [47]. The second method adopted
a popular deep learning-based MVS algorithm, exemplified by Vis-MVSNet [48]. The
third method involved the latest Neural Radiance Fields (NeRF), using the state-of-the-
art Nerfacto algorithm [49]. Although NeRF models are not designed to generate point
clouds, it is still possible. The visualization results of these three different reconstruction
approaches are shown in Figure 5. Overall, the dense point cloud generated by OpenMVS
(Figure 5a) is the most accurate and faithful to real-world conditions, capturing rich and
precise details. However, there are still some holes caused by occlusions and lighting
variations. Vis-MVSNet (Figure 5b) roughly reconstructs the overall shape of the coral
reef, but the generated point cloud exhibits non-ignorable errors, rendering the results
unreliable. This could be attributed to the use of original pre-trained weights, which might
not have included similar coral reef scenes in the training datasets of [48], leading to a
subpar performance in this study. The result obtained using Nerfacto (Figure 5c) shows a
considerable amount of black noise points, and only a general outline of the coral reef is
reconstructed. Since NeRF-based methods perform volumetric rendering based on sam-
pled 3D points, they face the issue of ambiguity in regions with weak local textures due to
multiple sampled points of the same color. Furthermore, although NeRF-based methods
can achieve similar results to geometric methods in small-scale scenes, they lack effective
solutions for large-scale scenes due to limitations such as network capacity, lighting, and
image distortions. Currently, NeRF-based methods focus primarily on improving render-
ing quality, and they still need to be suitable for the high-precision reconstruction of 3D
geometric structures in large-scale scenes.
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Figure 5. Comparison of dense reconstruction results. (a–c) display the dense point clouds generated
with OpenMVS, Vis-MVSNet and Nerfacto. It can be clearly seen that the point cloud in (a) is the
most complete, the one in (b) is less complete, and (c) is the least complete.

Furthermore, we tested the execution time of the three methods, as presented in Table 4.
OpenMVS is implemented in C++, while Vis-MVSNet and Nerfacto are implemented
in Python. It can be observed that the traditional MVS algorithm, although yielding
good results, requires more computational time. The deep learning-based MVS algorithm
demonstrates faster processing speed and has the potential to achieve a comparable or
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even superior performance to traditional methods in most scenarios in the future. Nerfacto
exhibits a fast runtime but produces unsatisfactory results. We attempted to increase
the training epochs, but the obtained results were similar. Additionally, there are other
high-accuracy reconstruction methods based on NeRF, but they require significantly higher
computational resources and have long execution times, resulting in poor practicality.

Table 4. Mean execution times.

Method Time (Minute)

OpenMVS 129.4
Vis-MVSNet 65.1

Nerfacto 10.6

Upon completion of the dense reconstruction process, dense point clouds and mesh
models containing tens of millions of points can be obtained. This further allows for the
generation of orthomosaics and DSMs with a resolution of 1 mm. These photogrammetric
products possess extremely high resolution and accuracy, providing a solid data foundation
for a detailed understanding of coral reef growth variations. Notably, since detailed
observation and understanding is the primary consideration in this paper, the Multi-View
Stereo (MVS) pipeline is still used for the 3D reconstruction of coral reefs.

2.3. Semantic Segmentation

Orthomosaic maps of coral reefs have been used as research materials in previous
studies on the semantic segmentation of coral reefs [50]. Orthomosaic maps can be con-
sidered as high-resolution, detail-rich RGB images that combine actual metric scale, depth
information, and geographic coordinates, while correcting distortions in camera imaging.
There are many benefits to using orthomosaic maps for semantic segmentation, including
reducing the workload of image annotation and more uniform color representation. While
conducting semantic segmentation on orthomosaic maps provides a reasonable approach
for studying coral species, there are still challenges needing to be solved. Specifically, the
complex structure of coral reefs with numerous tentacles results in irregular and complex
edges in the images, and the color of corals may be similar to that of the background, such
as sand and grass, making high-precision segmentation quite difficult. Moreover, since
the images are captured underwater, the changing light caused by wave refraction can
also affect the imaging results. Therefore, in these situations, more than simply relying
on orthomosaics is required. A practical method is to use the height data provided by
DSM, which can complement the color information of RGB images with its geometric
information, thereby improving the accuracy and reliability of semantic segmentation.
This study proposes a specifically designed network, a Multi-Modal Coral Segmentation
Network (MMCS-Net), which takes patches of the orthomosaics and DSMs as the input
and generates pixel-level segmentation results. This deep convolutional neural network is
capable of handling multi-modal coral observation data to achieve high-precision semantic
segmentation. The architecture of our proposed MMCS-Net is shown in Figure 6.
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Based on the significant performance achieved by DeepLabv3+ in many common and
coral semantic image segmentation tasks and studies, we chose to adopt its architecture
as the basis for our network [51,52]. DeepLabv3+ integrates the strengths of an encoder-
decoder architecture and atrous spatial pyramid pooling (ASPP), allowing it to capture
contextual information from images at different resolutions. Additionally, it incorporates
depth-wise separable convolution [53], which reduces parameters and enhances both com-
putational efficiency and classification performance. To leverage the height information
from the DSM and improve coral classification performance, we modify the network input
from RGB images to RGB images + DSM through channel-wise concatenation. Given
the distinct characteristics of the DSM compared to RGB images, the vanilla convolu-
tional layers in the original encoder are replaced by Shape-aware convolutional layers
(ShapeConv) [54] to effectively utilize the height information. To integrate RGB and depth
cues, ShapeConv incorporates shape information from patches through decomposing the
height feature into a shape-component and a base-component, which will cooperate with
two learnable weights and be combined by a convolution. In this way, it can help convolu-
tional neural networks achieve performance gains without introducing any computation
and memory increase in the inference phase.

In training stage, a hybrid loss function L is applied to obtain high-quality regional
segmentation:

L = LCE + µLIoU , (1)

where LCE and LIoU denote Cross Entropy (CE) [55] loss and Intersection over Union (IoU)
loss, respectively. And µ is a hyperparameter used to balance the weights of different losses.
In practice, we discovered that setting µ to 0.4 produces favorable outcomes, so we opted
to use this value. The CE loss is one of the most widely used in semantic segmentation.
It is defined as a measure of the difference between two probability distributions for a
given random variable or set of events, but does not consider the labels of neighborhood
and it weights both the foreground and background pixels equally [56]. Unlike cross
entropy, which is pixel-wise, IoU is a map-level measure that is originally proposed for
measuring the similarity of two sets, and can be used as the training loss [55,57]. Therefore,
by integrating these two loss functions operating at different scales, it becomes possible to
utilize CE loss to maintain a smooth gradient for all pixels, while using IoU loss to give
more focus on the foreground. The implementation of the networks is carried out using the
PyTorch deep learning library [58], and the coral segmentation programs are executed on a
desktop computer equipped with an NVIDIA GeForce RTX 3090 graphics card and 64GB
of RAM.

2.4. Geographic Analysis

The photogrammetric processing results include georeferenced 2.5D DSMs and 3D
models, with a unified coordinate system and actual metric scale, thus enabling accurate
multitemporal geographic analysis. In this study, we conducted a quantitative analysis of
coral reef changes between 2018 and 2019, focusing on aspects including height changes,
VRM, and 3D roughness. These indicators can reflect coral growth or degradation during
these years and offer valuable insights for the study of the long-term changes in coral reef
ecosystems. The height changes of the coral reef are directly estimated through pixel-wise
subtraction of the DSMs from different years, enabling the creation of the height change
map of the reef.

As for surface roughness, it is a critically important measure of reef condition [18],
which can reflect the physical structure of the reef and abundance, biomass, and species
richness of reef fish. As roughness is a broad concept that can be estimated from various
perspectives, we used VRM and 3D roughness to assess the roughness of coral reefs in this
study. VRM can be used to investigate spatial patterns derived at high spatial resolution.
It is derived from DSM, and incorporates variation of the slope and aspect into a single
measurement. In order to calculate the roughness of the terrain, a user-defined floating
window is applied to process individual cells. Within each cell, a unit vector orthogonal to
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the cell is decomposed based on the 3D coordinates of the cell center along with the slope
and aspect values. The magnitude of the vector is normalized by dividing it by the number
of cells in the neighborhood, and the roughness value is finally scaled with 0 denoting a
flat surface and 1 representing the highest degree of ruggedness [16]. In practice, the VRM
is computed using the Benthic Terrain Modeler tool (BTM) in ArcGIS (here ArcMap 10.7
is used) [59]. Due to the calculation of VRM within a square window region, its inherent
dependence on scale becomes apparent. To comprehensively evaluate the impact of scale
in VRM on computational results, the analysis needs to be performed for many different
window sizes, from individual polyps to colony scales [27]. As for 3D roughness, it is
defined as the distance between a point and the best fitting plane computed on its nearest
neighbors. Since 3D roughness is a scale-dependent measure, similar to VRM, it also needs
to be computed at multiple scales.

3. Experimental Results and Discussion
3.1. Analysis and Evaluation of Coral Semantic Segmentation Results

To prepare the dataset, the orthomosaics were partitioned into a series of 448× 448 patches
using a sliding window with a stride of 224. In our study area, nearly 2000 patches can be
derived from a single orthomosaic. Subsequently, the dataset was augmented by applying
random translations and rotations to enhance its diversity. For the validation procedure, a
five-fold cross-validation strategy was applied. The training data were partitioned into five
equal subsets (folds), with each fold serving once as the validation set while the remaining
folds were used for training and model execution. The model was run five times, and
accuracy and loss were computed for each run. In terms of evaluation metrics, the Mean
Pixel Accuracy (mPA) and Mean Region Intersection over Union (mIoU) [60] were utilized
to report the results. The metrics obtained from multiple tests of each model were averaged
to facilitate meaningful comparisons.

To assess the effectiveness of the added DSM and our proposed improvements, we
conducted ablation experiments using four different models: (1) Model A, which uses
DeepLabv3+ and only takes the orthomosaic patch as input; (2) Model B, which uses
DeepLabv3+ and takes both the orthomosaic patch and DSM patch as inputs; (3) Model
C, which incorporates DeepLabv3+ but replaces the convolutional layers in the backbone
with ShapeConv, utilizing both the orthomosaic patch and DSM patch as inputs; and
(4) Our Model MMCS-Net. Models A, B, and C were trained using the Cross-Entropy (CE)
loss, while MMCS-Net was supervised by a hybrid loss. The results presented in Table 5
demonstrate that the utilization of DSMs leads to improved segmentation accuracy, and the
ShapeConv enhances the processing of DSM data to effectively leverage height information.
Our proposed method, MMCS-Net, exhibits the best performance, benefiting from the
aforementioned improvements and the hybrid loss. Several semantic segmentation results
obtained from the different models are shown in Figure 7. Model A exhibits challenges
related to poor lighting conditions caused by occlusions, while Model B demonstrates a
slight improvement with the incorporation of height information. By comparing Model B
with Model C, it can be concluded that ShapeConv enhances segmentation in edge areas by
leveraging structural information more adequately than vanilla convolution. Specifically,
ShapeConv facilitates smoother transitions in regions belonging to the same class [54].
MMCS-Net achieves the best overall performance, owing to the integration of ShapeConv
and the hybrid loss. Due to the IoU loss in the supervision, MMCS-Net achieves superior
overall segmentation results.

Table 5. Performance comparison of different segmentation models.

Setting mPA mIoU

Model A (DeepLabv3+) 89.9% 80.5%
Model B 90.8% 82.1%
Model C 91.6% 83.5%

MMCS-Net (Ours) 92.2% 84.7%
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Figure 7. Outputs of different models for a given input: dark pink labels are live Pocillopora corals,
light pink labels are dead Pocillopora corals, and black labels correspond to the background.

Presenting coral reefs with complex spatial structures in 2D images requires intu-
itiveness and the ability to show their fine details. Consequently, the exploration of 3D
visualization becomes a natural consideration. In this study, we projected segmentation
masks obtained from the trained neural model onto corresponding mesh models, as shown
in Figure 8. The utilization of these models enables the clear visualization of variations
in coral reefs. This approach significantly aids ecologists in studying corals in a three-
dimensional, comprehensible, and insightful manner. In Figure 8, live Pocillopora corals
are represented by dark pink labels, dead Pocillopora corals are represented by light pink
labels, and the remaining gray labels correspond to the background segments identified
through our segmentation process. The observed transition from 2018 to 2019 reveals
substantial instances of bleaching or mortality among Pocillopora corals. Pocillopora corals
hold global significance and are particularly susceptible to the ongoing heatwaves in the
world’s oceans. The coral data analyzed in this study were collected in August of both 2018
and 2019 using underwater remote sensing technology. Scientists from UC Santa Barbara
reported that the heatwave experienced by Moorea Island, which commenced in December
2018 and persisted until May 2019, was one of the strongest marine heatwaves observed in
the past three decades [61]. According to their in situ findings, the prolonged heatwave,
with temperatures exceeding 29 degrees Celsius, led to the bleaching or mortality of approx-
imately half of the Pocillopora corals. This is consistent with the coral variation estimated
in our study, highlighting the significance of our approach in efficiently automating the
processing of coral observations and performing rigorous quantitative analyses.
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3.2. New Insights into Coral Height Variation Combined with Semantic Information

Using the generated high-resolution DSMs obtained from different years, it becomes
feasible to quantify the vertical changes in coral reef heights. The DSMs from 2018 and
2019 are subtracted firstly, and statistical analysis of the height changes is then performed.
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Figure 9a depicts the frequency histogram of height changes within the surveyed area. The
histogram clearly illustrates a skewed distribution, thereby indicating that the median is
a more appropriate measure than the mean for representing the central tendency of the
majority of observations [62]. The median of the entire surveyed area was 7.7 mm.
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Figure 10c. This region corresponds to manually placed rulers, which were present in 2018 
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majority of areas are white or very light in color, indicating minimal height change. Only 
marginal growth is observed at the coral edges, while some corals have even disappeared 
(as indicated by the blue areas in Figure 10c). These findings strongly suggest that corals 
in the Moorea Island region are experiencing suboptimal growth under the influence of 
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Figure 9. The frequency histogram of our entire study area and Pocillopora cover area’s height changes
derived from the difference of the DSMs from 2018 and 2019.

In order to investigate the spatial distribution of height changes, a height-change map
of the entire surveyed area was generated using DSMs from different time periods. As
shown in Figure 10c, height changes exceeding an absolute value of 50mm are truncated.
The color scheme represents the magnitude of height changes, with red representing an
increase, blue representing a decrease and white representing no change. Notably, there
is a distinct blue descending area with a near-right-angle shape in the lower left corner
of Figure 10c. This region corresponds to manually placed rulers, which were present in
2018 (as shown in the red box in Figure 10a) but not in 2019 (as shown in Figure 10b). The
majority of areas are white or very light in color, indicating minimal height change. Only
marginal growth is observed at the coral edges, while some corals have even disappeared
(as indicated by the blue areas in Figure 10c). These findings strongly suggest that corals
in the Moorea Island region are experiencing suboptimal growth under the influence of
the heatwave.
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By utilizing the semantic mask generated by MMCS-Net, our focus shifted to the
height changes specifically related to Pocillopora corals. Consequently, a comparative
analysis was able to be conducted on the same region of the specific coral reefs in 2018
and 2019. Figure 11a,b presents 3D texture models of a selected piece of coral habitat in
the study area in 2018 and 2019, respectively. Figure 11c shows the visualization of the
whole coral habitat height change mapped to the corresponding 3D mesh, and Figure 11d
highlights the Pocillopora coral height change mapped to the same 3D mesh. This approach
leverages both the semantic data and the spatial representation provided by mapping to the
3D model to create an informative and visually appealing visualization. It enables detailed
representations of geomorphological semantic mapping and facilitates the analysis of
spatial variations within the specific coral reef. Moreover, a frequency histogram specifically
focusing on the height changes of Pocillopora corals was plotted (Figure 9b). The median
value increases to 17.8 mm, approximately double the entire study area of 7.7 mm. This
finding suggests that although the study area was affected by heatwaves in the latter
half of the previous year, leading to widespread bleaching or mortality, Pocillopora corals
exhibited apparent growth. This observation further elucidates the coral’s ability to thrive
and become the dominant coral species within the study area.
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Figure 11. Visualization of coral reef habitat and specific coral species growth changes by integrating
semantic information with a 3D model. (a,b) are the 3D texture model of a piece of the study
area in different years. (c) Visualization of the whole coral habitat height change mapped to the
correspondence 3D mesh. (d) The Pocillopora coral height change mapped to the same 3D mesh.

3.3. Evaluation of Stereoscopic Fine Structure and Complexity of Coral Reef

The biodiversity and abundance of benthic fauna are influenced by the fine-scale
structural complexity of coral reefs, which can be assessed using VRM and 3D roughness.
In this study, the VRM of the coral reef was generated from high-resolution DSMs of 2018
and 2019, with a spatial resolution of one millimeter. Different moving window sizes,
representing various resolutions, were applied to investigate the structural complexity
across a range of scales, from individual polyps to colony scales. And to study the VRM
of different classes, the VRM was calculated for these three classes (live Pocillopora, dead
Pocillopora and background), using the mask generated from coral semantic segmenta-
tion. The results were presented in Figure 12 using a violin plot, which allows for the
visualization of the distribution of VRM values. It can be observed overall that there are
significant differences in the VRM distributions for window sizes of 21 pixels (21 mm),
51 pixels (51 mm), and 101 pixels (101 mm). When the window size is smaller, the VRM
is smaller and more dispersed. As the window size gradually increases to 101 mm, the
VRM converges towards approximately 0.3. This is because larger window sizes tend to
mix coral and background in the calculation, resulting in the convergence of their VRM
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distributions. At coarser resolutions, the rugosity primarily reflects the slope of the seafloor,
whereas finer resolutions reveal a much higher granularity of variation [18]. A lower VRM
may indicate the presence of level sand ground, while higher VRM values are indicative of
the presence of corals, reefs, and other similar features. It is noteworthy that typical benthic
values in natural data tend to be small, typically below 0.4 [59].
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Regarding different classes, the VRM of Pocillopora is notably higher than that of the
background. This is because the set includes sand and aquatic plants, which exhibit lower
spatial complexity compared to Pocillopora. In 2018, the VRM of live corals was higher than
that of dead corals, indicating better growth conditions for live corals over the past year. In
contrast, in 2019, the VRM of dead corals showed a noticeable increase compared to the
previous year and even surpassed that of live corals. This may be because some larger,
faster-growing corals are more susceptible to death from heat waves. Furthermore, they
are not covered by algae or other sediments for a short time after death, while live corals
are affected by heat waves without significant growth, so there is not much difference in
overall spatial complexity between the two of them. That is why VRMs show no obvious
differences between a live coral and a dead coral. Usually, within 1 month from bleaching
to death, the coral has a white monolithic skeleton with a complete and clear structure;
6 months after death, it will be covered by small algae or thin sediments; 1 to 2 years
after death, it will start to corrode. These observations highlight the challenges involved
in monitoring rapid changes in coral reefs, requiring the ability to observe and extract
information from diverse dimensions and perspectives, alongside the capability to monitor
changes with high frequency.

As for 3D roughness, we also applied different local neighborhood radii (20 mm,
50 mm, 100 mm) during calculation, as illustrated in Figure 13. Unlike VRM, which is
derived from DSM data, 3D roughness is computed based on the 3D dense point cloud, so
it can reflect the real situation of the 3D structure of the scene more reasonably and is more
suitable for a scene with fine and complex structures like coral reefs. The 3D roughness
from different neighborhood radii reveals that as the radius increases, the values of 3D
roughness demonstrate a nearly proportional increase, particularly for Pocillopora corals.
When the radius is small, there is a noticeable difference between the 3D roughness of the
background and the 3D roughness of Pocillopora corals. However, as the radius increases
to 100mm, the overall distributions become very similar. This is because when the radius
reaches the decimeter scale, it is likely that a significant number of points of corals and
background are simultaneously included in the 3D roughness calculation, resulting in a
smaller difference between them. The 3D roughness of a specific Pocillopora coral coverage
area is visualized in Figure 14, revealing distinct patterns. When the radius is 20 mm, the
corals exhibit higher roughness primarily at their tentacles, while the rock structures show
higher roughness at their edges. As the radius increases, the prominently protruding areas
exhibit higher roughness, and the inclusion of points from other regions in the calculation
also leads to increased roughness in flat areas. For instance, in the bottom-left corner of the
region, there is a flat sandy area. When the radius is set to 20 mm, this area appears white
in Figure 14d, indicating low roughness, which aligns with the actual situation. However,
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when the radius is increased to 100 mm, the surrounding area shows significantly higher
roughness compared to the central area (Figure 14f). Therefore, it can be concluded that
a centimeter-scale radius is more suitable for investigating the structural characteristics
of corals in this particular area. Furthermore, in 2018, the overall 3D roughness of dead
Pocillopora corals was lower than that of live Pocillopora corals, even falling below the
background when the radius was 100mm. This is attributed to the limited presence of
small Pocillopora dead corals in 2018, while the background included some rugged reef
structures. In 2019, the 3D roughness of dead Pocillopora corals was similar to or slightly
higher than that of live Pocillopora corals, which closely aligns with the results obtained
from VRM analysis.
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Figure 14. Multi-dimensional stereoscopic visualization results of a typical complex coral reef
structure in the study coral habitat. (a) The 3D texture model. (b) 3D coral model with height color
rendering (red indicating high areas and green indicating low depressions). (c) The visualization
effect of mapping the semantic segmentation results of Pocillopora corals to the corresponding 3D
habitat mesh model. (d–f) are the visualization of 3D roughness calculated with different local
neighborhood radii.

4. Conclusions

This study introduced a novel method that combines photogrammetric computer
vision and semantic segmentation techniques to enhance the comprehensive understanding
of variations in coral reef growth. The proposed approach was applied to process high-
resolution coral images collected through underwater remote sensing in Moorea in 2018 and
2019. It can generate high-resolution orthomosaics, DSMs, dense cloud points, and mesh
models of the coral reef, providing a detailed geometric representation of the reef structure.
The process of coral semantic segmentation is conducted using a proposed new multi-modal
deep neural network that effectively integrates color information from the orthomosaics and
structural information from the DSMs. Building upon this foundation, a multi-dimensional



Sensors 2023, 23, 6753 17 of 20

intelligent analysis and understanding of coral reef growth can be conducted from both
2D and 3D perspectives. By transitioning from the commonly used 2D metrics to the
3D metrics enabled by our novel method, the more realistic representations of coral reefs
can be achieved. For instance, a vertically oriented coral reef may contribute minimally
to the percentage cover metric, but may possess substantial biomass that is relevant to
metabolic processes, food webs, and other ecological processes. The findings of this study
illustrate that the coral reefs located in Moorea Island have undergone detrimental effects
such as heatwaves, inadequate growth, and extensive instances of bleaching or mortality.
This is consistent with the in situ observed detrimental effects of persistent heatwaves
on corals. The utilization of underwater remote sensing data and the extraction of multi-
dimensional information will assist coral biologists in further analyzing coral growth and
recovery patterns following their exposure to stressors, as well as in identifying coral reef
refuges. By adopting this innovative approach, the routine mapping of rapid changes
in coral reefs will become more feasible in the near future. The ability to discover and
monitor the health, growth, and refugia of coral reefs presents a significant pathway
for implementing meaningful conservation interventions, thereby contributing to the
protection and preservation of these vulnerable ecosystems in the face of extreme climate
change challenges.
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