
Citation: Zhang, H.; Xu, C.; Jiang, J.;

Shu, J.; Sun, L.; Zhang, Z. A

Data-Driven Based Response

Reconstruction Method of Plate

Structure with Conditional Generative

Adversarial Network. Sensors 2023, 23,

6750. https://doi.org/10.3390/

s23156750

Academic Editor: Marcin Woźniak
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Abstract: Structural-response reconstruction is of great importance to enrich monitoring data for
better understanding of the structural operation status. In this paper, a data-driven based structural-
response reconstruction approach by generating response data via a convolutional process is proposed.
A conditional generative adversarial network (cGAN) is employed to establish the spatial relationship
between the global and local response in the form of a response nephogram. In this way, the
reconstruction process will be independent of the physical modeling of the engineering problem.
The validation via experiment of a steel frame in the lab and an in situ bridge test reveals that the
reconstructed responses are of high accuracy. Theoretical analysis shows that as the sensor quantity
increases, reconstruction accuracy rises and remains when the optimal sensor arrangement is reached.

Keywords: structural-response reconstruction; conditional-generative adversarial network; deep
learning; image processing

1. Introduction

With the increase of the service time of infrastructure, the safety assessment of civil
infrastructure has become increasingly important, in which rich and comprehensive mon-
itoring data are of great importance as the accordance for structural management and
maintenance [1]. However, due to the cost associated with data acquisition, the responses
of the structures in a few control sections could be recorded, but most of them are lost.
Situations may exist in which the lost information is also critical for structural management
and maintenance and needs to be obtained for a better understanding of the structural
operation status. These structural responses that cannot be measured by sensors directly
could be reconstructed with the measured responses [2,3].

A literature review of recent studies indicates there are primarily three types of meth-
ods for structural-response reconstruction. The first is the transmissibility concept-based
approach proposed by Kammer [4], in which a matrix is defined to form the relationship
between the measured and unknown responses. The transformation matrix in Kam-
mer’s research consists of a set of inverse-system Markov parameters. Using this gener-
alized transmissibility concept from Kammer’s work, S.S Law presented an approach for
structural-response reconstruction in the frequency domain and applied the method in a
seven-storey plane-frame structure [5]. In the same year, researchers expanded this method
to the wavelet domain [6]. Using the unit impulse-response function, the relationship
between the measured responses and the unknown response was formulated. The accuracy
of this new approach proved to be higher in comparison to that of the frequency-domain
approach. However, for applications using a transmissibility matrix, the information about

Sensors 2023, 23, 6750. https://doi.org/10.3390/s23156750 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23156750
https://doi.org/10.3390/s23156750
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2168-0503
https://doi.org/10.3390/s23156750
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23156750?type=check_update&version=1


Sensors 2023, 23, 6750 2 of 19

the applied loading location is required. The second approach for response reconstruc-
tion is based on finite element modeling and the empirical-mode decomposition (EMD)
of the structure, which is known as REMD [7]. In this method, the measured responses
are decomposed into modal responses, which are used to compute unknown responses
with the mode shape, which is obtained by a finite-element model. However, when the
reconstruction problem involves closely spaced modes, the modes cannot be separated
accurately, and the REMD method will be no longer valid. To overcome this shortcoming,
this method is improved by dividing the structural-mode set into two sets: the closely
spaced modes and the remaining modes. The responses of the closely spaced modal can be
computed by the mode shapes and the rest of the modal response, which are measurable
or can be calculated with mode shapes [8]. A Kalman filter-(KF) based method is the third
method utilized in a structural-response reconstruction problem. Zhu et al. first used
KF to solve the multitype-response reconstruction problem [9]. In their research, KF is
implemented to measure the fused response with different types. X.H. Zhang extended
Zhu’s work by taking the time-variant of the process and measurement-noise covariances
into consideration and tested the proposed algorithm thorough numerical research on
a simply supported overhanging steel beam [10]. The research works mentioned above
provide great references with good accuracy for the reconstruction of structural response.

The above-mentioned response reconstruction is implemented by solving equations of
motions inversely, in which the simplification and assumptions of physical modeling may
induce inevitable deviations. For instance, when the EMD-based reconstruction method
is employed, if the closely spaced modes are involved, the modes cannot be separated
accurately, and the REMD method is no longer valid. Meanwhile, the limitations im-
posed by the physical model may exist. According to the transmissibility matrix-based
reconstruction method, the structural-response function is utilized to establish the rela-
tionship between the measured and reconstructed response; thus, the information of the
loadings will be a necessary known condition. To address the above-mentioned short-
comings, the structural-response reconstruction method based on a data-driven mode is
an alternative option. Due to the advancements in computer hardware and optimization
algorithms, machine learning has been widely applied in various fields. An increasing
number of data-driven structural mechanics applications have been proposed, such as
structural damage identification [11,12] and external load identification [13,14]. Response
reconstruction is another area where machine learning has found application. For instance,
Shin [15] used a recurrent neural network (RNN) to reconstruct the dynamic response of a
multi-DOF structure. Wu [16] compared the performance of the long-short-term memory
(LSTM) and encoder of Transformer in reconstructing the flame nonlinear response. Lu [17]
proposes a structural-acceleration response-reconstruction method based on bidirectional
long-short-term memory (BiLSTM) networks and applied this method on a long-span
cable-stayed bridge. However, in these studies, machine-learning algorithms are often
regarded as regression models, used to reconstruct unknown responses based on known
response information, which does not fully leverage the computational capabilities of
machine learning. In fact, structural-response reconstruction can be viewed as a generative
task, where the global structural response is reconstructed from known local responses
holistically. As structural-response nephograms may offer both the information of the
amplitude and the distribution simultaneously through images, this could be used to real-
ize the response reconstruction from the perspective of response-nephogram processing.
Meanwhile, the deep-learning method has been widely applied in image processing [18–21]
and data reconstruction [22]. The conditional generative-adversarial network (cGAN) is
one of the latest deep-learning algorithms and has been widely used in image processing
because of its powerful image-generation ability. For example, cGAN is utilized to denoise
astronomical images [23–25] and to identify cells from microscopic photos [26]. Owing
to its good performance in the field of image processing, Farimani put forward a new
data-driven paradigm for rapidly solving transportation problems [27]. With Farimani’s
method, the solution of steady heat conduction and incompressible flow can be obtained
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directly by the condition without the control equation and the time and space iteration of
traditional numerical simulation. cGAN is also employed to predict topology optimiza-
tion under given boundary conditions [28]. With this method an approximate optimal
network structure could be determined according to the pixel value and flexibility. The two
investigations mentioned above achieved physical field simulation and structure design
based on data-driven responses by means of image processing and provide references for
reconstructing structural response in terms of generating structural-response nephograms.

Different from the conventional method implemented by solving equations of mo-
tions inversely, a data-driven method based on cGAN is proposed for structural-response
reconstruction. With this method, the global structural response could be reconstructed
using the measured local response in the form of response nephogram. Thus, the errors
due to the simplification and assumption of physical models in traditional methods will be
avoided. cGAN is a kind of deep-learning method according to which the features of the
measured response are extracted automatically with convolutional calculation. Meanwhile,
in the framework of cGAN, the generative network is trained with a discriminal network
in an adversarial manner. Benefiting from this adversarial-training strategy, the gener-
ative neural network can be optimized more efficiently. By treating structural-response
reconstruction as a generative task and employing image-processing techniques, we can
fully harness the potential of machine learning. This approach enables accurate capture of
the complexity and spatial-distribution characteristics of structural responses, providing
enhanced modeling and analysis capabilities for various engineering applications. With the
optimized-generative network, the spatial relationship between global and local response
is established in the form of response nephogram. The accuracy of the proposed method is
verified by a steel frame and a steel box girder bridge. Furthermore, the effect of sensor
quantity on reconstruction accuracy is studied.

2. Methodology

As mentioned earlier, in most of the structural-response reconstruction processes,
the precision of the methods usually relies on the accuracy of the physical modeling.
However, with the increase in service time, the structural properties of engineering structure
will deteriorate, and the physical model, which is established according to the original
structural state, is no longer feasible in simulating the mechanical behavior of the structure.
Meanwhile, the analysis based on a data-driven method with real-time structural-state
information as an accordance may directly reflect the current service status of the structure.

Herein, a response-reconstruction method based on a deep-learning algorithm was
developed. The schematic illustration of the overall workflow is depicted in Figure 1,
in which the data-driven approach consists of three parts: (I) database establishment: a
database will consist of the training dataset and the validation dataset, which are composed
of structural-response data generated by the theoretical simulation method or the measured
data respectively; (II) the cGAN training: cGAN architecture will be established to reflect
the relationship between the global structural response and the local structural response
and trained with the paired structural response locally and globally in the training dataset;
the performance of the model will be validated with the data in the validation set; and (III)
structural-response reconstruction: in this step, the measured local response will be input
to the cGAN to construct the global response of the structure. Detailed descriptions of each
part are as follows.
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Figure 1. The overall workflow of the study.

2.1. Database Establishment

The structural-response-reconstruction process is to construct the global structural
response using the limited local response. In this process, the first step is to establish
a database consisting of the global structural response paired with the local structural
response. However, due to the economic cost or practical reasons, the number of sensors
arranged on the structure for monitoring is usually limited, so that only the local structural
response can be recorded with the global structural response missing. The accuracy of
the database significantly affects the accuracy of machine-learning predictions. When a
structure is newly constructed, it can be modelled with actual physical properties, and the
simulated structural responses can be matched closely to the measured ones. However, as
the structure ages, its physical performance tends to deteriorate, making it challenging to
simulate real structural-response data through physical modeling. Nevertheless, during this
period, long-term observations of structural-response information have been accumulated.
Thus, the simulated data in the database can be replaced with actual measured data,
enabling a data-driven approach for structural-response reconstruction based on measured
data. Since the steel plate and the bridge utilized in this paper are brand new, responses
of structures due to specific loadings are obtained by theoretical simulations to form a
database, which will be used in network training. In addition, the measured data from
practical engineering structures will be employed in validation.
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In most cases, the load of the engineering structure during the service time is specific. For
example, the bridge deck is usually subjected to vehicle load, etc., while the high-rise building,
to wind load. This means that the form, size, and range of the loading on specific structures in
service usually exhibits regularities. To make the database feasible to practical engineering
structures, the loadings are usually arranged according to the actual situation in practical
engineering during the service time. When possible loading conditions are fully considered in
data generating, the database will be adequate for the structural-response reconstruction.

The structural-response nephogram is the most intuitive means for descriptions of the
structural response, which contains the most comprehensive information about responses
all over the structure, including both the amplitude and the distributions. Thus, response
nephograms are used as samples to establish databases for structural-response reconstruction.
Taking the response of a plate due to a group of concentrated loads, for instance, the sample
consists of a pair of nephograms, which represent the local structural response and the global
structural response, respectively (Figure 2). The nephograms are defined according to the
actual size of the plate. The four edge lines of the nephogram are used to represent the
different boundary conditions: the dotted lines representing the simply supported edge, while
the solid lines represent the fixed support edge. In the samples for the local response, a series
of colorful dots are used to represent the local response, with the RGB value denoting the
response value (Figure 2a). The size of samples is designed to 425∗425.
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Figure 2. Sample with structural response.

2.2. cGAN Training

After the database is prepared, a deep-learning neural network will be established and
trained to build the relationship between the local response and the global response of the
structure. The deep-learning neural network learns from data and recognizes patterns in a
series of input and output data sets without any prior assumptions about their interrelations.
The local structural response is used as input of the deep-learning neural network, and the
output is the global response of structure.

Constructing the global structural response by limited local response is a generative task,
and various similar applications have been successfully realized by cGAN [29–31]. cGAN is a
machine-learning technique inspired by a two-player minimax game, which trains a pair of
networks in an adversarial manner, known as generator G and discriminator D [32], whose
training procedure is diagrammed in Figure 1(II). Generator G synthesizes a global-response
nephogram according to the input local response, using convolution and deconvolution
processes. In the convolution process, the feature of structural response is extracted and recon-
structed into the global structural response using a deconvolution process. The discriminator D
is trained to differentiate between the real sample and the generated nephogram.

For the generator G, an encoder–decoder network (Figure 3a) is utilized to realize the
convolution and deconvolution processes. In the convolutional neural-network (CNN)
design, the convolution kernel size and the layer numbers are the two important factors
affecting the network performance. The convolution kernel is the convolution matrix in
the convolution and deconvolution processes. Large convolution kernels capture more
information because of the bigger receptive field, but this will increase the computational
work. Meanwhile, CNN extracts features through the convolution layer, and more layers



Sensors 2023, 23, 6750 6 of 19

mean the deeper features can be extracted. However, the increasing layer numbers may
cause the calculated gradients of loss function to shrink to zero after numerous applications
of the chain rule, known as the vanishing gradient. Thus, for both computational efficiency
and reconstruction quality, the layer numbers and the kernel size of generator G are
designed as Figure 3a, which is adjusted from Bittner et al. [33]. (See Appendix A.2 for the
cGAN parameter selection.) In the first layer of G, the input sample for the local response
is first normalized into regular data (256∗256). Then the normalized picture is processed
by 8 convolutional operations using 4∗4 kernel and finally downsampled into a latent
vector (512∗1). The process is then reversed by the decoder network (Figure 3). With a
series of deconvolutional operations, the reduced vector representation is upsampled and
resized into the inferred global-response nephogram. Seven skip connections are used to
share information between the encoder and decoder. Discriminator D is designed to be
a “patchGAN” classifier architecture with 5 convolutional layers (Figure 3b). The input
to discriminator D is a concatenation of local structural responses, with the reconstructed
structural response or the ground-truth structural response. After the combined input data
pass through a series of convolutional layers and a fully connected layer, a probability that
the input comes from will be produced.
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In the training process of cGAN, the D will help G generate a more realistic global-
response nephogram, and the nephograms generated by G will also be used as error
samples for D to upgrade. In this adversarial manner, the generator G and discriminator D
compete against each other and develop together. Lastly, the optimized G will be able to
generate a response nephogram fitting to the distribution of the samples in the database. In
order to realize this adversarial manner, a value function (Equation (1)) is proposed to train
the generator G and discriminator D together. In the training process, the discriminator D
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is optimized by maximizing V(D,G), expressed as max
D

V(D, G). Then the generator G is

optimized by minimizing max
D

V(D, G), expressed as G∗ = min
G

max
D

V(D, G).

min
G

max
D

V(D, G) = Ex∼pdata(x)[log(D(x|y))] + Ex∼pz(z)
[log(1− D(G(z|y)|y))] (1)

2.3. Structural Response Reconstruction

After a well-trained generator G is obtained, it will be used to reconstruct the global
structural response with the local response. The reconstructed result quality is quantita-
tively evaluated in terms of the relative error (RE), the structural similarity index measure
(SSIM), and peak signal to noise ratio (PSNR). The RE of the peak response is expressed by
the square norm number as:

RE =
norm2(σi − σo)

norm2(σo)
(2)

where σo is the original peak response of the structure, and σi is the reconstructed data.
SSIM is used to evaluate the structure similarity between the original and reconstructed

images, which integrate luminance l, contrast c, and structure s. SSIM considers not only
the value of individual pixels, but also the structural arrangement of these pixels. For the
reconstructed response x and real response y, the SSIM is:

SSIM(x, y) = [l(x, y)][c(x, y)][s(x, y)] (3)

[l(x, y)] =
2µxµy + C1

µ2
x + µ2

y + C1
(4)

[c(x, y)] =
2σxσy + C2

σ2
x + σ2

y + C2
(5)

[s(x, y)] =
2σxy + C3

σxσy + C3
(6)

where µx and µy represent the mean of the reconstructed and original response, σx and
σy denote the standard deviations, and σxy is the covariance of the two responses. To
avoid a null denominator, C1, C2, and C3 are determined as positive constants. The value
of the SSIM ranges from 0 to 1. The higher the value is, the more accurate the response
reconstructed. Since each pixel value is treated equally in the SSIM calculation, SSIM is
used to evaluate the accuracy of the overall distribution of the reconstructed response.

The PSNR is utilized to evaluate the reconstruction performance of noise suppression
and is defined as a dimensionless metric expressed as:

PSNR = 10 · log10(
MAX2

I
MSE

) (7)

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (8)

where K and I are the matrix representation of the reconstructed and original response.
In the image, m and n denote the row and column number of pixels. MAXI represents
the maximum pixel value of the image sample with the original response. The higher the
value of the computed PSNR, the better the match between the reconstructed and original
response. Different from SSIM, the maximum pixel value plays a more important role than
other pixel values in the calculation of PSNR. Thus, the PSNR is utilized to evaluate the
reconstruction performance on the peak-response distribution.
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3. Model Implementation Performance

A plate is a common substructure in civil engineering, such as a bridge deck and floor
plate. Thus, a static loading experiment based on a steel plate was carried out to validate
the feasibility of the proposed methodology. Furthermore, based on the validated model,
the influence of the sensor number on the performance of the reconstruction procedure
was analyzed. Finally, the proposed methodology was applied to reconstruct the structural
response of a bridge.

3.1. Experimental Validation

Four sides of the steel plate were fixed on a steel frame, and its physical parameters
(Figure 4a) are listed in Table 1. The static concentrated loads were applied on the plate,
consisting of two buckets of water. To realize the experimental validation of response
reconstruction, 81 strain gauges were attached on the plate to capture the strain response.
By adjusting the loading on the midspan or 1/4 span of plate (1#—5# in Figure 4a), 45 cases
of experimental data were obtained, the loading condition of which is exhibited in Table A1
in the Appendix A.
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Table 1. The physical parameters of the steel plate.

Physical Parameters Value

Length (a), Width (b) 1 m
Thickness 5 mm

Young’s modulus (E) 210 GPa
Poisson’s ratio (ν) 0.3

According to the physical parameter and loading condition of the experiment, FEM
simulation was utilized to generate samples with random-static concentrated loading. The
brief FEM simulation method for the plate is presented in the Appendix. A training set
was established with 2000 samples. During the network training process, the training set
is also utilized as the validation set to evaluate model errors and facilitate real-time model
assessment. Additionally, the test set comprises actual measurement data, including 45 cases
of experimental data, and is applied to evaluate the performance of the trained cGAN model.

Two reconstruction examples are given at two positions, which are the 3# at the
midspan of the plate and 2# at the 1/4 span of the plate (Figure 4b). The strain at the two
positions is reconstructed with the remaining 80 strain using the deep-learning method
(DL). The RE of the reconstructed strain using DL are 2.4% and 5.4%, which show much
better agreement with the ground truth than the result using the linear interpolation method
(IM), i.e., 19.8% and 19.6%, respectively (Figure 4b). The latter is the most commonly used
response-reconstruction method. Furthermore, the distribution of SSIM and PSNR for the
two methods is shown in Figure 4c and Table 2. These show that the average SSIM of the DL
result is much higher than the IM result, and even the poorest SSIM of DL result is higher
than the best result of IM. This suggests that DL performs better with reconstruction results
than the interpolation method on the overall strain-response distribution. Meanwhile, the
peak strain-response distribution reconstructed by DL is more accurate than IM, according
to the comparison of the PSNR result. All three values indicate that the proposed DL
method could successfully reconstruct the structural response.

Table 2. The SSIM and PSNR of reconstruction result.

Test Point
Midspan 1/4 Span

DL IM DL IM

SSIM 0.48 ± 0.05 0.21 ± 0.19 0.51 ± 0.05 0.20 ± 0.19
PSNR 36.2 ± 10.2 21.8 ± 4.3 32.5 ± 10.4 21.4 ± 4.7

3.2. Effect of Sensor Quantity

In practical engineering applications, it is uneconomical to mount a dense array of
sensors. The response reconstruction may help to reduce the monitoring cost by reducing
the sensor quantity. In considering both the accuracy and economy in the reconstruction
process, the influence of the sensor quantity was studied.

The local strain responses of the plate (Figure 5b(I)) were obtained from FEM simulation
(Figure 5a(II)), with the colorful spots presenting the local strain-response value, and the
global strain responses were reconstructed through the well-trained cGAN (Figure 5b(II)).
Four sensor arrays with different sensor quantities were arranged here to study their influ-
ence on the accuracy of reconstruction results. To evaluate the reconstruction performance
due to different sensor quantities, the reconstructed stress values at the location where two
concentrated loads were applied are marked out in the generated nephograms (see A and B in
Figure 5a(I)). In the first two cases, the reconstruction result is obviously inconsistent with the
ground truth. In the upper half region of the global stress nephograms, four stress peaks are
observed, while only three loads were applied on the region in reality. As the sensors’ number
increases to 81 in case III, the reconstruction accuracy is significantly raised. Intuitively,
the qualities of the reconstructed stress are similar with ground-truth nephograms The
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RE of the reconstructed stress values at points A and B decrease to 1.1% and 2.4%, and
the stress distribution of the reconstructed results also reach a high level (SSIM = 0.54 and
PSNR = 41.3). While the sensor quantity rises to 121, the reconstruction quality improves
slightly (RE = 1.8%, SSIM = 0.57 and PSNR = 40.0). Hence, herein the optimal value of the
sensor quantity is 81 for the best accuracy and economy. In comparison, the corresponding
interpolated results are exhibited. The comparison shows that the structural responses
reconstructed by cGAN are far more accurate than the interpolated results. Concretely,
even with 121 sensors, the accuracy of the interpolated result is worse than the result of
cGAN reconstruction with 25 sensors. To study the stability of the response-reconstruction
method due to different sensor quantities statistically, one hundred validation samples
were reconstructed. The statistical results of their SSIM and PSNR agreed with the former
conclusion, as shown in Figure 5c.
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different sensor quantity; (c) statistic comparison of the SSIM and PSNR with different sensor quantity.

3.3. Engineering Applications

A simply supported multi-cell steel box girder bridge (Figure 6a) was taken as a case
to validate the feasibility of this method in a practical engineering application. The bridge
is located in Hangzhou with the name of Huanzhen Bridge. The thicknesses of the top,
bottom and web plates of the girder cell are 16 mm, 20 mm, and 12 mm, respectively.
In the in situ site test, the bridge was exerted by a four-axle heavy truck with weight of
400 KN, with strain responses measured by 12 strain gauges attached at the bottom of the
bridge in midspan. By adjusting the location of the truck, 200 samples were simulated
for the network training of cGAN. Using the well-trained cGAN, the strain responses at
the two measuring points (4# and 8#) were reconstructed with the strain responses from
the remaining ten strain gauges (Figure 6b). The reconstruction results agreed reasonably
well with the measured value. Further, the global-strain nephogram was reconstructed
using all the 12 measured strain data (Figure 6c). In Figure 6c, the reconstructed strain
responses in the neighborhood of the sensors are very close to the ground-truth; otherwise
the reconstruction precision would not be good.
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To obtain a response nephogram of higher quality, the sensor array is assumed to be
expanded from one column of 12 measuring points to 3, 5, 7, and 9 columns in numerical
simulations. As shown in Figure 6d, when the sensor quantity reaches three columns, it
becomes possible to fully reconstruct the stress concentration points. Furthermore, as the
number of sensor array columns increases, the reconstructed strain nephogram expands
gradually from the mid-span to the supports and becomes clearer. This expansion of the
reconstructed region signifies an improvement in the effectiveness of the sensor array.
The results of PSNR and SSIM indicate that the improvement in reconstruction accuracy
is relatively small when the sensor columns are increased from 7 to 9 compared to the
improvement from 5 to 7 columns. This observation can be attributed to the loading
vehicle’s positioning at the mid-span while the supports are fixed, resulting in relatively
smaller strains near the supports.

The former sensor arrangement with one column of 12 sensors results in a dense
distribution at the mid-span and a sparse distribution at the edges, which is evidently not
cost-effective. In order to find a more cost-effective sensor arrangement, we investigated the
reconstruction effects of a uniformly distributed sensor arrangement, as shown in Figure 6e.
It can be observed that the quality of the reconstructed strain field improves significantly
as the sensor arrangement transitions from 3 × 3 to 7 × 7. However, the improvement
becomes relatively smaller when the transition is from 7 × 7 to 9 × 9. Therefore, the sensor
arrangement with 49 sensors is considered the most cost-effective option.

4. Conclusions

The structural-response reconstruction is of great importance to enrich monitoring data
for better understanding of the structural-operation status. Different from the conventional
method implemented by solving equations of motions inversely, this paper proposed a
data-driven method based on cGAN for structural-response reconstruction. Thus, the
errors due to the simplification and assumption of physical models in traditional methods
will be avoided. It is important to note that, although in this study we trained the network
using simulated data and validated it using test data, the proposed response-reconstruction
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framework is applicable to both simulated and test data. When a structure is newly
constructed, modeling it accurately with physical properties allows for the simulation of
structural responses that closely match the measured results. However, as the structure ages,
its physical performance deteriorates, making it challenging to simulate real structural-
response data through physical modeling. Nevertheless, during this period, valuable
long-term observations of structural-response information have been accumulated. Thus,
the simulated data in the database can be replaced with actual measured data, enabling a
data-driven approach for structural-response reconstruction based on measured data. This
approach enables a data-driven methodology for structural-response reconstruction based
on measured data.

The conclusions are summarized as follows,

(1) In the proposed method, cGAN is employed to establish the spatial relationship
between the global and local response in the form of a response nephogram, which
consists of generative network G and discriminal network D. During the image pro-
cessing by generative network G, the features of the measured response are extracted
with convolutional calculation and deconvoluted into a global structural-response
nephogram, while discriminal network D is designed as a binary-classification net-
work to differentiate between the real and the generated nephogram. By the adversar-
ial training strategy between generator G and discriminator D, cGAN is optimized
more effectively.

(2) Since a plate is a commonly used substructure in civil engineering, an experiment
with a steel plate is carried out to validate the feasibility of the proposed methodology.
The accuracy of the method is quantitatively evaluated in terms of RE, SSIM and
PSNR, which indicate that the proposed method could successfully reconstruct the
global structural response according to local ones.

(3) The influence of the sensor quantity on reconstruction performance is studied based on
specific statistical analysis. Results show that the reconstruction accuracy rises as the
sensor quantity increases and remains when the optimal sensor arrangement is reached.

(4) An Engineering application based on a steel box girder bridge is carried out. The
reconstruction results agree reasonably well with the measured value, and the re-
construction precision rises as the distance from the sensor decreases. Ultimately,
the cost-effective sensor arrangement for the bridge is obtained by comparing the
reconstruction performance of two sensor arrangements.

(5) While the primary object of this study is plate structure, the demonstrated reconstruc-
tion examples of responses in plate cross-sections indicate the potential for extending
the application of cGAN-based structural-response reconstruction methods to other
sub-structures such as beams and columns.

(6) The reconstruction of structural response is essentially a problem in inverse mechanics,
and in this study, the cGAN-based method has achieved promising results. In future
research, it is possible to extend this method to other classical inverse mechanics
problems, such as load inversion and damage identification. By applying similar
principles and techniques, the proposed approach can be adapted and further devel-
oped to address these challenges. This expansion of the method’s applicability will
contribute to the broader field of inverse mechanics and enhance our understanding
of structural behavior and integrity assessment.
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Appendix A

Appendix A.1. FEM Method for Plate

The finite element method for plate structure is as follows. As the neutral axis (strain
axis εx = εy = εz = 0) of the plate is located on the xy plane, specifically at z = 0, as shown
in Figure A1, then according to the assumption of straight normal lines, the normal lines
perpendicular to the neutral axis before deformation remain straight lines after deformation,
but they may not be perpendicular to the deformed neutral axis. The rotations of the normal
lines around the y and x axes after deformation are denoted as ψx and ψy, respectively,
as shown in Figure A1b. Assuming that the lateral displacement w of the plate remains
constant along the thickness direction, i.e., εz = 0, the displacement and strain at any point
at a distance z from the neutral axis can be expressed as,

u = −zψx v = −zψy εx = −zψx′x εy = −zψy′y
γxy = −z

(
ψx′y + ψy′x

)
γyz = w′y − ψy γxz = w′x − ψx

(A1)

Sensors 2023, 23, x FOR PEER REVIEW 14 of 19 
 

 

plate remains constant along the thickness direction, i.e., 0
z

ε = , the displacement and 

strain at any point at a distance z from the neutral axis can be expressed as, 

( )
x y x x x y y y

xy x y y x yz y y xz x x

u z v z z z

z w w

ψ ψ ε ψ ε ψ

γ ψ ψ γ ψ γ ψ

′ ′

′ ′ ′ ′

= − = − = − = −

= − + = − = −
 

(A1) 

 

Figure A1. Finite element diagram of plate. (a) plate structure. (b) deformation illustration. (c) divi-
sion of plate elements. (d) plate elements. 

In this case, when the plate is sufficiently thin, Kirchhoff’s plate theory can be ap-
plied, which neglects the transverse shear deformation, 0

yz xz
γ γ= = . The strain can then 

be expressed as the curvature of the deflection, given by, 

'

'

'
2

x xx

y yy

xy xy

w

z w

w

ε

ε

γ

= = −

   
   
   
      

ε

  

(A2)

Discretizing the plate structure into rectangular elements, as shown in Figure A1c, 
the nodal displacement vector can be represented as Equation (A3), and the correspond-
ing nodal force vector is given as Equation (A4). 

'

'

i i

i xi yi

yi xi

w w

w

w

θ

θ

= =

−

   
   
   
     

δ

  

(A3)

zi

i xi

yi

f

M

M

θ

θ

=

 
 
 
  

f

  

(A4)

Meanwhile, local coordinates Oξη  are established for each plate element. The local 
coordinates of the plate element are related to the global coordinates of the plate structure 
as follows, 

Figure A1. Finite element diagram of plate. (a) plate structure. (b) deformation illustration. (c) divi-
sion of plate elements. (d) plate elements.

In this case, when the plate is sufficiently thin, Kirchhoff’s plate theory can be applied,
which neglects the transverse shear deformation, γyz = γxz = 0. The strain can then be
expressed as the curvature of the deflection, given by,

ε =


εx
εy

γxy

 = −z


w′xx
w′yy

2w′xy

 (A2)
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Discretizing the plate structure into rectangular elements, as shown in Figure A1c, the
nodal displacement vector can be represented as Equation (A3), and the corresponding
nodal force vector is given as Equation (A4).

δi =


wi
θxi
θyi

 =


wi

w′yi
−w′xi

 (A3)

fi =


fzi

Mθxi
Mθyi

 (A4)

Meanwhile, local coordinates Oξη are established for each plate element. The local coordi-
nates of the plate element are related to the global coordinates of the plate structure as follows,

x = x0 + aξ, y = y0 + bη (A5)

where x0 and y0 are the global coordinates of the center of the plate element, and a and b
represent half of the lengths of the plate element along the ξ and η directions, respectively.

Furthermore, the deflection w can be expressed using the local coordinates ξ and η,
as follows.

w = α1 + α2ξ + α3η + α4ξ2 + α5ξη + α6η2 + α7η3

+α8ξ3 + α9ξη2 + α10ξ2η + α11ξη3 + α12ξ3η
(A6)

Therefore, using the deflection w as an intermediate variable, the relationship between
strain ε and nodal displacements δ can be established as follows:

ε = Bδe (A7)

By applying the variational principle, the stiffness matrix for the plate element Kij can
be obtained.

Kij =
∫ ∫ ∫

z2BT
i DBjdxdydz =

h3

12

∫ 1

−1

∫ 1

−1
BT

i DBjabdξdη (A8)

Finally, by assembling the element stiffness matrix Kij into the global stiffness matrix K,
and the nodal load vector f i into the global load vector f , we can obtain the overall
displacement of the plate structure as follows:

δ = K\f (A9)

Appendix A.2. cGAN Parameter Selection

The loss function of a Generative Adversarial Network (GAN) consists of two compo-
nents: the generator’s loss and the discriminator’s loss.

The generator’s loss function primarily measures the discrepancy between the gen-
erated samples and the real samples. Typically, the generator’s loss is calculated as the
cross-entropy between the output of the discriminator when evaluating the generated
samples and the labels of real samples. The goal of the generator is to minimize this loss,
aiming to generate samples that closely resemble the real samples.

The discriminator’s loss function is used to assess the discriminator’s ability to dif-
ferentiate between the generated samples and the real samples. It comprises two parts:
one part is the cross-entropy between the output of the discriminator when evaluating
the generated samples and their labels, and the other part is the cross-entropy between
the output of the discriminator when evaluating the real samples and their labels. The
objective of the discriminator is to minimize this loss, enhancing its ability to discriminate
between real and generated samples.



Sensors 2023, 23, 6750 16 of 19

Unlike other neural networks such as CNNs, BP, and RNNs, in which a lower loss
value indicates better network performance, the evaluation of GAN training effectiveness
is not solely based on the magnitude of the loss value. Instead, the stability of the loss
value is considered. In GAN training, the generator and discriminator are engaged in
an adversarial competition. The generator aims to generate samples that resemble the
real samples, while the discriminator aims to accurately distinguish between real and
generated samples. As a result, the loss values of the generator and discriminator may
oscillate during training. Rather than focusing on achieving a loss value close to zero, the
stability of the loss values is important in GAN training. When the loss values of both the
generator and discriminator stabilize, it indicates that the generator has learned to generate
realistic samples and the discriminator has learned to effectively discriminate between
real and generated samples. This balance between the generator and discriminator is a
key indicator of the training effectiveness of a GAN. Therefore, we analyzed the effect
of different convolutional kernels and the number of convolutional layers in G on the
optimization speed of cGAN by examining the stability of the loss values for G and D.

Figure A2a demonstrates the typical training loss of cGAN, where G and D gradually
stabilize after adversarial training. Faster stabilization indicates better performance. Thus,
we compared the stability of G and D loss and analyzed the impact of different convolu-
tional kernels and the number of convolutional layers in G on the optimization speed of
cGAN. As shown in Figure A2b, the convolutional kernel size of 4∗4 for G exhibits the
fastest stabilization, making it the most suitable choice. Similarly, for D, a convolutional
kernel size of 4∗4 (Figure A2c) is also optimal. Among different configurations of G con-
volutional layers, the cGAN model with 8 convolutional layers and 8 deconvolutional
layers shows the fastest stability. Therefore, we selected a cGAN network with 4∗4 con-
volutional kernels and 8 convolutional layers and 8 deconvolutional layers. However, it
should be noted that this analysis is based on the stability of network training, and further
performance validation is necessary by considering specific sample cases.

For reference, the learning rate in our study was set to 0.0002, with a batch size of 1.
The number of iterations ranged from 500 to 800. These settings were determined based on
experimentation and balancing computational efficiency with achieving desired training results.
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Appendix A.3. The Loading Condition of the Experiment

The plate and loading position of the in-lab experiment is present as Figure A3, with
the corresponding loading condition summarized in Table A1.
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Figure A3. Schematic diagram of plate and loading position.

Table A1. The loading condition of the experiment.

Condition
Load Value (N)

Position 1 Position 2 Position 3 Position 4 Position 5

1 100 50
2 100 50
3 100 50
4 100 50
5 50 100
6 100 50
7 100 50
8 100 50
9 50 100
10 50 100
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Table A1. Cont.

Condition
Load Value (N)

Position 1 Position 2 Position 3 Position 4 Position 5

11 100 50
12 100 50
13 50 100
14 50 100
15 50 100
16 100 50
17 50 100
18 50 100
19 50 100
20 50 100
21 100 100
22 100 100
23 100 100
24 100 100
25 100 100
26 100 100
27 100 100
28 100 100
29 100 100
30 100 100
31 100 100 100
32 100 100 100
33 100 100 100
34 100 100 100
35 100 100 100
36 100 100 100
37 100 100 100
38 100 100 100
39 100 100 100
40 100 100 100
41 100 100 100 100
42 100 100 100 100
43 100 100 100 100
44 100 100 100 100
45 100 100 100 100
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