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Abstract: Optimizing the performance of heating, ventilation, and air-conditioning (HVAC) systems
is critical in today’s energy-conscious world. Fan coil units (FCUs) play a critical role in providing
comfort in various environments as an important component of HVAC systems. However, FCUs
often experience failures that affect their efficiency and increase their energy consumption. In this
context, deep learning (DL)-based fault detection offers a promising solution. By detecting faults
early and preventing system failures, the efficiency of FCUs can be improved. This paper explores
DL models as fault detectors for FCUs to enable smarter and more energy-efficient hotel buildings.
We tested three contemporary DL modeling approaches: convolutional neural network (CNN), long
short-term memory network (LSTM), and a combination of CNN and gated recurrent unit (GRU). The
random forest model (RF) was additionally developed as a baseline benchmark. The fault detectors
were tested on a real-world dataset obtained from the sensory measurement system installed in a
hotel and additionally supplemented with simulated data via a physical model developed in TRNSYS.
Three representative FCU faults, namely, a stuck valve, a reduction in airflow, and an FCU outage,
were simulated with a much larger dataset than is typically utilized in similar studies. The results
showed that the hybrid model, integrating CNN and GRU, performed best for all three observed
faults. DL-based fault detectors outperformed the baseline RF model, confirming these solutions as
viable components for energy-efficient hotels.

Keywords: fan coil units; HVAC systems; fault detection; deep learning; CNN; LSTM; GRU; RF

1. Introduction

Fan coil units (FCUs) play a crucial role in public buildings such as hotels, contributing to
occupants’ comfort and overall energy consumption. They work by circulating air through a
heat exchanger coil that is either heated or cooled using a working fluid. Like any mechanical
system, FCUs are prone to defects and malfunctions that can reduce their efficiency and
increase energy costs. These inefficiencies, if not corrected, can have a negative impact on
the environment over time. Although this paper is primarily concerned with fault detection
in FCUs, it is important to recognize that they are part of the broader category of heating,
ventilation, and air-conditioning (HVAC) systems. Therefore, in the following sections, we
look at the challenges and issues associated with HVAC systems as a whole.

The impact of HVAC systems goes beyond energy consumption, as people spend
more than 80% of their time indoors, and therefore the health and well-being of occupants
can be affected by indoor air quality [1]. Buildings are responsible for about one-third
of the world’s energy consumption and one-quarter of global CO2 emissions. In some
high-energy-consuming countries, their contribution to energy consumption is even more
significant, reaching 42% in Russia, 41% in the EU, 37% in Japan, and 34% in the USA [2].
About 5% of buildings in the European Union are older than 50 years, while almost 75% of
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the existing building stock is energy-inefficient [3]. A similar trend of old inefficient houses
is also observed on other continents and in countries such as the USA, where houses are
between 20 and 31 years old on average [4]. The link between aging homes and energy
efficiency is evident from various factors such as outdated HVAC systems, inadequate
insulation, faulty window seals and door openings, and obsolete appliances [5].

Tourism is responsible for greenhouse gas emissions, with CO2 accounting for the
majority of total emissions (3.2 billion tons of CO2) at 72%, mainly from transportation,
electricity consumption in hotels and restaurants, and the burning of fossil fuels in the
production of goods purchased by tourists [6]. By 2030, the global electricity consumption
for cooling buildings is expected to increase by up to 40%. Heat pumps, a key component
of HVAC systems, are expected to account for 20% of global heating demand in buildings
by 2030. These targets underscore the urgency of adopting sustainable practices in HVAC
systems to reduce CO2 emissions and meet climate targets set by the International Energy
Agency (IEA). The IEA’s net-zero emissions plan calls for a 40% reduction in greenhouse
gas emissions from buildings between 2020 and 2030, requiring a shift away from fossil
fuel boilers and improved energy efficiency in existing buildings [7].

To minimize economic risk and promote long-term sustainable operations, low-carbon
design, resource-optimized management, and smart hotel service systems have demon-
strated their potential to reduce energy consumption and carbon emissions. Green hotel
practices, such as energy-saving measures and waste-reduction programs, have been intro-
duced to mitigate the negative environmental impact of the hotel industry [8].

This paper is about integrating a deep learning (DL) model into HVAC systems to
make buildings, especially hotels, smarter and more energy-efficient. By addressing the
environmental challenges of HVAC systems and leveraging the potential of DL, hotels
can play an important role in promoting sustainability, reducing energy consumption, and
mitigating the environmental impacts associated with the hospitality industry.

1.1. Related Work

Fault detection and diagnosis (FDD) methods in HVAC systems use various techniques
to detect anomalies and failures of system components. By analyzing sensor readings and
performance data using data analytics, machine learning (ML) algorithms, and signal
processing, FDD methods can continuously monitor the system and classify faults. The
application of FDD methods in HVAC systems increases user comfort, reduces maintenance
costs, and extends equipment life. Thus, the early detection of faults leads to both a
higher energy efficiency of the system and indirectly improves the efficiency of the system
components, of which FCUs are the focus of this paper. Integrating FDD methods into
HVAC systems is therefore an important step towards achieving energy efficiency and
sustainability goals, promoting resource conservation, and creating a greener and more
environmentally responsible future.

Recent advances in FDD methods encompass a range of approaches, including rule-
based methods, statistical analysis, pattern recognition, and DL and ML algorithms, which
aim to improve the accuracy and automation of the FDD process. Among these approaches,
the data-driven methodology, especially using ML or DL algorithms, has gained consider-
able recognition in the field of HVAC systems [9]. Data-driven techniques offer practical
advantages as they can be implemented without extensive knowledge of the building or
expertise in energetics and thermodynamics. Notable examples of ML techniques include
the use of random forest (RF) models, which have been proven to be the primary classifier
compared to k-nearest neighbors (KNN), support vector machines (SVMs), and decision
trees (DTs) [10,11]. RF models are also suitable for feature extraction and can be combined
with robust classifiers such as SVMs [12,13]. SVMs have demonstrated proficiency as
classifiers, especially when dealing with datasets with a small number of features. Notable
implementations include binary classifiers and multiclass solutions [14,15]. Multilayer
perceptrons (MLPs) and decision trees are both widely used models in this area. DTs are
known for their high interpretability, which makes them valuable for interpreting models
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beyond MLPs [16]. Moreover, MLPs have been used as self-training MLPs in previous
studies [17,18].

Besides the aforementioned traditional ML models, convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) have emerged as extremely popular al-
ternatives in the field of DL. CNNs are mainly used in computer vision tasks and utilize
their ability to analyze and recognize visual input. RNNs, on the other hand, are designed
to process sequential data effectively and use their ability to process information in a
temporal manner, similar to how CNNs process spatial structures in image inputs [19].
The application of DL techniques in the industry for fault detection began in 2013. Over
the years, from 2016 to the present, CNNs have been the most widely used, followed by
RNNs, generative adversarial networks (GANs), and autoencoders (AE) as prominent
alternatives [20]. The emergence of DL implementations in HVAC system research can be
traced back to 2018, with the seminal paper by Guo et al. [21] on using a deep belief network
(DBN) for fault diagnosis in air-conditioning systems. This study laid the foundation for
subsequent research in this field [22].

Several notable models have been proposed for 1D CNNs in HVAC, including work
by Li et al. [23], Liao et al. [24], and Cheng et al. [25]. Similarly, Liu et al. [26] and Fan
et al. [27] presented new approaches for 2D CNNs. Hence, CNNs have been shown to
be versatile in handling HVAC data, either in 1D or 2D form. Although both 1D and 2D
representations are well described in the literature, 1D forms are generally preferred due to
their simpler preprocessing requirements, unlike 2D CNNs, which usually require data
conversion to images [22].

Moreover, recurrent networks are essential for analyzing time series data, as they
excel in capturing sequential dependencies, processing variable-length sequences, retaining
historical information, automatically extracting relevant features, and performing tasks
such as prediction and anomaly detection. In this context, recurrent models incorporating
long short-term memory network (LSTM) architectures have been studied in detail by Liu
et al. [28], Tian et al. [29], Taheri et al. [30], and Behravan et al. [31]. In addition, gated
recurrent unit (GRU) models, a special type of RNN, have been proposed and used by
Wang et al. [32] and Li et al. [33] in their respective studies.

1.2. Contributions and Structure

In the HVAC-related literature, researchers have focused on examining specific sub-
categories such as air handling units, air conditioners, heat pumps, and chillers. FCUs,
however, have received relatively little attention and account for only about 6% of the re-
search effort [9]. Therefore, we aim to fill the detected research gap and evaluate established
DL architectures using real-world FCU data.

Researchers have presented good models and results in the selected related work [24,31,32,34].
They have generally done multiple classifications of different faults ranging from 4 to
10 different types of faults. The datasets in the respective studies are typically based
on measurements with a low-frequency interval between consecutive samples, ranging
from 1 s to 5 min. However, it is worth noting that the total volume of data in those
datasets is considerably smaller than the dataset we utilized. The largest dataset commonly
used is that of the American Society of Heating, Refrigerating, and Air-Conditioning
Engineers (ASHRAE), which can include measurements of up to 1 year [32]. It is common
for researchers to use data derived from the ASHRAE, or simulated data, as it is difficult to
obtain labeled real-world data [9]. While we also used simulations to augment data, our
approach differs significantly as we used an extensive real-world dataset spanning three
years. We aimed to use this extensive dataset to improve the effectiveness of fault detection
technologies based on DL methods, especially in the context of FCUs in HVAC systems.
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Some authors have used a similar approach to collect real-world data and simulate
faults [24,31,34]. However, as mentioned earlier, the volume of their datasets is much
smaller and ranges from one day to only a few months. Our research used a unique dataset
that includes three years of data from 60 hotel rooms where the corresponding sensor
readings were collected at 5 min intervals. This dataset includes no less than 22 different
features, which was also compared a lot to other studies. It contains real-world data, both
sensor readings from the hotel and environmental information, as well as simulated faults
generated by the corresponding TRNSYS model.

The contributions of this research are the following:

• The development of fault detection models for FCUs, an under-researched subtype of
HVAC systems, to fill an existing gap in the literature and further advance the field of
HVAC systems.

• The implementation of advanced DL-based architectures as the basis for fault detectors
with the goal of optimizing the efficiency of FCUs in HVAC systems.

• The curation of an original dataset specific to FCUs focused on real data from a hotel
building. This dataset served as the basis for developing four specialized models to
identify three common faults in HVAC systems.

• The validation of the model architectures through rigorous testing on a large dataset
and an analysis and comparison with a traditional RF-based model.

In the following, we present the underlying smart-room concept, which serves as
the primary source of our data (Section 2.1). We provide detailed insights into the data-
labeling procedure (Section 2.2), preprocessing techniques used (Section 2.3), and model
development (Section 2.4). Results are presented and discussed in Section 3, after which
we draw conclusions in Section 4.

2. Materials and Methods

In this section, we present the collected data used in our modeling pipeline. We also
provide detailed information on the data preprocessing and model development, all of
which were carried out using Python 3.9.13. Namely, while Pandas 1.5.1, Numpy 1.21.5,
Matplotlib 3.5.2, and Scikit-learn 1.2.1 libraries were utilized for the data preprocessing
and RF model development, the Pytorch 2.0.0 library was specifically used for DL model
development.

2.1. Smart Room System and Data Acquisition

In this research, we utilized the same dataset as in our previous study [35]. The data
were collected from a hotel building in Zagreb, the capital city of Croatia. The hotel employs
a smart-room concept, which incorporates microprocessor-controlled stations for the effi-
cient monitoring and regulation of crucial parameters to ensure the optimal functionality
of the hotel rooms. These stations are connected to a central computer system, which
enhances efficiency and provides comprehensive control. Consequently, this integrated
system facilitates improved energy management, leading to potential cost savings, elevated
customer service standards, enhanced system security, and increased operational efficiency
through real-time access to current information. Implementing the smart-room concept
empowers hotels to streamline their management activities, effectively oversee and monitor
the entire system, and consequently achieve enhanced overall performance.

The acquired data spanned from 2015 to 2021, with a data sampling frequency of 5 min.
However, we decided to focus on specific years, 2017 to 2019, for several reasons related to
data quality and representativeness. We found that years 2017 to 2019 had the highest data
quality in terms of reliability and accuracy. Unlike the other years in the dataset, which
had numerous instances of missing data and recording errors, this time frame provided
more consistent and trustworthy data. We also chose to exclude data from years 2020
and 2021 due to the significant impact of the pandemic on hotel operations. Due to the
restrictions and limited travel during this time, fewer guests stayed at the hotel, which may
have skewed the data and made it less representative of typical guest behavior and room
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temperatures. Therefore, to ensure the reliability, consistency, and relevance of our analysis
and modeling, we selectively focused on data from 2017 to 2019 and specifically included
three floors per year (upper and lower room temperatures from a single floor). It should be
noted that this reduced dataset still contained many more data than the resources used in
other studies.

Table 1 presents the data features. The environmental characteristics, such as outdoor
temperature, humidity, and irradiation, were supplemented by the Croatian Meteorolog-
ical and Hydrological Service. Moreover, we incorporated additional features such as
room orientation and the status of the manually operated HVAC system through feature
engineering.

Table 1. Description and data types of dataset features.

Feature Description Data Type

Datetime Date and time. datetime
Hvac_mode 1 = FCU heating/0 = FCU cooling. binary
Hvac_state 1 = FCU on/0 = FCU off. binary
Room_occupancy 1 = room occupied/0 = room unoccupied. binary
Window 1 = window open/0 = window closed. binary
Hvac_state_manual 1 = HVAC control guest-regulated. binary
FS_0 1 = fan turned off. binary
FS_1 1 = first speed. binary
FS_2 1 = second speed. binary
FS_3 1 = third speed. binary
Orientation_S 1 = south room orientation. binary
Orientation_W 1 = west room orientation. binary
Orientation_N 1 = north room orientation. binary
Orientation_E 1 = east room orientation. binary
Set_temp Set temperature of a room (◦C). int
Room_temp Measured room temperature (◦C). int
Room_temp_up Measured temp. of room upstairs (◦C). int
Room_temp_down Measured temp. of room downstairs (◦C). int
Room_temp_cw Measured temp. of right-neighboring room (◦C). int
Room_temp_ccw Measured temp. of left-neighboring room (◦C). int
Outside_temp Outside air temperatures (◦C). float
Irradiation Solar energy reaching a surface (W/m2). float

2.2. Data Labeling

In order to label the data, we utilized a corresponding physical model. TRNSYS
software was used to create a system model based on the architectural descriptions of the
building. The model focused on simulating the thermal behavior of a specific part of the
building, consisting of six thermal zones representing the guest rooms. By monitoring
the central thermal zone in detail and creating boundary conditions in the other zones,
the model ensured the consistency of physical properties in all rooms. To replicate the
performance of the FCUs, performance maps were created with each operating point
representing the output capacity under explicitly defined conditions. The operating points
were obtained directly from the FCU manufacturer, and separate performance maps were
created for heating and cooling modes. Specific input parameters were incorporated into
the FCU model, such as the temperature and flow rate of water through the heat exchangers,
the current characteristics of the room air, and the control system signals. The model then
processed these inputs to obtain output variables that included the exact temperature,
airflow, and relative humidity of the air entering the room. For detailed information on
the development of the physical model, refer to our previous work [36], which offers
comprehensive insights into the subject.

To ensure the accuracy of the simulations, the physical model was calibrated and validated
against real data from the hotel building. The simulation environment used in the study was
based on input features extracted from the hotel data mentioned in Table 1. These features were
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developed to control the FCU system and effectively regulate internal and external conditions.
The thermostat control used the set temperature as input data to regulate the FCU. The
Hvac_mode determined the heating or cooling demand in simulations, while the Hvac_state,
initiated by the guest, interrupted the system’s operation. The HVAC_state_manual feature
was used to set specific FCU speeds at specific times. Other parameters were used to simulate
conditions in a hotel. Room_occupancy data were simulated as an internal heat source, and
window-opening data were used to emulate the exchange of outdoor air with indoor air. To
simulate the temperature conditions in the hotel, the temperatures in adjacent rooms were
set as reference values from the collected data. Outdoor air temperature and solar irradiation
were used to mimic external conditions. To ensure accuracy, the solar irradiation data were
additionally processed to obtain accurate values for each room orientation, increasing the
realism of the simulation. Finally, an additional input to the model was the introduction of
faults to trigger anomalies at specific times.

Using this physical model, the data were generated and labeled with faulty periods of
the system. The simulations were initially performed under normal conditions, resulting
in a healthy dataset. Subsequent simulations introduced problems of varying lengths that
affected the operation of the system. These problems were inserted at random times and
alternated between normal and faulty periods.

The dataset obtained after introducing faults comprised three distinct categories.
Firstly, fault 1 (F1) was characterized by a fan coil valve that was stuck at a 50% position.
In order to accurately simulate this fault, the water flow through the heat exchanger was
proportionally reduced according to the position of the stuck valve. Secondly, fault 2 (F2)
represented a situation where the room had a reduced airflow with the fan delivering 50%
less air. To simulate F2, the air supply to the room was directly reduced by a corresponding
amount. Finally, fault 3 (F3), which signified a complete system failure, was simulated by
programming the FCU to stop delivering conditioned air to the room. Furthermore, when
generating faults, the defined lengths of the normal and faulty periods were selected based
on specific ranges. For fault F1, the length of the normal and faulty periods was randomly
chosen between 20 and 40 days. Fault F2 had normal and faulty periods of 10 to 30 days
and 10 to 40 days, respectively. Fault F3, which occurs less frequently, had a normal period
of 5 to 15 days and a faulty period of 1 to 10 days. The inserted faults significantly impacted
the room’s air temperature (Room_temp) and the fan speeds (FS_0 to FS_3).

The duration of the periods left enough time for faults to occur, as faults are not always
detected immediately. To identify faulty periods, a comparison was made between the
healthy and faulty datasets using the air temperature (Room_temp). Fault periods were
marked using large deviations in air temperature, as certain conditions had to be met for
faults to be detected. For example, faults could only be detected when the FCU system
was operating at an adequate capacity. Therefore, periods with significant air temperature
deviations were marked as true fault periods, i.e., periods in which faults occurred during
the simulation. However, it is important to emphasize that fault F1 is the most subtle since
it does not affect the deviations in the temperatures as much as others do.

In the subsequent sections of this paper, we utilize specific terms to refer to the
datasets and models associated with each fault. For instance, we refer to the dataset and
models involving the first fault as “F1 dataset”/“F1 models”. Similarly, datasets and
models concerning faults F2 and F3 are denoted as “F2 dataset”/“F2 models” and “F3
dataset”/“F3 models”, respectively.

2.3. Data Preprocessing

In order to optimize the efficiency of fan coil units, it is crucial to address fault
detection by integrating DL models into the corresponding systems. However, for a
successful integration, it is imperative that the sensors and sensor data exhibit a good
quality. Consequently, preprocessing plays a pivotal role in obtaining reliable modeling
results, making it the most crucial aspect of the model development pipeline.



Sensors 2023, 23, 6717 7 of 16

First, the data were cleaned of possible errors or outliers, e.g., temperatures equal
to zero and “NaN” (not a number) values. Furthermore, the main drawback of working
with noisy HVAC system data is the imbalance of classes and the labeling of the data,
especially when it comes to predicting binary classes. To overcome these challenges, we
used undersampling as a preprocessing step for each dataset, which effectively mitigates
the effects of class imbalance and improves overall data quality. The final output consisted
of 50% anomalous data and 50% normal data. Although undersampling, as seen here, is a
quick and easy way to resolve class imbalance [34], it can lead to information loss if not
used properly. However, in our particular scenario where we were dealing with highly
imbalanced big data and temperature transitions occurred slowly, this preprocessing step
proved extremely beneficial. It not only reduced the computational cost associated with
running the model but also produced better performing models.

After the data preparation, we performed preprocessing utilizing two different ap-
proaches, depending on whether DL models or RF models were targeted. In the first
approach, we prioritized data consistency and result integrity by initially standardizing
the data for DL models. Then, we used sliding-window preprocessing that had a defined
window size of 144 rows (equivalent to 12 h) with an equal step size. We also established a
threshold for error detection, whereby a window was flagged as faulty if it contained at
least one observed fault within it. By implementing this configuration, we enhanced the
sensitivity of our models in detecting faults while simultaneously preserving the temporal
relationships between data points.

The preprocessing phase for DL models proceeded smoothly, without encountering
any issues during model training. The models were executed on GPUs with the assistance
of data loaders/batches. However, when the same procedure was applied to the RF model,
challenges arose due to limitations inherent in RFs and the scikit-learn library. These
limitations resulted in RAM problems when processing large datasets.

Hence, to optimize the RF models, we employed a second approach, by introducing an
additional step. Namely, each data window was compressed into a single row, containing
summarized features. For continuous features, the summarized features included the
minimum, maximum, mean, summation, and standard deviation. For binary features,
the maximum function was employed together with a defined grouping function which
identified ordered units of ones and output the total count of such groups within a window.
By employing this compression technique, the original window, initially consisting of 144
rows and 21 features, was transformed into a compressed representation—a single vector
with 80 features. This compression technique aimed to enhance the model’s efficiency by
reducing memory consumption during execution.

In summary, a total of 10,066 samples from the F1 dataset, 24,540 samples from the
F2 dataset, and 25,446 samples from the F3 dataset were used in the preprocessing phase.
The input data for the DL models were organized into tensors consisting of 1000 batches,
containing windows of 144 data points and 21 channels or features. In contrast, the RF
models used an approach that resulted in input windows with 144 data points and a total
of 80 features. These preprocessing steps and input dimensions provided a solid basis for a
valid comparison between the DL and RF models. The final output dimension was binary:
0 for no detected fault or 1 for a detected fault.

2.4. Model Development

In our effort to develop a comprehensive model, we drew on related work to select the
models under consideration. Figure 1 shows the three established architectures that motivated
us the most and that made up our model repertoire: 1D CNNs [24,34], CNNs combined with
GRU [32], and LSTM [31]. To enable a meaningful comparison between DL models and the
traditional approaches, we also included the RF model as a baseline benchmark.
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Figure 1. The depicted DL model types of architectures are as follows: (a) 1D CNN architecture,
comprising two convolutional layers, two ReLu functions, two max-pooling layers, a fully connected
layer, and utilizing the sigmoid function for the binary classification; (b) 1D CNN+GRU architecture,
featuring two convolutional layers, a batch normalization (BN), a ReLU activation, and max pooling
layers; additionally, a GRU layer with dropout is incorporated, followed by a fully connected layer
utilizing the sigmoid function; (c) LSTM architecture, consisting of LSTM layers, a fully connected
layer, and utilizing the sigmoid function.

The selected model architectures were chosen for their proven efficiency in FDD tasks.
For computational efficiency, accuracy, and feature extraction capability, we chose 1D
CNNs. Our 1D CNN architecture included two convolutional layers, two ReLU activation
functions, two max-pooling layers, and one fully linked layer [24].

Next, to capture the temporal dependencies in time series datasets, we used LSTM
and GRU models. Our LSTM architecture consisted of a single LSTM layer followed by a
fully connected layer [31]. We also used a hybrid CNN+GRU architecture that was inspired
by previous research [32] and combined the strengths of both components. The CNN
component included two convolutional layers, two pooling layers, a batch normalization,
and a ReLU activation, while the GRU component was integrated after the last pooling
layer and included a dropout and a fully connected layer.

Hyperparameter optimization played a crucial role in maximizing model performance.
We used Bayesian optimization with 50 iterations to tune the models using the training and
validation datasets. Adam optimization was used for all models. For the DL models, we
used the binary cross-entropy loss function and the sigmoid activation function. A detailed
description of hyperparameters for the DL models can be found in Table 2. The tuning
process for the CNN models focused on optimizing parameters such as kernel size, stride,
number of filters, learning rate, and weight decay. Similarly, the CNN+GRU model was
optimized with additional parameters such as hidden size and dropout rate. Lastly, the
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LSTM model involved tuning parameters such as the number of LSTM layers, hidden size,
learning rate, and weight decay. Other parameters mentioned in Table 2 such as window
size, step size, batch size, activation function, optimizer, cost function, epoch, patience for
early stopping, and tuning iterations were all defined with fixed values for each model.

Table 2. Hyperparameter values that were used in our experiments for Bayesian optimization of all
models. These values were set based on reported related work and on our prior experience.

Hyperparameters Values

CNN, CNN+GRU, and LSTM

Learning rate 0.0001–0.1
Weight decay 0.0001–0.1
Batch size 1000
Optimizer Adam
Cost function Binary cross-entropy loss
Epoch 30
Patience for early stopping 5

CNN specific

Kernel size 2–3
Stride 2–3
Number of filters 36–128

CNN+GRU specific

Kernel size 2–3
Stride 2–3
Number of filters 36–128
Hidden size 64–128
Dropout rate 0.0–0.5

LSTM specific

Number of LSTM layers 1–5
Hidden size 64–128

RF

Number of estimators 100–1000
Maximum depth 3–20
Maximum features sqrt, log2
Minimum samples split 2–100
Minimum samples leaf 1–10
Criterion gini, entropy

All models

Window size 144 rows (12 h)
Step size 144 rows (12 h)
Threshold value 1 (5 min)
Tuning iterations 50

To ensure the integrity of model training, we shuffled the input dataset exclusively
for training, thus introducing an additional layer of randomness. However, it is important
to note that shuffling was not applied to the validation and testing datasets to maintain
impartiality during subsequent evaluations.

In addition to the DL models, we also used the RF model as a baseline, as it has
been shown to outperform other approaches in previous research [37]. Namely, RF-based
solutions could offer notable advantages that position them as comparable contenders to
DL models. These advantages include interpretability, feature importance determination,
effective capture of nonlinear relationships, robustness to outliers, insensitivity to feature
scaling, and efficiency and scalability when processing datasets.
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The RF model was configured using parameters such as the number of trees, maxi-
mum depth, maximum features, minimum samples for split, minimum samples for leaf,
maximum features, and criterion. The specific ranges of values for these parameters are
also defined in Table 2.

3. Results and Discussion

The preprocessing results revealed a significant size reduction in the F1 dataset,
primarily due to its initial class imbalance of only 3–4% labeled faults compared to the
other datasets. Consequently, the F1 dataset was reduced to approximately 4 to 5 thousand
rows. In contrast, the preprocessing techniques produced more favorable outcomes for the
F2 dataset (labeled 12–13%) and the F3 dataset (labeled 21–23%), resulting in sizes ranging
around 12 thousand rows and 13 thousand rows, respectively.

For the hyperparameter tuning process, the outcomes of the DL and RF models tuning
are summarized in Table 3.

Table 3. Varying hyperparameter values of the best-performing models, obtained through Bayesian
optimization. Hyperparameter values we explored are shown in Table 2.

Model-Fault Learning Weight Kernel Number of Stride Hidden Dropout LSTM
Rate Decay Size Filters Size Layers

CNN-F1 0.1 0.0009 2 93 3 - - -
CNN-F2 0.02 0.0001 2 104 3 - - -
CNN-F3 0.001 0.0001 3 128 3 - - -
CNN+GRU-F1 0.007 0.0001 2 109 2 90 0.32 -
CNN+GRU-F2 0.015 0.0001 2 36 2 71 0.5 -
CNN+GRU-F3 0.01 0.0001 2 128 3 64 0.5 -
LSTM-F1 0.017 0.002 - - - 64 - 1
LSTM-F2 0.04 0.0001 - - - 64 - 1
LSTM-F3 0.02 0.0001 - - - 66 - 2

Number Max. Max. Minimum Minimum Criterionof Trees Depth Features Samp. Split Samp. Leaf

RF-F1 1000 17 sqrt 2 1 gini
RF-F2 885 20 sqrt 2 1 entropy
RF-F3 1000 20 sqrt 2 1 gini

Upon examining the summarized results, several key observations can be made.
Starting with the confusion matrices presented in Table 4, we can observe the performance
of the models in terms of true negatives, false positives, false negatives, and true positives
for each fault category. For F1 models, both the CNN and CNN+GRU models achieved
similar results, with around 44% true negatives, 5% false positives, 5% false negatives, and
45% true positives. In contrast, the LSTM and RF models exhibited weaker results.

Moving on to the F2 models, the CNN+GRU model exhibited the highest accuracy
among all models, with around 46% true positives. The CNN, LSTM, and RF models
achieved relatively similar results, with varying distributions of the confusion matrix
indicators.

For the F3 models, both the CNN+GRU and CNN models showcased strong per-
formance, with approximately 47% true negatives and true positives. The LSTM and RF
models demonstrated slightly lower performance, with different trade-offs between true
negatives, false positives, false negatives, and true positives.

Next, Table 5 presents summarized metrics for each fault model, including accuracy,
precision, recall, F1 score, and area under the curve (AUC). For F1 models, the CNN+GRU
model attained the highest accuracy of 90% and an F1 score of 0.91, indicating a favorable
balance between precision and recall. The RF model yielded satisfactory results with an
accuracy of 84% and an F1 score of 0.85, outperforming the LSTM model which exhibited
comparatively lower performance. This outcome can be attributed to data scarcity, as
the models from DL usually cope better with larger datasets and therefore provide more
accurate results in such a context.
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Table 4. Ratios of true/false positives/negatives for each fault and each model, obtained on the test
subset.

Model True Negatives False Positives False Negatives True Positives

Fault 1

CNN 44.16% 5.84% 5.06% 44.94%
CNN+GRU 44.25% 5.75% 3.84% 46.16%

LSTM 39.45% 10.55% 7.20% 42.80%
RF 40.24% 9.76% 6.26% 43.74%

Fault 2

CNN 44.70% 5.30% 5.66% 44.34%
CNN+GRU 45.79% 4.21% 2.64% 47.36%

LSTM 44.68% 5.32% 4.24% 45.76%
RF 41.17% 8.83% 9.88% 40.12%

Fault 3

CNN 47.06% 2.94% 4.24% 45.76%
CNN+GRU 47.40% 2.60% 2.54% 47.46%

LSTM 44.65% 5.35% 5.45% 44.55%
RF 45.87% 4.13% 10.56% 39.44%

Table 5. Model performance results for each fault and each model, obtained on the test subset. The
best results are printed in boldface.

Model Accuracy Precision Recall F1 AUC

Fault 1

CNN 0.89 0.89 0.90 0.89 0.89
CNN+GRU 0.90 0.89 0.92 0.91 0.90

LSTM 0.82 0.80 0.86 0.83 0.82
RF 0.84 0.82 0.87 0.85 0.84

Fault 2

CNN 0.89 0.89 0.89 0.89 0.89
CNN+GRU 0.93 0.92 0.95 0.93 0.93

LSTM 0.90 0.90 0.92 0.91 0.90
RF 0.81 0.82 0.80 0.81 0.81

Fault 3

CNN 0.93 0.94 0.92 0.93 0.93
CNN+GRU 0.95 0.95 0.95 0.95 0.95

LSTM 0.89 0.89 0.90 0.89 0.89
RF 0.85 0.91 0.79 0.84 0.85

In the case of the F2 models, the CNN+GRU model showcased the highest accuracy
of 93% and an F1 score of 0.93, indicating strong overall performance. The RF model
performed the weakest among all models, while the LSTM and CNN models demonstrated
similar results with accuracy ranging from 0.89 to 0.90.

Regarding the F3 models, both the CNN+GRU and CNN models achieved high
accuracy scores of 93% and 95%, respectively, showcasing robust performance. The LSTM
model displayed a slightly lower accuracy of 0.89, while the RF model exhibited the weakest
performance with an accuracy of 0.85.

Furthermore, Figure 2 presents a visual comparison of the receiver operating charac-
teristic (ROC) curves, which effectively highlight the distinctions in model performance
and allow for some new interpretations. For example, the utilization of undersampling
as a preprocessing step resulted in the F1 dataset being the smallest, followed by the F2
and F3 datasets (with the F3 dataset being the largest). While maintaining a balanced
distribution of 50% faults and 50% nonfaulty data, the dataset sizes played a significant
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role in determining the final results. Figure 2 clearly demonstrates that the curves for the
F1 models are closer together compared to those of the F2 and F3 models, indicating that
the smaller dataset led to lower performance across all models.

Upon analyzing the F2 and F3 models, it becomes evident that as the dataset size
increases, the model curves diverge. Notably, the RF model’s performance deteriorates,
suggesting that larger dataset sizes provide more benefit to DL models while adversely
affecting traditional models. However, despite DL models exhibiting poorer performance
with less data, the CNN+GRU consistently outperformed each individual model, regard-
less of the dataset size. This finding highlights the robustness of the hybrid model in
accommodating varying dataset sizes.

Figure 2. ROC curves and AUC scores calculated on the test subset for each model and each fault.

To provide an analysis of the variations in model performance, we additionally present
two cases visualized in Figures 3 and 4. These cases allow for a direct comparison of each
model’s fault detection capabilities.

Figure 3 provides visual representations of instances where the models exhibited incor-
rect detections, offering valuable insights into their limitations and areas for improvement.
This analysis sheds light on the weaknesses of each model, particularly in relation to the
sensitivity of the threshold for anomaly labeling.

In contrast, Figure 4 highlights examples where the CNN+GRU model excelled in
terms of accurate detections compared to the other models. These instances serve as com-
pelling evidence of the superior performance and effectiveness of the CNN+GRU model.
While the other models also demonstrate satisfactory detection of obvious temperature
deviations depicted in the graph, they tend to yield more false positives by detecting faults
that do not exist within the selected data period. This tendency can be attributed, in part,
to the sensitivity of the fault-labeling mechanism.
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Figure 3. Example of sensitive fault detection for the F3 dataset.

Figure 4. Accurate F3 fault detection by the CNN+GRU model, outperforming other models.
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Overall, the presented cases play an important role in conveying the strengths and
weaknesses of the models, allowing for a comprehensive understanding of their perfor-
mance in fault detection.

It is crucial to emphasize that any gaps in the data resulting from the data prepro-
cessing stage were disregarded for the purpose of visualization. The selected continuous
features included outside temperature, set temperature, and room temperature, while the
categorical features encompassed room occupation, window status, and fan speed.

4. Conclusions

In this paper, an originally curated dataset was labeled by simulating three different
faults within a physical model implemented in TRNSYS. To prepare the data for analysis,
different preprocessing techniques were applied, such as undersampling with sliding
windows for DL models and with an additional compression of the sliding windows for
RF models. Among the four models tested (CNN, CNN+GRU, LSTM, RF), the hybrid
CNN+GRU model performed better than the others for each fault. This finding suggests
the possible superiority of combining different model architectures.

This research makes a contribution to the field of fault detection in HVAC systems by
using a larger and more diverse dataset. The dataset included a combination of real-world
data (originated from a hotel’s sensory measurement system, additionally augmented with
environmental conditions data) and simulated faults.

One of the key findings of this study is the remarkable performance of the hybrid
CNN+GRU model. Regardless of the size of the dataset, this model showed robustness
and outperformed the other models. In addition, the models from the DL family generally
performed better than the traditional baseline model, highlighting the effectiveness of deep
learning in fault detection.

The superior performance of the CNN-based models can be attributed to their ability
to effectively capture spatial and temporal patterns in the input data, which enables the
extraction of meaningful features for fault detection in FCU systems. The inclusion of a
GRU further improves the performance of the model by capturing long-term dependencies
and temporal dynamics.

In contrast, despite its widespread use in sequence modeling, the LSTM model did
not perform as well as the CNN-based models. This suggests that the FCU fault detection
problem is primarily based on the detection of local patterns and faults, which suits the
strengths of the CNN models. Moreover, the optimization process for the LSTM model
proved to be more difficult due to its longer convergence time compared to other models.
The successful implementation of LSTM requires a more complex network structure.

The traditional baseline RF model showed relatively lower performance compared to
the DL models, suggesting that the DL models’ ability to automatically learn hierarchical
representations better captured the complex patterns and relationships in the FCU data.

In conclusion, the application of DL models, especially hybrid architectures such as
CNN+GRU, holds great promise for improving fault detection and diagnosis in HVAC/FCU
systems. By accurately identifying and diagnosing faults, DL models have the potential
to optimize system performance, reduce maintenance costs, and extend the life of HVAC
systems. However, to assess the generalizability and robustness of the proposed models,
further validation using real data from FCU systems in actual hotel buildings is required.
Such validation would provide insights into real-world scenarios and support decision-
making in the development of fault detection systems.
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