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Abstract: Scholars have classified soil to understand its complex and diverse characteristics. The
current trend of precision agricultural technology demands a change in conventional soil identifica-
tion methods. For example, soil color observed using Munsell color charts is subjective and lacks
consistency among observers. Soil classification is essential for soil management and sustainable
land utilization, thereby facilitating communication between different groups, such as farmers and
pedologists. Misclassified soil can mislead processes; for example, it can hinder fertilizer delivery,
affecting crop yield. On the other hand, deep learning approaches have facilitated computer vision
technology, where machine-learning algorithms trained for image recognition, comparison, and
pattern identification can classify soil better than or equal to human eyes. Moreover, the learning
algorithm can contrast the current observation with previously examined data. In this regard, this
study implements a convolutional neural network (CNN) model called Soil-MobiNet to classify
soils. The Soil-MobiNet model implements the same pointwise and depthwise convolutions of the
MobileNet, except the model uses the weight of the pointwise and depthwise separable convolutions
plus an additional three dense layers for feature extraction. The model classified the Vellore Institute
of Technology Soil (VITSoil) dataset, which is made up of 4864 soil images belonging to nine cate-
gories. The VITSoil dataset samples for Soil-MobiNet classification were collected over the Indian
states and it is made up of nine major Indian soil types prepared by experts in soil science. With a
training and validation accuracy of 98.47% and an average testing accuracy of 93%, Soil-MobiNet
showed outstanding performance in categorizing the VITSoil dataset. In particular, the proposed
Soil-MobiNet model can be used for real-time soil classification on mobile phones since the proposed
system is small and portable.

Keywords: Munsell color chart; precision agriculture; urvara and usara; smartphone; sensors; soil
morphology; depthwise pointwise convolution; VITSoil dataset; artificial intelligence; geospatial location

1. Introduction

The field of study known as “soil science” focuses particularly on the traits and char-
acteristics of different types of soils. Due to its overlap with several disciplines, including
agronomy, geology, and biology, it is considered an interdisciplinary study. To compre-
hend the physical, chemical, and biotic elements that contribute to soil function and how
they impact the environment, soil science has advanced over time. The contributions that
soil science research makes to many facets of our existence demonstrate how important
this field is. With the advances in modern technologies, scholars have used information
technologies to obtain, process, and analyze multisource data with a high spatiotemporal
resolution for decision making and operations in crop production management [1]. Preci-
sion agricultural technology is the current trend demanding the development of improved
soil identification methods [2]. In particular, scholars have attempted to classify soil to
understand its complex and diverse characteristics.
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The accurate classification and understanding of soil morphology and its geospatial
location are crucial for various fields, including agriculture, land management, urban
planning, and environmental monitoring. Traditionally, soil classification has relied on
manual techniques and field surveys conducted by experts, which can be time consuming,
labor intensive, and subject to human error. However, recent advancements in technology,
particularly in the field of machine learning, offer promising solutions to automate and
streamline this process. In recent years, convolutional neural networks (CNNs) have
demonstrated remarkable performance in various image recognition tasks, such as object
detection, facial recognition, and medical imaging. CNNs are well-suited for analyzing
complex spatial patterns in data, making them a suitable choice for soil classification based
on soil morphology. Moreover, the widespread adoption of smartphones with powerful
computational capabilities provides an opportunity to leverage CNN models for on-the-go
soil classification.

This paper presents “Soil-MobiNet”, a novel convolutional neural network model
designed for soil classification to determine soil morphology and its geospatial location.
The objective of Soil-MobiNet is to enable accurate and real-time classification of soil
types using smartphone devices, thus empowering farmers, researchers, and land man-
agers with a portable and accessible tool for soil analysis. The proposed Soil-MobiNet
model leverages the rich imaging capabilities of smartphones, including high-resolution
cameras, location data, and computational power, to capture soil images and analyze
them using advanced deep learning techniques. By integrating soil morphology analysis
with geospatial information, Soil-MobiNet aims to provide a comprehensive understand-
ing of soil characteristics and their spatial distribution, which can facilitate informed
decision making in various domains. The key contributions of this research can be
summarized as follows:

• Development of a convolutional neural network model specifically tailored for soil
classification, considering the unique characteristics and complexities of soil morphol-
ogy analysis.

• Integration of geospatial information with soil classification, enabling the determina-
tion of the precise location of different soil types and their spatial distribution.

• Optimization of the Soil-MobiNet model to ensure real-time inference on resource-
constrained smartphone devices, without compromising classification accuracy.

• Validation of the Soil-MobiNet model through extensive experiments and comparative
analysis with existing soil classification methods, demonstrating its effectiveness and
practicality for on-the-go soil analysis.

The remainder of this paper is organized as follows: In Section 2, we provide an
overview of related work in the field of soil classification and explore the existing tech-
niques and challenges. Section 3 presents the methodology behind Soil-MobiNet, detailing
the model architecture, dataset and data preprocessing used, and training process. Experi-
mental results and analysis are discussed in Section 4. The implementation of the model
on a smartphone is in Section 5. Finally, Section 6 concludes the paper, highlighting the
contributions, limitations, and potential future research directions of Soil-MobiNet.

By harnessing the power of convolutional neural networks and the ubiquity of smart-
phones, Soil-MobiNet opens new possibilities for efficient, accurate, and accessible soil
classification. It holds the potential to revolutionize soil analysis practices, enabling stake-
holders to make informed decisions about soil management, crop selection, land use plan-
ning, and environmental preservation, all while leveraging the convenience and portability
of smartphones.

2. Related Works

Various relief features, climatic realms, landforms, and vegetation have contributed to
the development of numerous soil types, particularly in India. In ancient times, around the
16th century AD, Indian soils were classified primarily into two categories: “Urvara” and
“Usara”, implying fertile and sterile, respectively [3]. Over time, the soil has been classified
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based on its characteristic features such as moisture content, texture, color, and slope of
the land. In particular, the soil has been identified based on texture as sandy, clayey, silty,
and loam. Moreover, the soil has been identified in terms of colors such as red, yellow, and
black. Currently, the Indian Council of Agricultural Research (ICAR) classifies Indian soil
based on its character and nature, following the United States Department of Agriculture
(USDA) soil taxonomy [4].

Based on composition, genesis, color, and location, the ICAR classified Indian soils as
(i) alluvial soils, (ii) arid soils, (iii) black soils, (iv) forest soils, (v) laterite soils, (vi) peaty soils,
(vii) red and yellow soils, and (viii) saline soils. These soils exhibit unique characteristics
and historical antecedents. For instance, Khadar and Bhangar are two distinct types of
alluvial soil found in the upper and middle Ganga plains in India. In particular, Khadar is
annually deposited by floods and is rich in fine silt, whereas Bhangar is deposited far from
the floodplain, representing a system of older alluvium. Khadar and Bhangar comprise
calcareous concentrations (Kankars), primarily clayey and loamy, in the Brahmaputra
Valley and the lower and middle Ganga plains.

Soil classification is essential for soil management and sustainable land utilization [5],
which can help communication between different groups such as farmers and pedologists.
However, misclassified soil can mislead processes; for instance, it can hinder fertilizer
delivery, affecting crop yield. Several researchers have investigated ways to identify
soil types and estimate their properties, as the human eye can be unreliable for color
determination [6].

The Munsell Soil Color Book comprises color charts that evaluate soil types in a particular
place. This book is used in the field to conduct soil color evaluations. The soil classifica-
tion system developed around the Munsell color system is the conventional method for
assigning soil types [7]. However, this method has shown accuracy problems when identi-
fying the color of soil specimens using Munsell charts [8,9]. These problems are related to
the three main factors affecting the psychophysical characteristics of color: illumination
conditions, sample characteristics, and the observer’s sensitivities, knowledge, experience,
and color vision. Therefore, the soil color observed using Munsell color charts (MCC) is
subjective and lacks consistency among observers.

Baumann et al. [10] outlined the strong relationship between soil color and other
essential soil properties and characteristics, such as soil organic matter content, mineral
composition, land suitability, soil fertility, soil drainage class, and soil moisture. According
to Thompson et al. [11] and Pendleton and Nickerson [7], the conventional method deter-
mines the soil color by comparing it with MCCs. MCCs allow users to identify soil colors
varying from red to blue. These charts also help identify the humus and iron content in the
soil [12]. MCCs define soil color based on three-color dimensions: hue, value, and chroma,
which indicate the dominant wavelength, lightness, and saturation, respectively.

Nevertheless, the primary limitations of using MCCs include (a) environmental condi-
tions (e.g., lighting conditions and moisture content [13]) and (b) user sensitivity (e.g., sub-
jectivity and color blindness). Ibanez-Asensio et al. [14] considered only visible-wavelength
light to estimate soil characteristics; the proposed method was effective in some ways. Visi-
ble near-infrared spectroscopy was used to classify soil types and predict their properties.
Nonetheless, this technique required a spectrometer or visible near-infrared light source,
and the process was cumbersome [15]. Furthermore, a complex algorithm is required to
process the data, making traditional systems unsuitable for field detection.

Therefore, methods based on digital cameras, such as the proximal sensing of soil,
have been developed. In particular, digital cameras were used to differentiate soil colors,
and the RGB signals obtained were subsequently transformed into a standard color space
through calculations [16]. Viscarra Rossel et al. [17] consider that the current developing
course of proximal soil sensors is because of the surge of soil data for applications such as
precision agriculture and dynamic models for monitoring environmental changes.

García et al. [18] discussed the recent on-site use of mobile phones to determine specific
analyte concentrations from single-use chemically reactive membranes by considering
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how the hue changes from blue to magenta. The results indicated that mobile phones
could be a solution for the increasing demand for objective soil color data approaches.
Nevertheless, calorimetrically using mobile phones has not been tested to determine
whether the contained color gamut can be compared to MCC. Therefore, contrary to
dichotomous color choices, mobile phones differentiate between diverse reddish, brownish,
and yellowish hues, from dark to light, and of variable intensity. The use of a smartphone
app connecting a camera to perform image analysis and server-side processing for soil
carbon estimation was demonstrated by Aitkenhead, M. J et al. [19].

The study used soil color as an essential indicator; the authors claimed that the method
could be used to characterize, classify, and identify soil. According to Stiglitz et al. [20],
Moonrungsee et al. [21], and Gomez-Robledo et al. [22], the use of mobile phone cameras
to measure soil color is a promising alternative technique for classifying soil based on
color. Similarly, Aitkenhead et al. [23] explained the use of smartphone-connected color
sensors to conduct soil classification based on the soil color measured by these sensors.
This method is convenient in terms of mobility. Unfortunately, the approach is camera-
specific, requiring the calibration and testing of numerous camera sensors for individuals,
which is unpractical. Moreover, control of lighting conditions at any given time is not
known during the use of the app, increasing the likelihood of inconsistencies. Several
studies, such as Gómez-Robledo, L. et al. [22], used smartphone cameras to measure soil
color; the cameras were restrained to a controlled light source (i.e., controlled illumination
condition) in the laboratory, whereas the approach followed by Stiglitz et al. [20] required
a separate sensor.

A recent study shows that machine learning and deep learning models can automate
soil classification. Deep learning CNNs learn spatial and spectral information from high-
resolution remote sensing data, improving accuracy and efficiency. Traditional machine
learning techniques such as decision trees, random forests, support vector machines
(SVM), k-nearest neighbors (k-NN), and naive Bayes have been extensively used to clas-
sify soil based on various input characteristics. Bhargavi et al. [24] identified agricultural
soils using naive Bayes data mining. The naive Bayes classifier outperforms the Bayesian
classifier. Kovacevic et al. [25] used a support vector machine to classify soil types based
on profile sample’s chemical and physical attributes. Comparing logistic regression,
multinomial naive Bayes, and SVM (linear and Gaussian) classification performance,
researchers found that linear support vector machines could accurately automate soil clas-
sification. Linear SVM outperformed naïve Bayes with 57.61% accuracy. Barman et al. [26]
used SVM to classify soils. Maniyath et al. [27] also classified soil by using k-nearest
neighbor. Seybold et al. [28] estimated cation exchange capacity from organic C, clay,
sediment, and soil pH using linear regression models. They initially sorted all data into
exact soil-type groupings based on specified criteria. The stratification-obtained model
parameters are related to the division of soil categories. Pham et al. [29] classified soil
types using Adaboost models based on tree algorithm models. Pham collected 440 soil
samples in total.

Considering the above literature review, we can conclude that significant efforts have
been focused on soil identification. However, the previous approaches have limitations
that motivate the development of improved soil identification methods that exhibit higher
accuracy, precision, and efficiency than conventional methods. In this regard, deep learn-
ing based on computer vision technology is a promising alternative. Veres et al. [30] were
the first to apply deep learning techniques to soil spectroscopy, where a 1D CNN proved
notably effective for the estimation of some of the LUCAS soil properties. Liu et al. [31]
used a 1D CNN with a distinct architecture to predict the clay content of the mineral soil
samples of the LUCAS SSL and evaluated its suitability for transfer learning by fine tuning
it for the organic soil samples and an airborne hyperspectral image. Padarian et al. [32]
applied a 2D CNN to the LUCAS database, transforming the original spectra into 2D
spectrograms. Transfer learning was also employed to localize the global model in both
references, utilizing distinct techniques. Finally, Riese and Keller [33] classified the texture
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of each soil sample using the German soil textural classes by employing a second 1D
CNN on the same dataset. N.L. Tsakiridis et al. [34] created and investigated the use
of a one-dimensional convolutional neural network (1D CNN) to simultaneously pre-
dict ten physicochemical properties of the LUCAS SSL. Using a U-Net network model,
Jiang et al. [35] classified 2400 soil samples into four classes. Jiang drew 2400 soil samples
from 160 soil profile images of four soil orders (Alfisols, Entisols, Inceptisols, and Mol-
lisols) that were collected in the Inner Mongolia and Liaoning regions of northern China.
In a study by Azizi et al. [36], the InceptionV4, VGG16, and Resnet50 models were used to
categorize six types of soil aggregates. To classify soil, Inazumi et al. [37] proposed a CNN
model using 1060 images of clay, sand, and gravel. For simplification, he classified the
soils as clay (D50 14 0.008 mm), sand (D50 14 0.7 mm), and gravel (D50 14 4 mm), with the
water content set to zero. In clay, sand, and gravel, the particulate sizes were modified by
sieving, placed in a clear plastic cup as a deviation from previous research, and obtained
an accuracy of 86%. Zhong et al. [38] proposed Resnet and VGG16 CNN models for soil
classification using the LUCAS soil dataset, categorized into four classes. Their model
achieved relatively good accuracy by leveraging the rich spatial information encoded in
the images. Barkataki et al. [39] also classified soil types from GPR B scans using deep
learning techniques.

Traditional soil classification methods frequently rely on labor-intensive and time-
consuming field surveys and laboratory analyses, which can be expensive and limited
in their spatial coverage. Few deep learning-based methods used for soil classifications
have large model sizes, making their implementation on resource-constrained devices
challenging. In addition to attaining a comparatively low accuracy percentage, they classify
a few soil classes or categories. There is a need to develop a lightweight deep-learning
model that can classify relatively large soil classes and, at the same time, strike a balance
between model efficiency and accuracy and can also be implemented on a smartphone for
real-time soil classification.

3. Materials and Methods

This section contains six subsections, including model architecture, model architecture
components, data, data preprocessing, model training, and evaluation metrics.

3.1. Model Architecture

Soil-MobiNet is a condensed CNN model for soil classification derived from Mo-
bileNet. It is a convolutional neural network model using depthwise separable convolution
as its basic unit, developed by Google. The architecture of Soil-MobiNet relies on the same
depthwise separable convolutional design of the MobileNet model, also derived from
Inception models [40], with an addition of three dense layers [41] following the depthwise
and pointwise convolutions and the elimination of the last 1000 layers of the MobileNet
model with neurons. Depthwise and pointwise convolutions constitute each depthwise
separable convolution layer.

MobileNet contains 28 layers if the depthwise and pointwise convolutions are counted
separately. The width-multiplier hyper-parameter can be adjusted to reduce the number of
parameters in a standard MobileNet, which has a standard 4.2 million parameters [42]. The
input image was a 224 × 224 RGB channel. The architecture relies on a lightweight deep
neural network such that the Mobile-net model can run in mobile applications. Therefore,
Soil-MobiNet has a substantially lower number of parameters than current systems such
as [43] and others [44]. Figure 1 shows a diagram of the Soil-MobiNet architecture.
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Figure 1. Soil-MobiNet Architecture.

3.2. Model’s Architecture Components

The MobileNet model is built on depthwise separable convolutions, a method of
factorized convolutions that divides a normal convolution into a depthwise convolution
and a 1 × 1 convolution known as a pointwise convolution. Depthwise convolution in
MobileNets applies a single filter to each input channel. The depthwise convolution’s
outputs are then combined using a 1 × 1 convolution by the pointwise convolution. In
one step, a standard convolution of both filters combines the inputs into a new set of
outputs [42]. This is divided into two layers by the depthwise separable convolution,
one for filtering and one for merging. This factorization results in significant reductions
in computation and model size. Figure 2 demonstrates the factorization of a normal
convolution into a depthwise convolution and a pointwise convolution.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 23 
 

 

current systems such as [43] and others [44]. Figure 1 shows a diagram of the Soil-MobiNet 
architecture. 

 
Figure 1. Soil-MobiNet Architecture. 

3.2. Model’s Architecture Components 
The MobileNet model is built on depthwise separable convolutions, a method of fac-

torized convolutions that divides a normal convolution into a depthwise convolution and 
a 1 × 1 convolution known as a pointwise convolution. Depthwise convolution in Mo-
bileNets applies a single filter to each input channel. The depthwise convolutionʹs outputs 
are then combined using a 1 × 1 convolution by the pointwise convolution. In one step, 
a standard convolution of both filters combines the inputs into a new set of outputs [42]. 
This is divided into two layers by the depthwise separable convolution, one for filtering 
and one for merging. This factorization results in significant reductions in computation 
and model size. Figure 2 demonstrates the factorization of a normal convolution into a 
depthwise convolution and a pointwise convolution. 

 
Figure 2. The standard convolutional filters in (a) are replaced by two layers: depthwise convolution 
in (b) and pointwise convolution in (c) to build a depthwise separable filter. 

A standard convolutional layer takes a 𝐷 ∗ 𝐷 ∗ 𝑀 feature map F as input and pro-
duces a 𝐷 ∗ 𝐷 ∗ 𝑁 feature map G, with 𝐷  being the breadth of a square output feature 

Figure 2. The standard convolutional filters in (a) are replaced by two layers: depthwise convolution
in (b) and pointwise convolution in (c) to build a depthwise separable filter.

A standard convolutional layer takes a DF ∗ DF ∗ M feature map F as input and
produces a DF ∗ DF ∗ N feature map G, with DG being the breadth of a square output
feature map and spatial height, DF as the height of a square input feature map and spatial
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width. The number of output depth (output channels) is denoted by N, and M is the
number of input depth (input channels). Convolution kernel K of size DK ∗ DK ∗ M ∗ N is
used as a parameter for the standard convolutional layer, where DK is the spatial dimension
of the kernel’s anticipated square shape. M is the number of input depth (input channels),
and N is the number of output channels as mentioned earlier [42]. The output feature map
for standard convolution is computed under the assumptions of stride one and padding as:

Gk,l,m = ∑
i,j,m

Ki,j,m,n ∗ Fk+i−1,l+j−1,m (1)

The cost of computation for standard convolution is:

DK ∗ DK ∗ M ∗ N ∗ DF ∗ DF (2)

where the computational cost is multiplicatively dependent on the M input channels, N
output channels, DK ∗ DK kernel size, and DF ∗ DF feature map size.

MobileNet models address each of these ideas and their connections. It begins by
using depthwise separable convolutions to sever the connection between the quantity
of output channels and the size of the kernel. Depending on the convolutional kernels,
standard convolution operations have the impact of filtering features and merging features
to produce a new representation. The filtration and combination phases can be split into
two sections using factorized convolutions known as depthwise separable convolutions
to significantly reduce computation costs. A depthwise separable convolution is made up
of two layers: depthwise and pointwise convolutions. We use depthwise convolutions to
apply a singular filter to each input depth (input channel). The result of the depthwise
layer is then linearly combined using pointwise convolution, a regular 1 × 1 convolution.
Batchnorm and ReLU nonlinearities are utilized in both levels of MobileNets.

For depthwise convolution with one filter per input channel, input depth is expressed as:

Ĝk,l,m = ∑
i,j,m

K̂i,j,m,n ∗ Fk+i−1,l+j−1,m (3)

where K̂ is the depthwise convolutional kernel of dimension DK ∗ DK ∗ M where the mth
filter in K̂ is applied to the mth channel in F to create the mth channel of the filtered output
feature map Ĝ.

The computational cost of depthwise convolution is:

DK ∗ DK ∗ M ∗ DF ∗ DF (4)

In contrast to conventional convolution, depthwise convolution is exceedingly ef-
fective. However, it does not combine input channels to generate additional features; it
just filters the input channels. To generate these additional features, a second layer that
computes a linear combination of the results of depthwise convolution via 1 × 1 convolu-
tion is required. Depthwise separable convolution is the result of combining depthwise
convolution with 1 × 1 (pointwise) convolution.

Depthwise separable convolutions cost:

DK ∗ DK ∗ M ∗ DF ∗ DF + M ∗ N ∗ DF ∗ DF (5)

Thus, the summation of the depthwise and 1 × 1 pointwise convolutions.
Convolution can be expressed as a two-step filtering and combining method, which

results in a computation reduction of:

DK ∗ DK ∗ M ∗ DF ∗ DF + M ∗ N ∗ DF ∗ DF
DK ∗ DK ∗ M ∗ DF ∗ DF

=
1
N

+
1

D2K
(6)
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Therefore, Soil-MobiNet makes use of the weight of this computation reduction and
the weight of each of the soil image features extracted by the three additional dense
layers introduced.

This can be expressed as follows:

∑ w
(

DK ∗ DK ∗ M ∗ DF ∗ DF + M ∗ N ∗ DF ∗ DF
DK ∗ DK ∗ M ∗ DF ∗ DF

=
1
N

+
1

D2K

)
+ w(D1 + D2 + D3) (7)

Figure 3 shows the framework of the modeling, which is divided into the data pro-
cessing phase, training and validation phase, and testing and prediction phase. The data is
randomly partitioned into two datasets, the test dataset and the dataset for image augmen-
tation, during the data processing phase. The training and validation phase illustrates the
training and validation of the model with the augmented training and validation dataset
soil images. The last phase is the testing and prediction of the model.
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3.3. Data

Data labeled by experts must be accessible to train any neural network in the su-
pervised learning framework to perform classification. Thus, the primary step is to find
adequate training samples [45,46]. Furthermore, building a larger dataset for training and
testing improves classification accuracy significantly. Therefore, the size of the labeled
datasets is crucial for the CNNs to function effectively and attain high performance. For in-
stance, ImageNet [47] is the most well-known and extensive data collection platform, with
over 10 million annotated pictures suitable for numerous image classification algorithms.

The Vellore Institute of Technology University soil dataset (VITSoil) contains nine
distinct types of soil, that is, 4864 unique images with 224 × 224 pixels. The dataset
comprises alluvial soil (AL), arid or desert soil (AD), black or regur soil (BL), forest soil (FR),
laterite soil (LA), peaty or marshy soil (PM), saline soil (SA), red soil (RE), and yellow soil
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(YE). The images were captured from their various geographical locations regarding the
soil map of India [48]. The labels were established by experienced professors of the soil
science department at VIT University, India. Figure 4 shows the map of the geographical
locations of the diverse soils.
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For agricultural purposes, these are the primary soils classified by the National Bureau
of Soil Survey and Land Use Planning (NBSS&LUP), a subsidiary of the Indian Council of
Agricultural Research (ICAR) [48]. While the ICAR’s soil classification joins both red and
yellow soils as one, the VITSoil dataset separates them for each to be uniquely recognized
as they are very distinct. Table 1 summarizes these Indian soil morphologies and their
geospatial location based on ICAR-NBSS&LUP criteria.

Table 1. Summary of Indian Soil Morphology and its Geospatial Location.

Types Main Distribution Area Soil Characteristics Texture Color

Alluvial Soil

In the northern plains and river valleys,
it is common. They are typically found
in deltas and estuaries in peninsular
India. Plains of the
Indus-Ganga-Brahmaputra,
Narmada-Tapi, Gujarat, Punjab,
Haryana, Uttar Pradesh, Bihar, and
Jharkhand, among others.

Organic materials, humus, and lime are all
present. The soil is quite fruitful. They are
depositional soils that are carried and
deposited by rivers, streams, and other
bodies of water. From west to east, the
amount of sand in the land diminishes.
Khadar refers to new alluvium, whereas
Bhangar refers to ancient alluvium. Potash
and lime are abundant, while phosphorus
and nitrogen are scarce. Wheat, rice, maize,
sugarcane, legumes, oilseeds, and other
crops are mostly grown.

Sandy to silty
loam or clay

Light Grey to
Ash Grey
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Table 1. Cont.

Types Main Distribution Area Soil Characteristics Texture Color

Red and Yellow Soil

Mostly found in low-rainfall
environments. Orissa, Chhattisgarh,
and the southern regions of the middle
Ganga plain make up the eastern and
southern parts of the Deccan plateau.
The omnibus group is another name
for this group.

Porous, friable structure. Lack of lime,
kankar (impure calcium carbonate), and
contains Ferric oxide. Deficient in
Phosphate, Lime, Manganese, Nitrogen,
Humus, and Potash. The lower layer is
reddish-yellow or yellow. Wheat, cotton,
pulses, tobacco, oilseeds, potato, etc.,
are cultivated.

Sandy to clay
and loamy Red

Black/Regur Soil

Black dirt covers the majority of the
Deccan. Maharashtra, Madhya
Pradesh, Gujarat, Andhra Pradesh,
Tamil Nadu, Krishna Valleys, and the
Godavari are all part of the
Deccan plateau.

Soil that has matured, when wet,
expands and becomes sticky, and when
dry, it shrinks. When the black dirt dries,
it creates broad fractures, which makes it
self-plowing. Calcium, potassium, Iron,
lime, aluminum, and magnesium are all
abundant. Nitrogen, phosphorus, and
organic matter are all in short supply.
The ideal soil for growing cotton, rice,
and other crops.

Clayey Deep black to
light black

Arid/Desert Soil

Arid and semi-arid conditions were
observed. Western Rajasthan, North
Gujarat, and Southern Punjab are all
home to this species.

High salt content, a lack of moisture, and
a high level of humus, kankar, or impure
calcium carbonate all limit water entry.
Phosphate is normal, while nitrogen is
inadequate. Wind activities are primarily
responsible for the deposition of
this material.

Sandy Red to Brown

Laterite Soil

The hills of Karnataka, Kerala, Tamil
Nadu, Madhya Pradesh, Assam, and
Orissa are home to this species. In
locations where the temperature is
high and there is a lot of rain. The
name is derived from the Latin word
"Later," which means "Brick."

As a result of excessive leaching. The soil
will be leached of lime and silica.
Bacteria will swiftly extract organic
materials from the soil due to the high
temperature, while trees and other plants
will quickly consume hummus. As a
result, the humus concentration is low.
Iron and aluminum are abundant, while
nitrogen, potash, potassium, lime, and
humus are in little supply. When wet,
they become extremely soft; yet when
dry, they become extremely rigid. Rice,
ragi, sugarcane, and cashew nuts are the
most often grown crops.

Vary Red

Saline Soil

Western Gujarat, the eastern coast
deltas, and the Sunderban districts of
West Bengal, Punjab, and Haryana are
the most common locations. They may
be found in dry and semi-arid climates,
as well as in wet and marshy
environments. Usara soils are another
name for them.

Because saline soils have higher levels of
salt, potassium, and magnesium, they are
sterile and cannot support vegetative
development. They have greater salt
levels due to the dry climate and poor
drainage. They are nitrogen and
calcium deficient.

Sandy to Loamy Dark Gray

Peaty/Marshy Soil

The northern section of Bihar, the
southern half of Uttaranchal, and the
coastal parts of West Bengal, Orissa,
and Tamil Nadu are all places with a
lot of rain and high humidity.

Vegetation growth is quite limited. The
soil becomes alkaline when it contains a
substantial amount of dead organic
matter/humus. The earth is dark
and heavy.

Vary Black

Forest Soil
They occur in woodland regions when
there is sufficient rainfall. In the
Himalayas’ snow-covered regions.

The structure and texture of the soils
vary depending on the mountain
environment in which they are generated.
On the valley sides, they are loamy and
silty; while on the top slopes, they are
coarse-grained, denuded, acidic, and low
in humus. The soil in the lower valleys is
nutrient-dense. Loamy and Silt.

Loamy and Silty
Coarse-Grained Light Brown
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Figure 5 depicts representative samples of the nine VITSoil dataset categories. (AD):
arid/desert soil, (AL): alluvial soil, (BL): black soil, (FR): forest soil, (LA): laterite soil, (PM):
peaty/marshy soil, (RE): red soil, (SA): saline soil, (YE): yellow soil.
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Figure 5. Samples of the nine categories of the VITSoil dataset, in columns from left; (AD): arid/desert
soil, (AL): alluvial soil, (BL): black soil, (FR): forest soil, (LA): laterite soil, (PM): peaty/marshy soil,
(RE): red soil, (SA): saline soil, (YE): yellow soil.

To prevent image overlap, the images were labeled by experienced professors of the
soil science department at VIT University, India. Table 2 lists details of the VITSoil dataset.

Table 2. Details of the VITSoil dataset.

Soil Name Symbol Initial
Quantity

Augmented
Quantity Description

Arid/Desert AD 489 3587 Deposited primarily by wind activities.
Alluvial AL 433 3524 This is depositional soil transported by streams, rivers, etc.
Black/Regur BL 579 3718 Mature soil with a high-water retention capacity.
Laterite LA 561 3793 Created as a result of high leaching.
Peaty/Marshy PM 579 3773 The growth of vegetation is very less. Heavy soil with black color.
Red RE 502 3775 Porous, friable structure.
Saline SA 586 3640 They are infertile and do not support any vegetative growth.
Yellow YE 483 3747 Porous, friable structure. The lower layer is reddish-yellow or yellow.

Forest FR 652 3808 Based on the mountain environment where they were produced, they
vary in structure and texture.

Total 4864 33,365

Note: The abbreviations in the category are used to represent the types of soils.

3.4. Data Preprocessing

Finding a large number of correctly labeled images is essential to develop neural
network models. Image data augmentation is a technique used to artificially increase the
quantity of data in a dataset using a varied version of the dataset’s images. Numerous
studies have shown the advantages of training a deep learning neural network model using
a large dataset. That is, a larger dataset allows the development of improved models.

Several versions of images are created using augmentation approaches by increasing
the capacity of the fit models to generalize what they have learned to new images. In the
course of the research, we used Keras’ deep learning neural network library which includes
the image data generator class, allowing us to fit models with image data augmentation.
This image data generator class supports a wide range of pixel scaling techniques and
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approaches. To perform image zoom, shift, flip, and rotation, we frequently use the zoom-
range, width-shift-range, height-shift-range, horizontal-flip, and rotation-range arguments.
We reserved 360 samples from the 4864 VITSoil dataset at random for testing and then
implemented the augmentation processes on the outstanding 4504 soil samples to create a
unique test dataset that was not used for modeling. The augmentation process increased
the 4504 soil samples to 37,869, resulting in a substantially large soil-image dataset for
the experiments.

A neural network console software application developed by Sony Network Com-
munication Inc. was used to process the images to ensure that the dataset had the same
image size and format. This software resizes the images belonging to nine classes into
224 × 224-pixel RGB images and converts them to PNG format. To avoid overfitting the
model, we randomly partitioned the 37,869 image samples into two parts: 70% training
set and 30% validation set. The concept is to have three sets of data: one used to train the
model (train), one used for validation purposes, such as hyperparameter tuning and model
selection, and one used to perform a final model verification (test).

3.5. Model Training

Soil-MobiNet, similar to other CNN models, takes a soiled image as an input in the
form of pixels and assigns significance (learnable-weights and biases) to various features of
the image to distinguish one from the other. Soils have several textures that can be used
to describe their appearance. However, some soil characteristics or properties, such as
color (shade), are challenging to discern from one another because they sometimes look
similar; for example, peaty soil and black soil; red soil and yellow soil. Therefore, directly
using FC and convolutional layers to extract features from images would not provide high
accuracy [48].

To address this limitation, we built a Soil-MobiNet based on three dense layers. Dif-
ferent filter sets are used to capture textures such as edges, spots, and patterns for an
individual convolutional. To obtain a desired response for a particular pattern or texture,
each filter was trained. For the same soil image, the feature maps of the convolutional layers
presented various activation effects. Soil-MobiNet has internal structures meant to run on
two-dimensional soil images and, hence, preserves the spatial relationships ascertained by
the model.

The soil-type features that the Soil-MobiNet model identifies can be specifically found
using the two-dimensional filters that the model learned. Additionally, the activation maps
produced by the convolutional layers of Soil-MobiNet can be used to comprehend the
precise features identified for a specific input soil image. The learned filters in neural
networks are simple weights. Figure 6 shows samples of some of the soil images and their
feature maps as captured by the model’s first convolutional layer. In particular, the training
was not regularized by weight decay, and no dropouts were introduced. Tables 3 and 4
outline the learning environment and values of the parameters used to train the model.

Table 3. Training Environment.

Computer Description

Model Dell Inspiron 15

Processor Intel(R) Core (TM) i7-7500U; CPU @ 2.70 GHz–2.90 GHz

RAM 12 GB

System 64-bit operating system

Windows Windows 10 Education
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Table 4. Values of the Parameters in the Proposed Soil-MobiNet Architecture.

Parameters LR Scheduler
and Parameters

Proposed Model Name Soil-MobiNet Optimization ADAM Learning Rate 0.0001

Dataset VITSoil Framework TensorFlow.Keras Epoch 135

Used Software Jupyter Notebook Loss Type Categorical
Cross-entropy Steps Per Epoch 44

Image Size 224 × 224
Activation function

ReLu
Softmax

Avg. Epoch time 108 s
Batch Size 27
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Figure 6. Feature maps of some VITSoil images as captured by the first convolutional layer of the
model. From the top left; (a) arid soil, (b) alluvial soil, (c) black soil, (d) yellow soil, (e) laterite soil,
with each having its feature maps on the right side.

3.6. Evaluation Metric

We tested the efficacy of the model performance using the test dataset. In particular,
we used the machine learning package Scikit-Learn’s syntax to construct the classification
report: “from sklearn. metrics import classification report”. However, we describe the
mathematical foundations of these metrics using four procedures to determine whether the
predictions are accurate or inaccurate.

Accuracy, precision, and recall are computed as the evaluation metrics in this study to
thoroughly assess the proposed method’s classification performance for diverse types of
soil images.

True Negative (tn): Implies the case was negative and predicted negative.
True Positive (tp): Implies the case was positive and predicted positive.
False Negative (fn): Implies the case was positive but predicted negative.
False Positive (fp): Implies the case was negative but predicted positive.
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Precision shows what percentage of the predictions are correct, that is, the ability of the
Soil-MobiNet model not to label an instance positive that is negative. Precision is defined
for each class as the ratio of a truly positive to the sum of a truly positive and false positive.

Precision is calculated as follows:

Precision (Pr) =
tp

(tp + f p)
(8)

A recall is defined for each class as the ratio of true positives to the sum of true
positives and false negatives. That is, what percentage of the positive cases has the model
identified? Recall implies the fraction of positives that are correctly identified, which can
be calculated as follows:

Recall (Re) =
tp

tp + f n
(9)

The F1 score is calculated as follows:

F1 − Score(β) =

(
1 + β2)tp

(1 + β2)tp + β2 f p + f n
, (10)

where β is set to 1.
Accuracy is calculated as follows:

Accuracy (Acc) =
∑c

c tpc
N

, (11)

Furthermore, support is the number of actual occurrences of the class in the specified
dataset.

Macro average is calculated as follows:

βmacro =
1
q

q

∑
λ=1

B(tpλ, f pλ, tnλ, f nλ) (12)

Micro average or the weighted average is calculated as follows:

βmicro = B

(
q

∑
λ=1

tpλ,
q

∑
λ=1

f pλ,
q

∑
λ=1

tnλ,
q

∑
λ=1

f nλ

)
, (13)

where L = λj, (j = 1, . . . , q) is the set of labels, and B(tp, tn, f p, f n) is calculated based
on the number of tp, tn, f p, and f n, respectively. Let tpλ, f pλ, tnλ, and f nλ represent the
number of tp, f p, tn, and f n after binary evaluation for a label λ.

4. Results

This section presents the acquisition of the results, which are in the form of tables,
graphs, and images, and the discussion of the results.

4.1. Acquisition of Results

From S1_Soil-MobiNet codes (Supplementary Material), our Soil-MobiNet model
exhibited a training and validation accuracy of 98.47% and a training and validation loss of
0.0469, representing 4.69% after 4 h of training and validation. Figure 7a,b show a graph of
training and validation loss (a) and training and validation accuracy (b).

Figure 8 illustrates the Soil-MobiNet model’s confusion matrix for the predicted classes.
The confusion matrix describes the performance of our Soil-MobiNet model on the test
data and demonstrates where the model can make accurate soil predictions alongside how
the Soil-MobiNet model gets confused when making soil predictions. For instance, at
some point, the model got confused in predicting the soil type of SA instead of AL. It is
understandable since it is easy to mix the soil type of AL and SA due to their similarity in
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texture and color. The salt content of the soil type of SA is the only variance that soil science
experts can use, in most cases, to distinguish between them. Figure 9 depicts a graph of
the performance evaluation of categories in the VITSoil dataset, and Table 5 displays the
VITSoil dataset’s performance evaluation measures.
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Validation loss is a metric used to evaluate how well a deep learning model performed on the
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used during the training process to validate the generalizability of the model or for “early stopping”,
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Table 5. Performance evaluation measures for the VITSoil dataset.

Pmacro Rmacro Pmicro Rmicro Average
0.94 0.93 0.94 0.93 0.93

NB: Pmacro (precision macro average); Pmicro (precision micro average); Rmacro (recall macro average); Rmicro (recall
micro average)

4.2. Discussion of Results

In Figure 7, the training and validation accuracy graph of the Soil-MobiNet model
for classifying the VITSoil dataset reveals how well the model performed overtime on the
training and validation datasets. The 98.47% accuracy represents the percentage of correctly
predicted labels relative to the total number of samples. During the early phases of training,
both training and validation accuracy consistently increased, indicating that the model
was learning and enhancing its ability to classify the data. The training accuracy tends to
increase over time and ultimately reaches a plateau, whereas the validation accuracy also
increases. This demonstrates how well the model suits the training data, as there was no
indication that the model overfits the data. The training and validation loss graph reveals
the model’s efficacy in terms of its ability to minimize the loss function during training.
As the objective was to minimize this value, the loss represents the difference between the
predicted and actual labels. Both training and validation loss was initially high because
the model had not yet learned to make precise predictions. As training progressed, the
loss values decreased as the model adjusted its internal parameters to closely match the
training data.

Figure 9 and Table 5 show a classification report which is a summary of the perfor-
mance of a classification model, presented as a graph and a table, providing various metrics
for each class in the dataset. They offer a detailed analysis of the model’s precision, recall,
and F1 score for each class. The effectiveness of a model is wholly evaluated by examining
both precision and recall and that of the F1 score. A graph of the performance assessment of
the Soil-MobiNet model in categorizing soils from the VITSoil dataset is shown in Figure 9.
In particular, the soil type of AL exhibited 82% recall but 87% precision, and the soil type of
YE was 97% recall but 85% precision. The accuracies of the remaining soil classifications
ranged from 89% to 100%. Table 5 is the weighted average or macro-average and the
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micro-average values of the classification report of the Soil-MobiNet model in classifying
the VITSoil dataset. The weighted average considers the contribution of each class based
on its support, while the macro-average treats all classes equally. The weighted average or
macro-average values of the classification report provide an overall performance measure
for the model. From the table, the Soil-MobiNet average score of 93% demonstrates the high
model performance in classifying the nine soil classes. These results are good indicators of
how well the proposed Soil-MobiNet model addresses soil classification, demonstrating
great generalization, eliminating overfitting and underfitting during training, resilience,
and accurately classifying the soil. The reliable dataset and the novel model we gathered
and built resulted in a more accurate model. Thus, the Soil-MobiNet model was effective
and efficient because only 135 epochs were required for a batch size of 27, substantially
reducing costs and resources for computation such as time, energy, and memory.

Figure 8 is the confusion matrix of the Soil-MobiNet model in classifying the VITSoil
dataset. The confusion matrix shows where our model gets confused in classifying the
VITSoil dataset. By analyzing the values in the confusion matrix and the derived metrics,
we gain insights into the strengths and weaknesses of the model’s predictions, such as
whether it tends to have more false positives or false negatives. For instance, confusing
the soil type of RE and YE is understandable because they are mostly found mixed up
in a particular location and, as a result, ICAR has even put them together as one soil. In
the same way, confusion about the soil type AL and SA is not unusual since they are very
identical in structure, texture, and color. The only difference that soil science experts can
sometimes use to distinguish them is the salt content in SA soil. The non-zero off-diagonal
elements (0.02, 0.05, and 0.08) in the confusion matrix represent the percentage of the few
misclassifications of the model.

5. Implementation of Soil-MobiNet Model on Smartphone

The implementation of the Soil-MobiNet model on smartphones opens new possibil-
ities for real-time monitoring, precision agriculture, and environmental studies, among
other applications. It brings the benefits of accurate soil classification, morphology analysis,
and geospatial location determination to the hands of users in a portable and efficient
manner. The implementation process considered the preprocessing steps, input/output
formats, and interaction with smartphone sensors for capturing geospatial information.

After training and optimizing the Soil-MobiNet model, the saved model is then con-
verted into a TensorFlow Lite format using the TensorFlow Lite converter. The TensorFlow
Lite Converter is a command-line tool or a Python API that converts models from various
TensorFlow formats (such as saved model, frozen graph, or checkpoint) to the TensorFlow
Lite format. The model is then compiled into an Android application and deployed onto
smartphones. The interface design allows users to choose between using their smart-
phone’s camera to capture real-time images of soil or selecting the soil image from their
storage space. Before capturing the soil image, the user must enable the camera’s location
settings to obtain the geospatial location information. The model on the back end of the
app analyzes the image and predicts the type of soil taken or loaded from memory in real
time. Figure 10 shows the steps to deploy the Soil-MobiNet model on the Android phone.
Although the model can process and run successfully on the user’s smartphone because of
its light weight and no need for a cloud server and internet connection, the cloud platform,
which will require the use of an internet connection, will help save the downloaded soil
image and soil type that the model predicted into the server’s database.



Sensors 2023, 23, 6709 18 of 23

Sensors 2023, 23, x FOR PEER REVIEW 18 of 23 
 

 

5. Implementation of Soil-MobiNet Model on Smartphone 
The implementation of the Soil-MobiNet model on smartphones opens new possibil-

ities for real-time monitoring, precision agriculture, and environmental studies, among 
other applications. It brings the benefits of accurate soil classification, morphology analy-
sis, and geospatial location determination to the hands of users in a portable and efficient 
manner. The implementation process considered the preprocessing steps, input/output 
formats, and interaction with smartphone sensors for capturing geospatial information. 

After training and optimizing the Soil-MobiNet model, the saved model is then con-
verted into a TensorFlow Lite format using the TensorFlow Lite converter. The TensorFlow 
Lite Converter is a command-line tool or a Python API that converts models from various 
TensorFlow formats (such as saved model, frozen graph, or checkpoint) to the TensorFlow 
Lite format. The model is then compiled into an Android application and deployed onto 
smartphones. The interface design allows users to choose between using their 
smartphoneʹs camera to capture real-time images of soil or selecting the soil image from 
their storage space. Before capturing the soil image, the user must enable the cameraʹs 
location settings to obtain the geospatial location information. The model on the back end 
of the app analyzes the image and predicts the type of soil taken or loaded from memory 
in real time. Figure 10 shows the steps to deploy the Soil-MobiNet model on the Android 
phone. Although the model can process and run successfully on the user�s smartphone 
because of its light weight and no need for a cloud server and internet connection, the 
cloud platform, which will require the use of an internet connection, will help save the 
downloaded soil image and soil type that the model predicted into the serverʹs database. 

 
Figure 10. The framework of the Implementation of the Model on Smartphones. 

Figure 11 shows the four possible predictions anticipated. (a) Blue bars in the pre-
dicted soil type indicate a 100% certainty that the model correctly identified the soil type 
as laterite soil. (b) Estimated soil type with grey and blue bar charts indicating 91% confi-
dence that the model identified the soil type as arid soil and 9% as two other different 
soils. (c) Predicted soil type with a red bar chart indicating 100% certainty that the model 
mistook the genuine soil type for an arid one, whereas the actual soil type is yellow. (d) 
Predicted soil type with blue and red bar charts indicating 82% confidence in the model 
identifying the soil type as alluvial and 18% as arid soil, although the actual soil is not 
alluvial. 

Figure 10. The framework of the Implementation of the Model on Smartphones.

Figure 11 shows the four possible predictions anticipated. (a) Blue bars in the predicted
soil type indicate a 100% certainty that the model correctly identified the soil type as laterite
soil. (b) Estimated soil type with grey and blue bar charts indicating 91% confidence that the
model identified the soil type as arid soil and 9% as two other different soils. (c) Predicted
soil type with a red bar chart indicating 100% certainty that the model mistook the genuine
soil type for an arid one, whereas the actual soil type is yellow. (d) Predicted soil type with
blue and red bar charts indicating 82% confidence in the model identifying the soil type as
alluvial and 18% as arid soil, although the actual soil is not alluvial.
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Deep learning CNNs use features, such as texture, shape, patterns, and color, extracted
from an image in the form of pixels and then assign weights and biases. Because the
model has learned the features of the soil images under various lighting conditions and has
provided exceptionally accurate findings, we expect factors, such as illumination conditions
and the effect of white balance associated with the type of smartphone camera used, to
have little or no impact on the predictions.

Unlike some traditional methods of soil identification, only color analysis is performed
on images [16]. Although more beneficial to people, such as farmers, field workers, and
pedologists, who are widely separated and frequently engage in soil activities, the devel-
oped app can be used by anyone interested in knowing the type of soil encountered. The
uniqueness of this method of soil identification is that it does not require an expert user
with prior knowledge of the subject. Unlike other traditional methods where experiments
are conducted under controlled illumination conditions or in a closed environment, this
method is not affected by illumination conditions. Moreover, the proposed approach is
independent of the observer’s sensitivity, knowledge, experience, or color vision—qualities
contrasting with most traditional methods such as the MCCs.

6. Conclusions and Prospects

In this paper, we introduced Soil-MobiNet, a convolutional neural network model
specifically designed for soil classification to determine soil morphology and its geospa-
tial location. Leveraging the power of smartphones, Soil-MobiNet offers a portable and
accessible solution for real-time soil analysis, empowering farmers, researchers, and land
managers with valuable insights into soil characteristics. The development of Soil-MobiNet
addresses the limitations of traditional manual techniques by automating the soil classifica-
tion process. By analyzing soil images captured through smartphone cameras, the model
effectively extracts complex spatial patterns and identifies different soil types based on
their morphology. The integration of geospatial information further enhances the under-
standing of soil distribution and provides accurate location data, contributing to informed
decision making. The results of our experiments and comparative analysis demonstrate
the effectiveness and practicality of Soil-MobiNet. The model exhibits high accuracy in soil
classification, outperforming existing methods and showcasing its potential for widespread
adoption. Having a testing accuracy of 93% on average, and a training and validation
accuracy of 98.47%, Soil-MobiNet showed outstanding performance in categorizing the
VITSoil dataset. The model showed a few misclassifications between soil types of RE and
LA and between soil types of RE and YE. Nevertheless, the proposed solution is practical
because the soil pairings are nearly non-exclusive in terms of texture, structure, and color.

Although this is the first time classifying soils into nine categories as far as our memory
serves us, and upon verification from the literature, the model’s 98.47% attained accuracy
on nine classified soil classes supersedes several existing research on soil classification that
only classified soils into a minimum of three and a maximum of seven categories. We
believe that, with more training, the model can achieve an ideal accuracy of approximately
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99%; future work will focus on this regard. Appendix A is a table of some soil classification
performances with the latest technological approaches in the literature. Moreover, the opti-
mization of Soil-MobiNet enables real-time inference on resource-constrained smartphone
devices, ensuring that soil analysis can be conducted anytime and anywhere.

The implications of Soil-MobiNet are significant across various domains. In agricul-
ture, the accurate classification of soil types can help farmers make informed decisions
about crop selection, fertilization strategies, and irrigation management. This leads to im-
proved yields, reduced resource waste, and enhanced sustainability. In land management
and urban planning, Soil-MobiNet aids in understanding soil properties for construction
projects, identifying areas prone to erosion or contamination, and facilitating informed
decisions regarding land use and zoning. The integration of geospatial information with
soil classification offers additional benefits. By mapping the spatial distribution of different
soil types, Soil-MobiNet contributes to comprehensive soil surveys and inventories. This
information can guide land management practices, facilitate targeted soil conservation
measures, and support environmental monitoring efforts. Furthermore, the geospatial
data generated by Soil-MobiNet can be integrated with existing geographic information
systems (GIS) and remote sensing technologies to create detailed soil maps and enhance
the accuracy of land resource assessments.

Despite the success and potential of Soil-MobiNet, there are a few limitations that
should be acknowledged. Firstly, expanding the dataset used for training Soil-MobiNet
with diverse soil samples from different regions can improve its generalizability and robust-
ness. Future research can focus on increasing the soil classes. Although the model has been
trained on soil images of varying light intensities and has proved to be resilient, once the
model’s performance among other factors is dependent on the quality of soil images cap-
tured through smartphone cameras, factors such as lighting conditions, image resolution,
and camera capabilities may occasionally impact the accuracy of soil classification.

In conclusion, Soil-MobiNet represents a significant advancement in soil classification
and analysis by harnessing the capabilities of convolutional neural networks and the
ubiquity of smartphones. By providing an accessible, accurate, and real-time solution,
Soil-MobiNet enables stakeholders to make informed decisions regarding soil management,
land use planning, and environmental conservation. This research opens new avenues for
the application of deep learning techniques in the field of soil science and paves the way
for further advancements in mobile-based soil analysis. As technology continues to evolve,
we envision a future where soil classification and analysis become seamlessly integrated
into everyday smartphone applications, facilitating sustainable practices and ensuring the
health of our ecosystems.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s23156709/s1, Supplementary Document S1_Soil-MobiNet_Codes.
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Appendix A

Table A1. Table of some soil classification performance with the latest technological approaches in
the literature.

S. No. Author
(Year)

Image
Modality

Datasets
(Quantity)

Method
(Model)

No. of
Classes

Outcome
(%)

1 Ours
(2023)

VITSoil
dataset 4864 Soil-MobiNet 9

Accuracy: 98.47%
Precision: 94%

Recall: 93%

2 Azizi et al.,
(2020) [36] Soil Aggregates Not specified

InceptionV4
VggNet16
ResNet50

6
Accuracy: 95.83%; 97.12%; 98.72%

Precision: N/S
Recall: N/S

3 Padarian et al.,
(2018) [32]

LUCAS
Soil dataset 19,037 CNN 6

Accuracy: 87%
Precision: N/S

Recall: N/S

4 Inazumi et al.,
(2020) [37]

Sieved
Laboratory soil 1060 CNN 3

Accuracy: 86%
Precision: 77%

Recall: N/S

5 Riese et al.,
(2019) [33]

LUCAS
Soil dataset 16,076

CNN
ResNet

CoodNet
4

Accuracy: 71%, 72%, 73%
Precision: 56%, 56%, 62%

Recall: N/S

6 Jiang et al.,
(2021) [35]

Field Soil
horizon 160 U-Net 3

Accuracy: 86%
Precision: 82%

Recall: N/S 83%

7 Barkataki et al.,
(2021) [39]

Synthetic GPR
Soil Data 700 CNN 7

Accuracy: 97%
Precision: 85%

Recall: 92%

8 Zhong et al.,
(2021) [38]

LUCAS Soil
dataset 17,939 LucasResNet16

LucasVGGNet16 4
Accuracy: 80.3%, 85.3%
Precision: 74.9%, 76%

Recall: N/S
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