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Abstract: The internal structure of wind turbines is intricate and precise, although the challenging
working conditions often give rise to various operational faults. This study aims to address the
limitations of traditional machine learning algorithms in wind turbine fault detection and the im-
balance of positive and negative samples in the fault detection dataset. To achieve the real-time
detection of wind turbine group faults and to capture wind turbine fault state information, an en-
hanced ASL-CatBoost algorithm is proposed. Additionally, a crawling animal search algorithm
that incorporates the Tent chaotic mapping and t-distribution mutation strategy is introduced to
assess the sensitivity of the ASL-CatBoost algorithm toward hyperparameters and the difficulty of
manual hyperparameter setting. The effectiveness of the proposed hyperparameter optimization
strategy, termed the TtRSA algorithm, is demonstrated through a comparison of traditional intelligent
optimization algorithms using 11 benchmark test functions. When applied to the hyperparameter
optimization of the ASL-CatBoost algorithm, the TtRSA-ASL-CatBoost algorithm exhibits notable
enhancements in accuracy, recall, and other performance measures compared with the ASL-CatBoost
algorithm and other ensemble learning algorithms. The experimental results affirm that the pro-
posed algorithm model improvement strategy effectively enhances the wind turbine fault detection
classification recognition rate.

Keywords: wind turbine; CatBoost algorithm; fault detection; category imbalance; intelligent
optimization algorithm

1. Introduction

With the rapid development of the global economy, the scale of demand for energy
continues to expand. Traditional thermal power generation methods are highly prone to
causing environmental pollution and they do not meet the requirements of sustainable
development. Green power generation methods such as wind power generation are in
line with the future development direction of the energy industry. With the development
of Industry 4.0, the global installed capacity of wind turbines is expected to reach two
billion kilowatts by 2030 [1]. Promoting the development of renewable energy will not
only meet the energy needs of economic development, but also reduce the proportion of
traditional thermal power generation methods, and accelerate the construction of a clean,
low-carbon, energy-efficient system [2]. However, with the continuous expansion of wind
power generation, and an increase in operational lifespan, the issue of turbine faults has
become increasingly prominent, posing a series of challenges to the wind power industry.
The conventional maintenance approach for wind turbine units is typically based on
scheduled inspections and fault responses, which presents several issues. Firstly, scheduled
inspections often fail to accurately predict the occurrence time and types of turbine faults,
which can result in unnecessary maintenance and high costs. Secondly, maintenance
carried out in response to faults is often conducted after the occurrence of the faults,
potentially leading to the prolonged downtime of the units and a reduction in production
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capacity. Additionally, the remote geographical locations where wind turbine units are
typically installed pose significant challenges and high costs for maintenance, limiting their
reliability and maintainability. Therefore, the development and implementation of wind
turbine fault detection systems are of great significance. By leveraging advanced sensor
technologies, data analysis, and machine learning algorithms, real-time monitoring of the
operational status and performance parameters of the units can be achieved, enabling the
timely detection of potential faults and abnormalities [3]. Accurate fault detection can help
reduce maintenance costs, improve maintenance efficiency, and optimize operations and
equipment performance [4,5]. Moreover, by enhancing the accuracy and timeliness of fault
detection, the safety of wind turbine units can be enhanced, reducing the risk of accidents
and promoting the overall sustainable development of the wind power industry.

Artificial intelligence and machine learning have unique advantages in the field of
wind turbine fault detection [6-9]. In order to improve the detection speed and accuracy
of wind turbine faults, a novel dynamic model sensor method is proposed for SCADA
data-based wind turbine fault detection. A dynamic model representing the relationship
between the generator temperature, wind speed, and ambient temperature is constructed
using the first principles, and it is used as the basic structure of the model sensor. When the
model sensor is applied for fault detection, its parameters are updated regularly using the
generator temperature, wind speed, and ambient temperature data from the SCADA system.
Then, from the updated model, the fault sensitive features of the wind turbine system are
extracted by performing system frequency analysis for use in turbine fault detection [10].
Aziz, U [11] used a realistic framework for SCADA data simulation by critically comparing
power-based wind turbine fault-detection methods. Song [12] proposed the use of an
improved denoising autoencoder to detect wind turbine rolling bearing faults. Liu [13]
proposed a twin neural network method that allows the algorithm to achieve wind turbine
fault detection with only a small amount of training data. In order to solve the problem
of inaccurate and untimely fault detection caused by wind turbine data features, Liu [14]
proposed a new deep network called the Deep Residual Network (DRN) for the fault
detection of wind turbines. The results indicate that the proposed DRN achieves a better
performance and outperforms some published fault detection methods. However, none of
the aforementioned studies considered the impact of the imbalanced positive and negative
samples in wind turbine fault detection datasets on the accuracy of algorithms, leaving
room for further improvement in the field concerning the detection accuracy of faults.

Fault detection models typically contain many hyperparameters that are not learned
from data, but are manually set by the user. These hyperparameters play a crucial role in
determining the performance and behavior of the model. However, finding the optimal
combination of hyperparameters can be a challenging and time-consuming task. Swarm
intelligence optimization algorithms can search for the optimal solution distributed in a
certain range of space, and they have good parallelism and autonomous exploration, which
is of significance for the hyperparameter optimization of fault detection models [15-17].
Lei [18] analyzed a fault detection model based on long short-term neural networks and
Bayesian optimization algorithms, and they applied the model to the fault warning of the
induced draft fan of a coal-fired power plant, achieving good results. Zhang [19] used
the Whale Optimization Algorithm in order to find the global optimal solution, realize
hyperparameter optimization of the BILSTM network, improve the prediction accuracy of
wind power generation, and save a significant amount of time on debugging. Huang [20]
proposed a crawling animal search algorithm based on the interactive cross strategy of
Levy flight, and they verified its effectiveness in practical engineering via innovations such
as the welding beam design.

Based on the above research results and their shortcomings, the following work was
conducted in this paper. Firstly, the accuracy and recall rate of the CatBoost algorithm to
achieve fault detection is not high enough, and there is an imbalance between positive
and negative samples in the wind turbine fault detection dataset. The cross-entropy loss
function of the CatBoost algorithm was thus replaced by an asymmetric loss function, and
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the ASL-CatBoost algorithm was proposed to implement wind turbine icing fault detection
and capture the state information of wind turbine faults. To verify the effectiveness of the
improved method, experiments were conducted using integrated learning algorithms (Cat-
Boost, XGBoost, LightGBM, etc.), machine learning algorithms (SVM), and deep learning
algorithms (LSTMAE) as comparison algorithms for the wind turbine icing fault dataset.
The experimental results show the superior performance of the improved algorithms. Sec-
ondly, due to the difficulty in setting appropriate hyperparameters in the ASL-CatBoost
algorithm, in this paper, we propose an improved reptile search algorithm based on the
tent chaotic map and t-distribution mutation strategy to optimize hyperparameters such as
learning rate, iteration number, and the tree depth of the ASL-CatBoost algorithm. The im-
proved algorithm was also proposed in order to introduce the optimized hyperparameters
into the ASL-CatBoost algorithm for model training. To verify the optimization ability of
the improved reptile search algorithm, the TtRSA algorithm was compared with classical
population intelligence optimization algorithms such as PSO, WOA, and SSA regarding
11 benchmark functions. The experimental results show that the improved reptile search
algorithm has better performance, convergence speed, and accuracy. Finally, the TtRSA-
optimized ASL-CatBoost algorithm has a higher detection accuracy and detection efficiency
than the original ASL-CatBoost algorithm.

2. Materials and Methods
2.1. CatBoost Algorithm

In 2017, Yandex proposed a new integrated learning algorithm called CatBoost [21].
This algorithm is an improvement on Gradient Boosting Decision Trees, and it outperforms
other algorithms in the same GBDT [22] framework, such as XGBoost [23] and Light-
GBM [24], in terms of model accuracy. The main innovation of the CatBoost algorithm is
the use of Ordered Boosting instead of the traditional gradient estimation method, which
solves the problems of Gradient Bias and Prediction Shift. In addition, the algorithm uses
Oblivious trees as base models, which improves the model’s ability to classify correctly, and
it takes into account its generalization ability, effectively preventing algorithm over fitting.

The Gradient Boosting Decision Tree [25] algorithm uses One-hot encoding during
the category encoding process. However, when the data dimension is high, the problem
of dimension explosion may arise. To address this issue, CatBoost has designed a method
called Ordered Target Statistics. This method first randomly arranges all data samples
S={(X_1,Y_1),(X_2,Y_2),(X_3,Y_3), -+, (X_n, Y_n)} to generate multiple sets of random
sequences. During the training process, the average label value replaces the category for
a particular feature sequence. Assuming that o = (0_1, 0_2, 0_3,..., o_n) is the reordered
sequence of the dataset, the k feature x;i of the i sample in the original dataset can be repre-
sented by o, as shown in Equation (1) [26]. This method can convert categorical features
into numerical features, reduce computational complexity, and minimize information loss.

p-1 _
B Zj:1 {xgjk = XMO'pk] Yo +aP

=

)

Xo
P

Zfz_ll [xtTjk = Xu'pk] +a

After converting categorical features into numerical features using the Ordered Target
Statistics method, feature interactions may be affected because numerical features cannot be
effectively cross-matched. CatBoost uses a greedy strategy to perform feature interactions.
During the first split of the tree generation, CatBoost does not use any cross-features. In
subsequent splits, CatBoost uses all of the original features and cross-features that were
used to generate the tree, as well as all categorical features in the dataset, to perform
feature interactions.
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During the model training process using XGBoost and LightGBM algorithms, we
found that the model can fit well with F1 wind turbine data, but its fitting effect was poor
when testing F2 wind turbine data. Based on this, the CatBoost algorithm proposed the
idea of Ordered Boosting, which can effectively reduce the error of gradient estimation and
alleviate the problem of prediction shift.

The CatBoost algorithm uses a symmetric binary tree as the base model, and this
tree’s structural constraint has a certain regularity effect. For the prediction process
of the CatBoost algorithm, the splitting of each feature is independent and not sequen-
tial. Multiple samples can be predicted together, improving the prediction speed of the
CatBoost algorithm.

2.2. Introduction to ASL-CatBoost Algorithm

The icing fault detection of wind turbines is a typical imbalanced data classification
problem. During the entire lifecycle of a wind turbine’s operation, fault data only accounts
for a very small portion of that operation, which can easily cause the model to be greatly
affected by normal data, and it can make it difficult to improve the detection accuracy of
fault data. The default cross entropy loss function of the CatBoost algorithm is not good at
dealing with the problem of unbalanced positive and negative samples in the dataset. To
solve the problem of unbalanced positive and negative samples in the dataset, He Kaiming
and others proposed Focal Loss [27], as shown in Equation (2), where P; is the probability
that the prediction sample is a positive sample and + is a weight parameter. However,
in the actual scenario application process, the author found that the accuracy of the loss
function was not high enough.

—(1—P)"logP;,y =1
Focal Loss :{—l(JﬂlogE)l _%t)t,z —0 2)

Therefore, this paper proposes an improved asymmetric loss function based on the
focal loss function and considers the application of ASL for the CatBoost algorithm. The
main innovations of the asymmetric loss function are as follows:

(1) As shown in Equation (3), the asymmetric loss function focuses on the -y Parameter
decoupling to v+ and y—. The loss weights of positive samples and negative samples are
adjusted using the asymmetric focusing method to reduce the impact of negative samples
and simple samples on the loss function and help the model better learn meaningful
features in positive samples and difficult to detect samples.

—(1—P) " logP,y =1

ASL :{—Pﬂ—logu —P),y=0

®)

(2) In order to reduce the contribution of negative samples to the loss function as
much as possible, with high confidence, Asymmetric Loss proposed a probability transfer
mechanism to process the hard threshold of negative samples with high confidence. As
shown in Equation (4), m > 0 is an adjustable hyperparameter, which is generally set to 0.2.
When the predicted probability Pt of positive samples is less than the set hyperparameter
m, it indicates that the current sample has a high probability of being a negative sample.
Therefore, the probability of predicting the sample as a positive sample can be directly
set to 0, and the probability result of predicting the sample as a positive sample can be
returned in Py,.

Py = MAX(P; —m,0) 4)

After completing the above two improved methods, the Asymmetric Loss expression
was finally obtained, as shown in (5).

—(1—Py)"" logP;, y =1

ASL = { —(Pm)" log(1 — Pm),y = 0

©)
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In conclusion, this paper replaces the default cross entropy loss function of the Cat-
Boost algorithm with Asymmetric Loss, and it proposes the ASL-CatBoost algorithm, which
makes the algorithm more sensitive to fault data. The Asymmetric Loss function has three
adjustable parameters, namely, 7", 7, and m. During the process of detecting the icing
fault of wind turbines using the ASL CatBoost algorithm, the author found that it is more
appropriate to set 7" as 2, 4~ as 3, and m as 0.3. The model training was conducted under
this super parameter. Since the prediction probability is a value between 0-1, the value after
the 3rd power is less than the value after the 2nd power, therefore, the impact of negative
samples on the Loss function will be reduced. At the same time, for a negative sample, if
the predicted result is 0.1, the confidence level of the negative sample is very high. The
Loss function will conclude that it is a negative sample, and the weight influence of the
sample on the Loss function is 0. Therefore, the improved ASL CatBoost algorithm will
focus on training difficult to detect samples and positive samples to improve the detec-
tion accuracy of fault data. The feasibility of this algorithm was verified in Section 4.3 of
the article.

2.3. Introduction to the Reptile Search Algorithm

Setting the ASL-CatBoost algorithm training hyperparameter, as previously proposed,
has a great impact on the accuracy and efficiency of the algorithm'’s fault detection abilities.
In order to find the optimal parameter combination and reduce the impact of human
factors on the accuracy of the algorithm, an improved Reptile Search Algorithm is proposed
to optimize the hyperparameter of the ASL-CatBoost algorithm and improve the fault
detection speed and detection accuracy of ASL-CatBoost algorithm.

In 2021, Laith Abualigah proposed a meta-heuristic optimizer called the Reptile Search
Algorithm (RSA) [28]. The main function of this algorithm is to simulate the hunting
behavior of crocodiles. The two main features of crocodile behavior in the algorithm
are considered to be ‘rounding up” and hunting; switching between these two different
behaviors is affected by the current number of iterations and the maximum number of
iterations. When the current number of iterations is t < T/2, the encirclement strategy
is executed; when t > T/2, the hunting phase is performed. The round-up process also
includes two steps: high-altitude walking or belly walking. Hunting is achieved through
hunting coordination or hunting cooperation. The specific process of the algorithm is
as follows:

(1) Initialization phase
In RSA, the optimization process starts with a set of candidate solutions, and in

each iteration, the optimal solution obtained is considered to be close to the optimal value.
Among them, X is a randomly generated set of candidate solutions, as shown in Equation (6).

X;; = rand-(UB — LB) +LB,i=1,2,3,...,Nj=1,2,3,4,...,n 6)

In the equation, X; ; represents the position of the i-crocodile individual in the j
dimension, N is the number of candidate solutions, # is the dimension of the given problem,
rand belongs to the random function in the interval [0, 1], and LB and UB represent the
given lower and upper bounds of the problem.

(2) Encirclement stage

When t < T/2, the algorithm is in the early stage of its iteration, where the crocodile
population searches globally and enters the bounding phase. When t < T/4, the crocodile
population adopts a high-altitude walking strategy, and when T/4 <t < T/2, the crocodile
population implements an abdominal walking strategy. The position update equation for
the crocodile population during the encirclement exploration phase is shown in Equation (7).
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In the equation, Best;(t) represents the position of the optimal solution at the current
moment, ¢ is the current number of iterations, T is the maximum number of iterations, and
1(ij) (t) represents the hunting behavior of the i candidate solution in the j dimension’s
operator; the calculation is shown in Equation (8). B is a sensitive parameter which controls
the exploration accuracy of the encirclement stage during the iterative process, and it is
fixed at 0.1. R; ;)(t) is a reduction function used to reduce the search area value, and it is
calculated using Equation (9). r1 is a random integer between (1, N), x(,1 j), indicating the
j dimension position of the r1 random candidate solution. N is the number of candidate
solutions and evolution factor ES(f) is a probability ratio. During the entire iteration
process, the value randomly decreased between 2 and —2, and it was calculated using
Equation (10).

17(1"]-) = BESi’j(t)-P(i,j) (8)
Best(t) — X4 ;
o j (r2,f)
(&) Best;(t) +€ ©)
ES(t) = 2r3 (1 _ ;) (10)

In the equation, € is a very small positive number, r2 is a random integer of [1, N], 3
represents a random integer between [—1, 1], and P(; ;) represents the percentage difference
between the optimal solution and the j dimension position of the current solution, calculated
as shown in Equation (11).

P(i,j) =ua+ (11)

Best;(t)- (UB(; — LB(;) ) +e

My, represents the average position of the i candidate solution, and its calculation
is shown in Equation (12). UB(;) and LB ;) represent the upper and lower bounds of
the j dimensional position, respectively. « is a sensitive parameter used to control the
search accuracy of hunting cooperation during the iteration process (the difference between
candidate solutions), which is fixed to 0.1 in this paper.

M) = o X %G) (12)

(3) Hunting stage

When T/2 < t, the population has entered a later stage of iteration, and the crocodile
population enters the hunting stage. In this mode, when T/2 <t < 3T /4, crocodiles perform
hunting coordination. When 3T/4 <t < T, crocodiles perform hunting cooperation. The
relevant equation is shown in Equation (13).

(£)-P,: . T < 3T
X -)(t 1) = Best](t) P(l,])(t) rand, §T< t <= (13)
g Best;(t) — 1) (t)-€ — R;j(t)rand, = < t<T

2.4. Improvement Strategy of TtRSA

As mentioned above, the initial positions of RSA crocodile individuals are randomly
generated within the search space, and this randomness makes it difficult for the population
to obtain a more uniform distribution of initial positions. An uneven distribution of
the population may increase the severity of an individual’s blind spot and reduce the
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population’s diversity. In addition, team cooperation, the search range, and the hunting
mechanism of the crocodile population are all updated in terms of the current optimal value,
and the individual’s iterative update process lacks mutation mechanisms. If the current
optimal individual falls into a local optimum, the population may quickly converge within
a short period, resulting in the algorithm being unable to break free from the constraints
of the local extreme value. To address the shortcomings of the RSA, this paper considers
introducing the Tent chaotic mapping and t-distribution mutation strategy to improve
the RSA.

2.4.1. Tent Chaotic Mapping

In response to the problem of uneven population distribution caused by the random
initialization of the RSA algorithm, this article introduces Tent chaotic mapping to solve this
problem. The Tent chaotic map is a method of implementing chaos control using the tent
function as the control function. By introducing the Tent chaotic map to generate pseudo-
random numbers to initialize the RSA crocodile population, the traversal of the pseudo-
random numbers enables the population to be more evenly distributed throughout the
entire search space. This is beneficial for reducing the ‘blind areas’ of crocodile individuals,
thus allowing individuals to quickly find better solutions, which improves the convergence
speed of the algorithm. Chaotic maps have characteristics such as randomness, traversal,
and order, and they can be used to increase the diversity of the population, accelerate the
convergence speed of the algorithm in the early stages, and different between chaotic map
operators that have different optimization effects. Among them, the Tent chaotic map can
produce a uniform chaotic sequence through mapping within the range of (0, 1), and thus,
applying the Tent chaotic map to population initialization can increase the diversity of the
algorithm population and improve its global optimization ability. The relevant equation is
shown in Equation (14).

hy/w, hy € [O,Dé)

(14)
(1+hy)/(1—«a), hye (1]

i1 = f(hn) = {

In the equation, & € (0,1) is the chaos parameter, /i, is a random number within the
range of 0 to 1, and 7 is the chaos variable index. The equation for generating the RSA
crocodile population using the Tent chaotic map function is shown in Equation (15).

X;; = hy-(UB — LB) + LB (15)

Figure 1a shows the population distribution based on random initialization, and
Figure 1b shows the population distribution based on Tent chaotic mapping. It can be
observed that in the two-dimensional space, although the population generated by Tent
chaotic mapping does not have the same level of randomness as the population generated
by the rand function, the individual position distribution is more uniform and there are no
overlapping points or small search blind spots; this can improve population diversity and
enable the population to quickly find optimal solutions. The frequency histogram of the
population distribution is shown in Figure 2.

2.4.2. t-Distribution Mutation Strategy

The t-distribution is a probability distribution commonly used for parameter estima-
tions and hypothesis testing in situations with small sample sizes. It was proposed by
British statistician William Gosset in 1908. The shape of the t-distribution is determined
by the degrees of the freedom parameter, where t(n = 1) — N (0,1) and t(n—c0) — C (0,1),
where N (0,1) is the normal distribution and C (0,1) is the Cauchy distribution, which are
two boundary cases of the t-distribution.

With the development of intelligent optimization algorithms, introducing Gaussian
and Cauchy mutations has been proven to effectively improve the algorithm’s ability to
search the population and escape local optima. In the early stages of algorithm iteration,
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the degree of the freedom parameter # is set to a small value, and the t-distribution
tends towards the Cauchy distribution, which can effectively increase the diversity of the
population and improve the algorithm’s global search ability. As the algorithm iterates
during later stages, the degree of the freedom parameter n gradually increases, and the t-
distribution tends towards the Gaussian distribution, which narrows the population search
range and can effectively improve the algorithm’s ability to explore the local space. In the
RSA, the expression for the effect of the t-distribution mutation is shown in Equation (16).

Xilews = X{mst + TD(”)'X]

best (16)

The equation can be expressed as follows: X ous 1S the position of the best solution in

the j dimension after adaptive t-distribution mutation perturbation, X{J ot 18 the position of

the best solution in the j dimension before mutation perturbation, and TD(n) represents the
t-distribution with a degree of freedom of n.

1.0 1.0
X 2 : -
®
0.8 F .. 08F o« - o .
.‘: L o o ®
2061 ® S06F e o °
- o
g ® ® ® % ¢ ¢
204F % 204 e ¢ e
o9 °
[ ] o L ]
021 o0 o 0.2} . ¢ °
o ®

0 02 04 06 08 1.0 0 02 04 06 08 1.0

Boundary Boundary
(a) (b)

Figure 1. Population initialization distribution diagram. Subgraph (a) uses random method for
population initialization; subgraph (b) uses Tent method for population initialization.
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Figure 2. Initialized population frequency histogram.
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2.4.3. Summary of TtRSA

In summary of the above, we propose to improve RSA by using the Tent chaos
mapping and t-distribution mutation strategy to address the problems of the initialized
population of the RSA algorithm; for instance, the population is not uniformly distributed
and easily falls into a local optimum during iteration. Based on the above proposed
improvements, the TtRSA algorithm was ultimately suggested. Section 3 validated the
feasibility of the improvement strategy of the TtRSA algorithm based on 11 benchmark
test functions.

3. Improved Intelligent Optimization Algorithm Experiments
3.1. Experimental Design and Test Functions

Experimental Setup: The experiments were conducted on a computer system with
the Windows 11 operating system, AMD R7 5800H 3.2GHz processor, and 16 GB of RAM.
MATLAB R2022a was used for conducting the experiments. To evaluate the optimization
performance of the improved TtRSA algorithm, 11 benchmark test functions were selected,
including both unimodal and multimodal functions, that could evaluate the optimization
performance of the algorithm for different types of problems. Among them, functions f1-£5
are continuous unimodal functions that are often used to test the optimization accuracy
of search algorithms. Functions f9-f13 are multimodal test functions that can evaluate
the convergence speed and accuracy of the algorithm and function f15 is a typical fixed-
dimension multimodal function, commonly used to test the algorithm’s ability to escape
local optima. The relevant information concerning the benchmark test functions is shown
in Table 1.

Table 1. Benchmark functions.

Number Test Function Range Optima Type
f1 Sphere [—100, 100] 0 unimodal
2 Schwefel” 2.22 [—10, 10] 0 unimodal
3 Schwefel’ 1.2 [—100, 100] 0 unimodal
f4 Schwefel” 2.21 [—100, 100] 0 unimodal
5 Rosenbrock [—30, 30] 0 unimodal
9 Rastrigin [-5.12,5.12] 0 multimodal
f10 Ackley [—32,32] 0 multimodal
f11 Criewank [—600, 600] 0 multimodal
f12 Penalized 1 [—50, 50] 0 multimodal
f13 Penalized 2 [—50, 50] 0 multimodal
f15 Kowalik [—5, 5] 0.0003 multimodal

3.2. Improvement Analysis of Optimization Algorithm Performance

In this section, the particle swarm optimization algorithm (PSO) [29], whale optimiza-
tion algorithm (WOA) [30], chimpanzee optimization algorithm (CHOA) [31], and RSA [32]
were used as benchmark algorithms to compare with the optimization performance of the
improved TtRSA. The experimental settings included a population size of N = 30, a spatial
dimension of D = 30, and a maximum number of iterations of T = 1000. Each algorithm was
independently run 30 times with the test functions, and the average result of the 30 runs
was taken as the final result.

Based on the comparison results in Table 2, it can be observed that under the same
constraints, for the single-peaked test functions f1-£5, the optimization results of the TtRSA
were several orders of magnitude (or even several tens of orders of magnitude) higher than
those of other improved algorithms. Moreover, f1-f4 were able to converge to the theoretical
optimal value of 0. For the complex multi-peaked test functions f9-f13, the optimization
results of TtRSA were also better than those of other improved algorithms, and {9 and f11
were able to find the optimal value of 0. For the fixed-dimension multi-peaked test function
15, TtRSA was able to generally converge to the vicinity of the theoretical optimal value.
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The overall optimization performance of TtRSA was excellent for all 11 benchmark test
functions, whether single-peaked test functions or complex multi-peaked test functions.
This demonstrates the outstanding stability and robustness of TtRSA, and it proves that the
TtRSA algorithm, which integrates multiple strategies, has strong global exploration and
local development capabilities.

Table 2. Optimization performance analysis of improved optimization algorithms.

PSO WOA CHOA RSA TtRSA
Function
Mean SD Mean SD Mean SD Mean SD Mean SD
fl 1.40 x 10730 211 x 10732 283 x 107164 1.94 x 107163 1.05 x 10730 1.30 x 10~20 0.00 0.00 0.00 0.00
2 421 x 10720 554 x 10723 1.52 x 10~110 828 x 10755 1.24 x 10725 855 x 10721 6.88 x 10760 258 x 10775 0.00 0.00
3 7.01 x 10~18 221 x 10721 6.14 x 1072 1.05 x 1075 6.05 x 1019 131 x 10717 5.81 x 10742 455 x 1073 0.00 0.00
f4 1.08 x 10~40 317 x 10731 8.81 x 107172 1.05 x 107105 275 x 10770 2.85 x 10727 488 x 107175 8.88 x 107165 0.00 0.00
5 9.67 x 10 6.01 x 10 439 x 103 1.05 x 105 313 x 104 257 x 1014 171 x 10 1.37 x 10 239 x 10720 1.85 x 1021
f9 467 x 102 1.16 x 10 0.00 0.00 141 x 10701 1.65 x 10726 6.68 x 10 116 x 10 0.00 0.00
£10 276 x 10716 5.09 x 1021 9.42 x 10737 1.05 x 1075 1.96 x 10 1.79 x 1077 8.86 x 10716 0.00 7.62 x 10778 5.80 x 10796
f11 121 x 10~1 7.74 x 1073 1.05 x 10718 7.05 x 10725 479 x 1002 505 x 1018 937 x 1072 750 x 10~1 0.00 0.00
f12 692 x 1077 119 x 1072 655 x 107° 5.06 x 1077 398 x 10701 5.06 x 10717 124 x 1070 331 x 1071 8.04 x 10711 750 x 10~ 11
f13 6.68 x 1078 891 x 1073 878 x 1073 1.76 x 10~15 205 x 1001 1.76 x 10715 152 x 1076 419 x 1071 695 x 1040 836 x 1070
f15 5.82 x 1072 221 x 1074 268 x 1077 435 x 10719 736 x 10702 435 x 10719 274 x 10713 115 x 1073 234 x 10720 735 x 10718

3.3. Convergence Performance Analysis of the Improved Optimization Algorithm

To visually and intuitively compare the convergence of algorithms in the function
optimization process, the convergence curves were analyzed, as shown in Figure 3, where
the vertical axis represents the fitness value of the corresponding function, and the hori-
zontal axis represents the number of iterations of the optimization algorithm. Figure 3a—e
show the running results of five optimization algorithms on a unimodal function. It is
evident that the convergence curve of the TtRSA algorithm decreases faster than the other
4 algorithms, whereas the convergence curves of the remaining four algorithms all exhibit
varying degrees of stagnation, indicating a lower optimization accuracy. This suggests that
applying the improved Tent chaotic mapping strategy to initialize the population increases
the diversity of the crocodile population; this makes the initial solution distribution more
uniform, and it indicates that the algorithm can find the optimal solution quickly and more
easily. Figure 3f-h show the convergence curves of the five optimization algorithms on a
multimodal function. It is evident that in the first stage, the TtRSA algorithm’s convergence
speed is significantly faster, further demonstrating the effectiveness of the improved Tent
chaotic mapping and t-distribution mutation strategy; this changes the crocodile pop-
ulation’s search step and greatly improves the optimization accuracy and speed of the
RSA [33].

Regarding the above experiments, it is evident that the proposed method, based on the
Tent chaotic mapping and t-distribution mutation strategy, can effectively solve the effects
of uneven population distribution and the difficulties in jumping out of local optima during
the initialization of the RSA algorithm. The TtRSA algorithm has significant advantages
over the RSA and the other four algorithms in terms of optimization precision, convergence
speed, and ability to escape from local optima. Section 4.5 verifies the feasibility of optimiz-
ing the hyperparameters of the ASL-CatBoost algorithm based on the TtRSA algorithm to
achieve ice fault detection in wind turbines.
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Figure 3. Initial function image and algorithm convergence curve. (a) Sphere function convergence
curve; (b) Schwefel’ 2.21 function convergence curve; (c) Schwefel” 1.2 function convergence curve;
(d) Schwefel’ 2.21 function convergence curve; (e) Rosenbrock function convergence curve; (f) Ras-
trigin function convergence curve; (g) Ackley function convergence curve; (h) Criewank function
convergence curve.

4. Ice Fault Detection Experiment for Wind Turbines

Prognostics and health management are crucial for the lifecycle monitoring of equip-
ment, especially complex equipment such as wind turbines that operate in harsh environ-
ments. Improving the speed and accuracy of fan fault detection can reduce maintenance
costs and optimize work efficiency. This section aims to verify the effectiveness of the
proposed ASL-CatBoost fault detection algorithm and TtRSA with regard to the application
of wind turbine fault detection.

4.1. Wind Turbine Icing Fault Dataset

The fault detection experiment dataset used in this paper uses the SCADA system
data information of two three-bladed wind turbines, F1 and F2, provided by Goldwind,
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under real operating conditions. There are three state modes in the dataset: icing fault,
normal state, and invalid state (wherein it is difficult to determine the type of state). The
dataset contains 27 feature dimensions in total, the time span of the F1 wind turbine is two
months, and the time span of the F2 wind turbine is one month. The dataset provided
the normal operation data and data concerning the specific time period wherein the wind
turbine failed due to blade icing. Some dataset examples are shown in Table 3.

Table 3. Example of a dataset section.

Time Wind_Speed Generator_Speed Power Wind_Direction Environment_Tmp
2015/11/117:33 2.67134589 1.316661063 2.571868051 —0.786603693 0.337770344
2015/11/117:34 3.058582351 1.293394429 2.537817968 —0.924712235 0.337770344
2015/11/117:34 3.279860329 1.187032671 2.551855132 —0.962692084 0.337770344
2015/11/117:34 3.231916767 1.270127794 2.54983978 —0.826309899 0.337770344
2015/11/117:34 3.364683554 1.329956283 2.557854321 —0.867742461 0.337770344
2015/11/117:34 3.010638789 1.187032671 2.54983978 —1.157770399 0.337770344
2015/11/117:34 3.360995587 1.286746819 2.565868862 —1.233730097 0.337770344
2015/12/1 18:59 1.557580068 1.223594525 1.636697646 1.461112823 1.314590648

The time periods of normal operation and icing faults in the dataset are provided
in separate Excel files, as shown in Table 4. Therefore, it is necessary to annotate the
dataset based on specific state time periods. The Python ‘append()” method can be used
for annotation, where normal operation data are labeled as 0, and fault operation data are
labeled as 1. Data analysis revealed the presence of a few unannotated invalid data points
in the dataset, which have unknown operating states. These unannotated data points can
negatively impact the accuracy of model training and increase computational overheads.
Therefore, they should be removed during the data preprocessing stage.

Table 4. Time periods of normal data and fault data.

Fault Operating Time Period

Normal Operating Time Period

Start Time End Time Start Time End Time
2015/11/4 22:15 2015/11/4 23:33 2015/11/117:33 2015/11/419:42
2015/11/9 3:21 2015/11/9 5:14 2015/11/511:06 2015/11/9 1:23
2015/11/9 21:26 2015/11/9 23:18 2015/11/9 12:20 2015/11/9 19:27
2015/11/13 2:59 2015/11/13 4:51 2015/11/10 12:43 2015/11/13 0:38
2015/11/16 15:31 2015/11/16 15:57 2015/11/13 9:10 2015/11/15 16:35
2015/11/23 20:40 2015/11/23 22:33 2015/11/17 12:14 2015/11/23 18:41
2015/11/24 5:42 2015/11/24 6:31 2015/11/24 1:24 2015/11/24 2:39
2015/11/24 14:58 2015/11/24 16:51 2015/11/24 10:49 2015/11/24 12:12
2015/11/25 20:55 2015/11/25 22:48 2015/11/25 18:00 2015/11/25 18:56
2015/11/26 1:47 2015/11/26 3:40 2015/11/26 10:10 2015/11/28 2:16
2015/11/28 4:15 2015/11/28 6:08 2015/11/28 11:52 2015/11/29 2:30
2015/11/29 4:29 2015/11/29 6:22 2015/11/29 11:48 2015/11/29 14:36
2015/11/29 17:44 2015/11/30 8:52 2015/11/30 10:11 2015/11/30 13:08

4.2. Evaluating Indicator

Fault detection is a typical binary classification problem. The Confusion matrix is often
used to measure the accuracy of the classifier, as shown in Table 5 below. The icing data
are 1, and the normal data are 0. TP is the true example, representing both the diagnostic
category and the actual category as icing data. FN is a false negative case, representing the
diagnostic category, Normal data, and the actual category is icing data. FP is a false positive
example, indicating that the diagnostic category is icing data when the actual category is
Normal data. TN is a true negative example, indicating that both the diagnostic category
and the actual category are normal data.
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Table 5. Confusion matrix.

Icing Diagnosis Normal Diagnosis

Actual icing TP FN
Actual normal FP TN

In accordance with the Confusion matrix, three evaluation indicators are extended:
Precision, Recall, and F1 score. As shown in Equation (17), Precision refers to the proportion
of the number of correctly predicted fault samples identified by the algorithm to the total
number of predicted fault samples. As shown in Equation (18), the recall rate (Recall)
refers to the proportion of the number of correctly predicted fault samples identified by
the algorithm to the total number of true fault samples. As shown in Equation (19), the F1
score is the harmonic mean of accuracy and recall. The higher the values of the above three
indicators, the better the algorithm performance.

Precision = TP/ (TP + FP) (17)

Recall = TP/ (TP + FN) (18)

2 x Precision x Recall

F1 =
score Precision + Recall

(19)

To more intuitively demonstrate the advantages and disadvantages of the algorithm
in terms of classification problems, this article also introduces the Receiver Operating
Characteristic Curve (ROC) to evaluate the performance of the classification model, as
shown in Figure 4. ROC is a curve that visually describes the true positive rate and false
positive rate of a classification model based on different thresholds. The horizontal axis
of the ROC curve is FPR, which represents the false positive rate, and the vertical axis is
TPR, indicating sensitivity. The data points of the ROC curve are calculated using the TPR
and FPR values obtained from the classification model at different thresholds. On the ROC
curve, it is generally hoped that the curve will be closer to the upper left corner because
at this point, the true probability (TPR) is high, whereas the false probability (FPR) is low,
indicating that the classification model performs better. Usually, the better the performance
of a classifier, the larger the Area Under Curve (AUC) below the ROC. The range of
AUC values is 0.5 to 1, where 0.5 represents a completely random classification effect and
1 represents a perfect classifier. Therefore, both ROC and AUC can be used to evaluate the
performance of classification models; when ROC is closer to the upper left corner and AUC
values are closer to 1, it indicates that the model’s performance is better.

A

1

b

TNR
D

TPR

0.75

0.5

0.25

AN

FNR

»

FPR

Figure 4. Receiver operating characteristic curve. Curve a and curve b represent the ROC curves
under different accuracy rates, and the situation represented by curve a in the figure is better than
curve b.
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4.3. ASL-CatBoost Experiment

This chapter’s experiment aims to demonstrate the effectiveness of the proposed
ASL-CatBoost algorithm. During the training process of the wind turbine fault detection
algorithm, based on the ASL-CatBoost algorithm, the F1 wind turbine dataset was used as
the training set and validation set. In order to prevent the model from overfitting, a 10-fold
cross-validation method was used to improve the generalization ability of the model during
the training process, and the optimal model was retained after the training was completed.
To test the performance of the fault detection algorithm, the F2 wind turbine data was used
as the test dataset, which included 10,638 fault data and 168,930 normal data.

This section’s aim is to verify the effectiveness of the improved ASL-CatBoost algo-
rithm. Using the F1 wind turbine icing dataset as the training set, to prevent overfitting
of the model, a 10-fold cross validation method was used during the training process to
enhance the model’s generalization ability. To test the performance of the fault detection
algorithm, the F2 wind turbine data in the second section were used as the test dataset,
which included 10,638 fault data and 168,930 normal data. The ASL-CatBoost algorithm
model, as well as classic machine learning algorithm models, such as the GBDT and Deep
Learning model (LSTMAE), were used for comparative experiments. The training and
testing datasets used for each algorithm were the same, and default parameters were used
for hyperparameters. The fault detection performance of different algorithms is shown
in Table 6. To verify the effectiveness of the two improvement methods of the loss func-
tion in this paper, ablation experiments were conducted. The CatBoost! algorithm used
the asymmetric focusing strategy of Equation (3) to complete the decoupling of the loss
weight y parameters in the focal loss function, and CatBoost? only refers to Equation (4)
for the hard thresholding of negative samples with high confidence. The experimental
results show that the two improved strategies exhibit certain improvements, with regard to
various evaluation indicators, compared with the initial CatBoost algorithm. Overall, the
improved ASL-CatBoost algorithm in this article improved the recall rate by approximately
1% and it improved the accuracy and F1 score by approximately 2%, as compared with
the original algorithm. Compared with the LSTMAE model, it improved the accuracy
by 9% and the recall rate by 6%. The experimental results validate the feasibility of the
improved algorithm.

Table 6. Performance comparison of each algorithm model.

Models Precious Recall F1-Score Train Times
GBDT 0.922703 0.936614 0.929606 12m16s
XGBoost 0.907069 0.925287 0.916087 12m30s
LightGBM 0.913742 0.936578 0.925019 13m15s
CatBoost 0.926148 0.930403 0.928271 12m1ls
SVM 0.807592 0.735728 0.770886 11m20s
LSTMAE 0.857428 0.886741 0.871838 15m30s
CatBoost! 0.934316 0.941628 0.937958 12m30s
CatBoost? 0.935743 0.932849 0.934294 12m20s
ASL-CatBoost 0.949427 0.943276 0.946341 12m35s

To more intuitively compare the advantages and disadvantages of each algorithm,
Figure 5a—e shows the ROC and AUC values of each algorithm in the wind turbine icing
fault detection data validation set. From the figure, it is evident that the improved ASL-
CatBoost algorithm exhibits a better fault detection effect than the traditional integrated
learning algorithm.
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Figure 5. ROC of each algorithm during wind turbine icing fault detection. (a) GBDT algorithm
Receiver operating characteristics; (b) XGBoost algorithm Receiver operating characteristics; (c) Light-
GBM algorithm Receiver operating characteristics; (d) CatBoost algorithm Receiver operating charac-
teristics; (e) ASL-CatBoost algorithm Receiver operating characteristics.

4.4. TtRSA Algorithm Optimization ASL-CatBoost Algorithm Introduction
4.4.1. TtRSA Optimized ASL-CatBoost Algorithm Process

The ASL-CatBoost algorithm is greatly affected by hyperparameters, and the artificially
set hyperparameter may not achieve the optimal effect during the algorithm training
process. Therefore, this section proposes to use the improved TtRSA optimization algorithm
to optimize the ASL-CatBoost algorithm with hyperparameters. The specific steps are as
follows, and the process is shown in Figure 6.

Step 1: Data preprocessing. There are issues with missing samples and the incomplete
labeling of sample labels in the icing fault data of wind turbines. It is necessary to preprocess
the dataset to ensure that it meets the training requirements.

Step 2: Dataset partitioning. Divide the preprocessed dataset and determine the
training, testing, and validation sets for the ASL-CatBoost algorithm.

Step 3: Set model parameters. Set the crocodile population size N and the maximum
number of iterations T. In accordance with Equation (14), the Tent chaotic map is used to
randomly initialize the individual positions of the crocodile population,i=1,2,..., N. Let
the parameter t of the current number of iterations = 1. Set the value range of the maximum
number of iterations of the CatBoost algorithm decision tree to (100, 2000). Set the value
range of the learning rate to (0, 0.2). Set the value range of 12_leaf reg to (0, 10) and the
depth range of the tree to (0, 16).

Step 4: Calculate the fitness values of all crocodile individuals and save the current
optimal crocodile individual position Xpes.

Step 5: Determine whether t < T/2 is true, and if it is true, use Equation (7) to
implement the encirclement mechanism. When t < T/4, implement the high-level walking
strategy to update the individual crocodile position; when T/4 < t < T/2, implement the
abdominal crawling strategy to update the individual crocodile position. If t > T/2, use
Equation (13) to implement the hunting mechanism. When T/2 <t < 3T/4, execute the
hunting coordination strategy to update the individual position of the crocodile; when
3T/4 <t < T, execute the hunting cooperation mechanism. The policy updates the position
of the crocodile individual.



Sensors 2023, 23, 6741

16 of 20

Data Preprocess

Data
acquisition

Data type
annotation

Delete invalid

Processing of
imbalanced data
samples

Dataset
partitioning

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
| data |
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

— — — — — — —

I ASL- Catboost

Step 6: Use Equation (16) to perturb the t-distribution mutation strategy on some
crocodile individuals and compare the fitness value of the crocodile individual after the up-
dated position with the original individual. Reorder the crocodile individuals in accordance
with fitness value and retain the current optimal fitness Degree value Xpeg;-.

Step 7: Set t =t + 1 to judge whether the current termination condition is satisfied, that
is, whether the maximum number of iterations of the algorithm Itermax has been reached.
If the maximum number of iterations of the algorithm has been reached, the currently
saved optimal individual fitness value of the crocodile and the best parameter Xp,; are
outputted, and the algorithm ends, otherwise, go to step 4.

Step 8: After the cycle ends, the obtained global optimal result, that is, the optimal
hyperparameters of the ASL-CatBoost, may be substituted into the algorithm for model
training, and the optimization effect may be tested.
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Figure 6. Flowchart of the optimization of the ASL-CatBoost algorithm with TtRSA.



Sensors 2023, 23, 6741

17 of 20

4.4.2. Experiment for Optimizing ASL-CatBoost with TtRSA

In this section, the ASL-CatBoost is trained using the hyperparameter that was op-
timized by TtRSA. The experimental dataset and experimental equipment are the same
as those in Section 4.3. Table 7 introduces the ASL-CatBoost algorithm obtained through
optimization and the hyperparameter related to the comparison algorithm.

Table 7. Algorithm-related parameters after the optimization of the TtRSA.

Method Hyper-Parameters

Iterations = 1000, depth = 6, learning_rate = 0.05,
12_leaf_reg =0.4
Hidden_num = 8, windowsize = 100, stride = 1,
TIRSA-LSTMAE learning_rate = 0.001, epoch = 16
TtRSA-SVM ¢ =40.001, g = 0.008
TtRSA-ASL-CatBoost Iterations = 300, depth = §, learning_rate = 0.1, 12_leaf reg =0.6
THRSA-XGBoost max_depth =5, min_child_weight =1, sub.sample =0.7,
colsample_bytree = 0.8, scale_pos_weight =1
n_estimators = 144, max_depth = 8, learning_rate = 0.1,
random_state = 42, subsample = 0.7, num_leaves = 524

ASL-CatBoost

TtRSA- LightGBM

The experimental results of the optimized fault detection algorithm, based on the
TtRSA algorithm, are shown in Table 8. From the table, it is evident that the ASL-CatBoost
algorithm, optimized using TtRSA, has a better detection accuracy and recall rate through-
out the whole dataset than the ASL-CatBoost algorithm with manually set hyperparameters.
Regarding Table 6, it is evident that the accuracy and recall of machine learning algorithms
(LightGBM, SVM, etc.) and the Deep Learning algorithm (LSTMAE) are improved after
TtRSA optimization. The results demonstrate the effectiveness of the hyperparameter
search for fault detection algorithms based on the TtRSA algorithm. Moreover, the training
time complexity analysis of each algorithm is given in Table 4, which shows that the im-
proved TtRSA-ASL-CatBoost algorithm has significantly less training time than the other
algorithms. This is due to the fact that the algorithm obtains a higher accuracy faster at a
lower number of iterations after hyperparameter optimization. For fault data detection,
each algorithm can detect in time, therefore, the detection speed is negligible.

Table 8. Comparison of the fault data detection effects of various algorithms.

Models Precious Recall F1-Score Train Times
ASL-CatBoost 0.949427 0.943276 0.946341 12m30s
TtRSA-SVM 0.837424 0.865792 0.851372 11m52s
TtRSA-LSTMAE 0.882497 0.923769 0.902661 18m20s
TtRSA-LightGBM 0.935598 0.937473 0.936535 15m43s
TtRSA-XGBoost 0.928736 0.918567 0.923624 21m17s
TtRSA-ASL-CatBoost 0.950136 0.949026 0.949581 8mb52s

4.5. Enhanced Model Robustness

The robustness of the fault detection algorithm in different scenarios can be improved
by adjusting the hyperparameters. To improve the robustness of the model using a different
number of features, the model can be trained with 8 features, 16 features, and 22 features
extracted from the wind turbine icing fault dataset used in this paper. The method can
be used to predict the optimal model parameters in a specific scenario and to improve
the robustness and generalization of the model under different scenarios. The optimal
hyperparameters and accuracy rates for the three feature count cases are shown in Table 9.
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Table 9. Comparison of Hyperparameters and Effects of Fault Detection Algorithms under Different
Number of Features.

Number of Features

Optimal Case Hyperparameters Precious Recall F1-Score

8

16

22

Iterations = 1000, depth =4,

learning_rate = 0.02, 12_leaf_reg = 0.6 0-903581 0676572 0758174
Iterations = 800, depth =6,

learning_rate = 0.1,12_leaf reg =0.7 0917795 0836742 0975396
tterations = 500, depth =7, 0.938331 0.897031 0.917216

learning_rate = 0.1, 12_leaf_reg = 0.6

5. Conclusions

Icing faults of wind turbines can easily lead to serious economic losses. This paper
proposes using the improved ASL-CatBoost algorithm to solve the problem of unbalanced
positive and negative samples in the wind turbine fault dataset, and to solve the problem
concerning the fault detection algorithm, which is sensitive to the setting of hyperparame-
ters; hence an improved crawler search algorithm is proposed to optimize hyperparameters.
The following conclusions can be obtained:

(1) Replacing the Cross-entropy Loss function of CatBoost algorithm with the asymmetric
Loss function can improve the detection accuracy of the algorithm regarding fault
data.

(2) The use of the Tent chaotic mapping and t-distribution mutation strategy can improve
the problem of imbalanced population distribution during RSA initialization and the
tendency to fall into local optima during the iteration process.

(3) Optimizing the hyperparameters of the ASL-CatBoost algorithm, based on the TtRSA
algorithm, can effectively improve the detection speed and accuracy of the ASL-
CatBoost algorithm.

However, this article also has the following limitations; it only details a binary classifi-
cation problem and it fails to accurately determine which fault is in a multi classification
state. In the future, further optimizations should be made to the algorithm to improve the
accuracy and efficiency of fault detection. Moreover, future optimizations should enable the
algorithm to clearly indicate which category the fault belongs to under multiple fault states.
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