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Abstract: The Solar Insecticidal Lamp Internet of Things (SIL-IoTs) is an emerging paradigm that
extends Internet of Things (IoT) technology to agricultural-enabled electronic devices. Ensuring
the dependability and safety of SIL-IoTs is crucial for pest monitoring, prediction, and prevention.
However, SIL-IoTs can experience system performance degradation due to failures, which can be
attributed to complex environmental changes and device deterioration in agricultural settings. This
study proposes a sensor-level lightweight fault-detection scheme that takes into account realistic con-
straints such as computational resources and energy. By analyzing fault characteristics, we designed
a distributed fault-detection method based on operation condition differences, interval number
residuals, and feature residuals. Several experiments were conducted to validate the effectiveness of
the proposed method. The results demonstrated that our method achieves an average F1-score of
95.59%. Furthermore, the proposed method only consumes an additional 0.27% of the total power,
and utilizes 0.9% RAM and 3.1% Flash on the Arduino of the SIL-IoTs node. These findings indicated
that the proposed method is lightweight and energy-efficient.

Keywords: distributed fault detection; solar insecticidal lamps internet of things; quantile method;
two-hop information

1. Introduction

The solar insecticidal lamp (SIL) has gained widespread adoption in agricultural pest
management and control, offering an environmentally friendly approach to pest control.
Recent advancements in IoT technology have enabled SILs to expand their functionalities
and improve operational life through pest monitoring, pest outbreak area positioning,
and energy optimization in battery-powered devices [1]. Yang et al. [2] have indicated
that the fixed effective killing distance of SIL ranges from 50 to 110 m, which falls within
the communication range of ZigBee. Leveraging this characteristic, SIL-IoTs nodes can
collect and transmit data related to pest statistics (e.g., the number of pests killed in a short
period of time), component status information (e.g., voltage and current values of various
components), and meteorological environment information to the back-end system via the
network [3]. This data transmission allows farmers to accurately use pesticides in areas
with varying pest populations, therefore avoiding excessive pesticide usage, as shown in
Table 1. Moreover, IoT devices facilitate continuous and remote monitoring of SIL-IoTs’
component status, enabling timely failure reporting and improving the reliability and data
quality of SIL-IoTs.

Sensors 2023, 23, 6672. https://doi.org/10.3390/s23156672 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23156672
https://doi.org/10.3390/s23156672
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6700-9347
https://orcid.org/0000-0002-3359-1244
https://orcid.org/0000-0002-2842-6340
https://doi.org/10.3390/s23156672
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23156672?type=check_update&version=2


Sensors 2023, 23, 6672 2 of 31

Figure 1 illustrates some key elements and functionalities of a typical SIL-IoTs node.
Among other core components, sensors are used to further embed various intelligence
capabilities into the SIL-IoTs node. For example, a solar energy system allows the SIL-IoTs
node to be charged during the day, while at night it is programmed to automatically attract
pests. A metal mesh is used to kill pests (by contact) by discharging a sudden high-voltage
pulse. During this process, several intelligent sensors monitor environmental conditions,
calculate the number of pests killed and determine the operating status of the modules.
During rainy periods, the SIL-IoTs switch to sleep mode by turning off the lure lamp and
metal mesh to prevent damage and save energy.

Table 1. Comparison of SIL and SIL-IoTs node.

SIL SIL-IoTs

Price CNY 1100 (about $160) CNY 1500 (about $219)

Function Harvest energy
Kill pest

SIL’s functions
Count killed pests

Monitor component status
Monitor environment

Advantage Cheap
Easy to use

Provide farmers with killed pest
statistics for targeted pesticide usage

Detect faults timely to ensure reliability
of SIL-IoTs

Drawback Inability to perceive information Expensive price

Front of a SIL-IoTs node Behind of a SIL-IoTs node Circuit board of a SIL-IoTs node
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Figure 1. An example of a SIL-IoTs node, where a temperature sensor inside an electrical box is used
to monitor the thermal state of the battery and IoTs devices. The light intensity sensor is used to
monitor the condition of solar panels. More details can be seen from [4].

Typically, SIL-IoTs nodes are geographically dispersed and deployed in an unattended
and harsh environment. Inevitably, the SIL-IoTs nodes are susceptible to aging, theft, and
vandalism [5]. According to several relevant literature [6], there have been 19 related
news reports of SIL failures in the past 20 years, and a total of more than 7000 SILs have
been abandoned due to insufficient fault detection and maintenance work, which is not
conducive to the promotion of products and the establishment of user confidence.

The above issues result in faulty conditions and abnormal operation of SIL-IoTs
nodes, which affect the operational capabilities and overall performance of SIL-IoTs. For
instance, if the energy harvesting system fails (causing the solar panel to continuously



Sensors 2023, 23, 6672 3 of 31

charge the battery without a control mechanism), the battery will eventually heat up and
cause performance degradation, or even explode and cause damage to SIL-IoTs nodes. In
addition, the deployment of SIL-IoTs nodes in remote locations makes real-time inspection
and maintenance difficult. Therefore, it is a challenging task (to monitor and detect the SIL-
IoTs node faults) to ensure adequate and efficient operation throughout the lifecycle. If there
is an adequate provision of computational capacity and energy, traditional approaches can
provide good detection performance in terms of real-time response, data loss prevention,
and less data transmission [7,8].

The motivation and benefits of this research are as follows:
As SIL-IoTs nodes are often deployed in the field, they are susceptible to aging, van-

dalism, and other factors that can lead to failures. To detect faults in SIL-IoTs, appropriate
fault diagnosis methods need to be investigated. Deploying fault diagnosis methods on
the device side can improve the efficiency of device data usage and reduce the energy
consumption of missing data and transmitted data due to data backhaul. The background
characteristics of SIL-IoTs need to be considered when designing fault diagnosis meth-
ods, including:

1. The computational burden of fault-detection strategies needs careful consideration in
practical applications. For example, SIL-IoTs nodes are resource-constrained devices,
which indicates that the fault-detection model should be lightweight to reduce the
computational burden;

2. The low deployment density of SIL-IoTs node leads to an insufficient number of nodes
in geographical proximity, and the existing distributed fault diagnosis methods are
difficult to achieve better results in this case, hence it is critical to design a distributed
fault diagnosis method with low dependence on the number of neighboring nodes.

SIL-IoTs is a kind of typical agricultural IoT equipment, thus the proposed method in
this paper can also be used in IoT equipment with similar characteristics in, e.g., intelligent
irrigation equipment, and micro weather stations.

Based on the above, this research makes the following contributions:

1. We propose a novel and easily implementable fault-detection scheme for SIL-IoTs
nodes deployed in low-density fields. This scheme is based on multi-factor corre-
lation analysis, ensuring high performance even in scenarios where relevant data
from neighboring nodes are missing or only a small number of neighboring nodes
are operational;

2. We develop a computationally efficient method for estimating weight parameters in
linear regression using historical data to mitigate the limited computational capability
and bandwidth. This approach reduces the computational burden while maintaining
accurate fault-detection capabilities;

3. We introduce a regression-based machine health prediction method to deal with the
impact of unreliable neighboring nodes on fault-detection probability. This approach
leverages and combines results from multiple neighboring nodes, enhancing the
reliability and robustness of fault detection.

These contributions address key challenges in fault detection for SIL-IoTs, such as
handling missing data, optimizing computational resources, and improving reliability
in the presence of unreliable neighboring nodes. Thus, this research contributes to the
advancement of fault-detection techniques for SIL-IoTs in agricultural settings.

2. Related Work

Fault detection and prediction are critical to enabling proactive intelligent device
health management [9,10]. A well-established approach is to detect faults in a centralized
manner at the server level, which requires periodic collection of information from all nodes
(i.e., each SIL-IoTs periodically transmits to the data collection server) and performing
inference processes at the back end [7]. For instance, the connectivity metrics of all the
nodes are transmitted to the back end and the root causes are troubleshot using a decision
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tree [11]. Tang et al. [12] proposed a neighborhood hidden conditional random field method
to monitor the health of wireless sensor networks. The posterior probability of different
faulty states is estimated and used to classify faults at the back end.

As shown in Table 2, unlike established and traditional IoT applications, SIL-IoTs
devices are mainly characterized by (1) limited on-board storage and computing capacity,
(2) remote deployment locations with poor network conditions, and (3) deployment to
cover a large geographical area. Due to the high communication overhead and detection
delay caused by multi-hop data transmission, this approach is not efficient in terms of both
overall detection performance and resource allocation (i.e., devices are battery-powered
and therefore have limited energy). Although Yang et al. [4] has proposed a scheme for
fault self-inspection in the Arduino chip of SIL-IoTs, the scheme does not take into account
the information interaction between nodes, and further analysis cannot be performed for
some fault situations, such as the mismatch between the current and light intensity of the
solar panel.

Table 2. Comparison of research related to distributed fault detection.

Ref. Scenario Implement Method Deployment Density Battery-
Powered

Lightweight
Design

Energy Con-
sumption

[13] Printer
systems Sensor node Consistency

check N/A N/A N/A N/A

[14] WSNs Simulation
Dual
thresholds
detection

1024/32 × 32 units N/A N/A N/A

[15] WSNs Simulation

Improved
dual
thresholds
detection

200/30 × 30 units N/A N/A N/A

[7]

Canopy
closure
monitoring
sensors

MSP430
Cumulative
sum sliding
window

200/2 ×106 m2 X N/A N/A

[16] WSNs Simulation Improved 3-σ
test 1024/1 ×106 m2 X N/A N/A

[17]
Industrial
control
systems

Simulation Genetic
algorithms N/A N/A N/A N/A

[18] WSNs Simulation
Support
vector
machines

200/30 × 30 units N/A N/A N/A

[19] WSNs Simulation
Dual
thresholds
detection

1024/2.62 ×105 m2 N/A N/A N/A

[20] Infrared
sensors Arduino Exponential

smoothing N/A X X N/A

[21] WSNs Simulation

Exponential
smoothing
and median
value
detection

N/A X X N/A

Our Arduino
Quantile
method and
residual test

7/2.72×105 m2 X X X

Since SIL-IoTs operate in multiple interrelated ways, the distributed fault-detection
strategy, which detects faults via local evidence on sensor nodes, can be applied to address
these issues [5]. Furthermore, the distributed fault-detection methods in wireless sensor
networks (WSNs) need to consider the computational capacity, bandwidth usage, and
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residual energy of nodes [22]. Therefore, the relevant literature work on such distributed
fault-detection methods is worthy of reference.

Several contributions have been made over the last two decades. One of the earliest
attempts can be found in [13], where consistency between local components is modeled
to detect faults in discrete-event systems. In contrast to [13], Chen et al. [14] proposed
a distributed fault-detection (DFD) method for measurements of WSNs by checking the
number of faulty states of neighboring nodes calculated by residual analysis between
neighboring nodes. In [15], a similar but slightly improved method is proposed where each
node detects faults by checking the number of neighboring nodes in possibly normal states,
which can be obtained by the method proposed in [14]. The results in [15] indicate that the
improved method can be applied in WSNs with fewer neighboring nodes.

In [14,15], the detection threshold is predefined according to different applications
at the time of deployment, which is a design parameter and highly dependent on the
application and requires specific knowledge. To avoid the need for on-site technical
expertise, Panda and Khilar [16] proposed a distributed self-fault-detection (DSFD) method
for large-scale WSNs, where each WSNs node can identify its own faulty conditions via a
modified three-sigma edit test.

The sliding window is an alternative method for detecting faults. For example, the
TinyD2 method [7] has been proposed to detect faults by first calculating a cumulative sum
on a sliding window. The original values are then reordered using the bootstrap method
to generate a new data sequence. If a change is detected, the faulty node is identified. In
addition, the TrusDet method [19] detects faults using a fused result from a sliding window,
where a more recent data point has a greater influence on the data fusion. A vote is then
taken to determine the status of the current area. All these approaches can be performed on
sensor nodes and require few parameters. However, fault detection based on node voting
results will fail if more than half of the nodes fail. In addition, their performance is affected
by the number of neighboring nodes and will fail if neighboring nodes are not correlated
with the target node.

Recent research has focused on correlation analysis-based fault-detection schemes,
which are suitable for optimal fault detection and are characterized by their independence
from expert knowledge. For instance, Hou et al. [23] applied the Jennic JN5139 sensor
board and controller board to fuse decisions evaluated by three sensor nodes in a motor
monitoring system. In [17,24], the spatial correlation analysis-based fault-detection methods
are developed to compress the data transmitted by neighboring nodes that affect the target
node. Fu et al. [20] proposed a trend correlation-based fault detection (TCFD) method,
which detects faults via trend correlation analysis and the mean value of neighboring
nodes. The self-starting mechanism is designed to reduce the response time of nodes to
faults. In addition, Cheng et al. [25] applied space–time correlation analysis to estimate
the weight value for fault detection, resulting in high detection accuracy and low false
alarm rate for temperature, humidity, and voltage data. Unlike [17,24,25], Liu et al. [26]
proposed a metric correlation-based distributed fault-detection method (MCDFD), which
is motivated by the fact that abnormal correlations between measurement metrics indicate
faults. By analyzing the metric correlation between sensor readings, the MCDFD method
can reduce communication overhead and has high detection accuracy under conditions of
dense distribution and high node failure rate.

In summary, the advantages of recent studies include (1) avoiding large amounts of
data transmission to the back end using local information decision-making, and (2) avoiding
inaccurate fault diagnosis results due to missing or asynchronous data from neighboring
nodes when fault diagnosis is performed in the back end. It should be noted that recent
studies in Table 2 are based on scenarios with a high deployment density of sensor nodes,
whereas the deployment density of SIL-IoTs nodes is usually sparse [2], which denotes
that diagnosing fault by voting strategy can lead to a decrease in diagnostic accuracy. The
literature [2] shows that when the effective pest-killing range of SIL-IoTs nodes is 110 m
(i.e., deploying SIL-IoTs nodes at 110 m intervals), only 10 nodes need to be deployed
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on a 600 m × 600 m map according to the optimal deployment method proposed in the
literature. Compared to the literature [18], which deploys 1024 nodes on a 512 m × 512 m
map, or the literature [16], which deploys 1024 nodes on a 1000 m × 1000 m map, the
deployment density of SIL-IoTs nodes is significantly lower. In addition, distributed fault
diagnosis methods require data interaction between nodes, which generates additional
communication energy consumption, which is detrimental for SIL-IoTs nodes.

Based on the above, the reviewed methods can be analyzed based on their adaptability
to detection thresholds and their method complexity. The adaptability of the detection
threshold allows nodes to set appropriate fault-detection thresholds based on the environ-
ment and component status, thus improving the accuracy of the fault-detection algorithm
across different nodes. The proposed method in this study detects faults by comparing
two fault-related features instead of relying on predefined thresholds. On the other hand,
the complexity of a method serves as an indicator of its practicality in nodes with limited
resources. The proposed method presented in this research demonstrates low complexity
by storing only a few parameters in the Arduino of SIL-IoTs nodes and utilizing summa-
tion calculations for fault detection. This ensures that the fault-detection method remains
practical and feasible even in resource-constrained nodes. By considering adaptability to
detection thresholds and method complexity, the proposed method offers a promising
solution for fault detection in SIL-IoTs, providing improved accuracy and practicality in
agricultural settings with limited resources.

3. System Model
3.1. SIL-IoTs System

The SIL-IoTs system consists of N nodes operating in a cooperative environment to
transmit data and make local decisions, where N = 1, 2, . . . , N. The ith node is equipped
with both control and sensor data processing capabilities (see Figure 2).

SIL-IoTs 

node

Solar panel

Lure lamp

Metal mesh

Voltage 

pulse count

Air 

temperature

Related 

humidity

Box 

temperature

Rain fall 
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Solar charge 

controller

Clock chip

Arduino
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signals
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𝑉𝐵 , 𝐶𝐵

𝑉𝑆 , 𝐶𝑆

𝑉𝐿, 𝐶𝐿

𝑉𝑀 , 𝐶𝑀

𝑉𝐶

𝑆𝐶

𝐿

𝑇0

𝐻

𝑇1

Count 

number of 

killed pests

Monitor 

environment 

conditions & 

electrical 

box 

condition

FunctionsModules

Figure 2. The SIL-IoTs system, where parts of the sensor signals are analyzed in Arduino and
transmitted to the cloud server via ZigBee.

Control signals are used to switch the SIL-IoTs on and off in a scheduled and optimal
manner. For instance, to protect the battery, the solar charge controller will stop charging
the solar panel when the battery is fully charged. It also cuts off the power supply when the
remaining energy in the battery is low. The lure lamp and metal mesh are only switched on
during the night and when it is not raining (the switch-on time is a designed parameter,
but will generally be between 7 p.m. and 4 a.m.). In addition, the lure lamp and metal
mesh components are switched off if a fault is detected or if they are damaged. This simple
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on/off approach can be easily implemented on a low-power microcontroller (e.g., Arduino
with 20 MHz CPU speed, 32 KB program memory size, and 2 KB RAM size).

Data collected from several on-board sensors are used to monitor the state of SIL-IoTs
nodes and obtain statistical indicators that contribute to the estimation of pest occurrence,
energy consumption trends, and fault symptoms [5]. Specifically, the voltage and current
values of the battery, solar panel input/output, lure lamp, and metal mesh (represented as
VB, CB, VS, CS, VL, CL, VM, and CM) are key contributors to SIL-IoTs energy management
and module monitoring. Voltage pulse count (the number of high-voltage pulses released
by the metal mesh, represented as VC) and sound count (a sharp noise when pests contact
the metal mesh, represented as SC) are used to estimate the number of pests killed, which
helps to establish pest occurrence statistics. In addition, meteorological observations
(i.e., light intensity, air temperature, and related humidity, denoted as L, Tout, and H)
are used to monitor the environmental conditions of SIL-IoTs. Finally, the temperature
difference of the SIL-IoTs device, which is obtained by the temperature difference between
the temperature inside the enclosure (denoted as Tin, box temperature sensor in Figure 1)
and the temperature outside the enclosure (denoted as Tout, air temperature sensor in
Figure 1), is used to estimate the thermal state of the battery and IoTs modules inside the
electrical circuit (enclosure).

3.2. Fault Types

The main purpose of this paper is to detect the fault, which cannot be found without
the information interaction of SIL-IoTs nodes and their neighboring nodes. Since only one
piece of node information is considered, the root cause that leads to the mismatch of two
measurements cannot be found in our previous research [4]. Based on this, we aim to detect
the following faults:

The mismatch between L and CS (known as F1): can be expressed in (1) according
to [4]. There may be a fault in the light intensity sensor or the solar panel which can be
detected by the neighboring information. The fault of the light intensity sensor may lead to
an error in the estimation and prediction of energy harvesting. The power generated by
the solar panel at the corresponding light intensity value is usually used to evaluate the
energy conversion of the solar panel [27,28]. Therefore, the fault of the solar panel may fail
the monitoring of the module.

F1state =

{
|0.0316× L− 6.28− CS| > 450, L < 106

|3200− CS| > 450, L > 106 (1)

The mismatch between T0 and T1 (known as F2): is represented in (2) according to [4].
The battery and the IoTs device in the electrical box may be in a thermal state due to some
faults, causing a large temperature difference between the two. In this case, it is important
to assess as soon as possible whether the problem is caused by a sensor fault or by heat
generation. If a sensor fault is the cause, a recalibration or reboot is required. Otherwise,
power to the node should be removed and maintenance personnel should be notified.

F2state =

{
normal, |T1 − T0| < 9
abnormal, |T1 − T0| > 9

(2)

SIL not switched on according to schedule (known as F3): On the one hand, when
a clock chip fault occurs, the local time is not synchronized with the background time
(e.g., the clock chip is restarted due to lack of power resulting in an abnormal local time),
which will cause the SIL to turn on at a non-setting time. In this case, the SIL is likely to
be switched on during the day and off at night. On the other hand, the nighttime is also
estimated by the light intensity sensor reading being close to 0 at night and the SIL being
on (both with current values significantly greater than 0). When the light intensity sensor
value is significantly greater than 0 and the lure lamp and high-voltage metal mesh are
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on, it is not possible to determine whether the light intensity sensor is faulty causing an
abnormal reading or the clock chip is faulty causing the local time to be abnormal. Such
faults can be identified by the light intensity values of neighboring nodes and the on/off
status of the SIL. When the light intensity values of neighboring nodes are close to 0 and the
target node has a high light intensity value, the light intensity sensor reading is considered
to be abnormal. In the absence of rain and with sufficient power remaining, the clock chip
of the target node can be identified as having an abnormal reading when the neighboring
nodes are off and the target node is on.

4. Proposed Method

The proposed method is triggered when the ith node cannot detect a fault using its
own available local information. In addition, we assume that the measurements of the
target node (node under fault detection) and its neighboring node (nodes geographically
adjacent to the target node) are time synchronized.

The flowchart of the proposed scheme is illustrated in Figure 3. To detect the above
faults, this section proposes distributed fault-detection methods for operating condition
differences, interval numbering residuals, and feature residuals.

Can detect faults 
according to operating 

conditions?

Proposed method

Fault related feature analysis

Characteristics analysis

Obtaining the basis of judgement 

in different operating conditions

Setting labels for different 

operating conditions

Counting the operating condition 
differences between faulty node 

and its neighbor nodes

Fault detection based on 
operating condition differences

Y

N

Large differences in 
feature values for the same 

environment?

Obtaining early data distribution 

patterns through iterative methods

Setting boundary values for 

different intervals

Numbering of the different 

intervals

Fault detection based on interval 
numbering residuals

Calculating the residuals of the 
numbering of the faulty node and 

its neighbor nodes

Y

Calculating the cumulative sum of 
the residuals of the different 

features of the faulty node and its 
neighbor nodes

N

Fault detection based on feature 
residuals

Figure 3. Flowchart of the proposed method.

Since the proposed distributed fault-detection method is implemented in the Arduino
and only needs to store the bounds of the interval between the light intensity and solar
panel current values and the thresholds for judging the on/off of the lure lamp, the
proposed method requires fewer parameters for its computation. In addition, the proposed
method only involves simplified logic operations and judgments, so the computational
complexity and running time are relatively low, which contributes to the reduction of
energy consumption. Based on the above, the proposed distributed fault-detection method
has the advantages of light weight, energy saving, and reduced dependence on fault-
detection thresholds. Therefore, the method is executed relatively infrequently and does
not result in any ongoing additional communication overhead and communication energy
consumption due to the use of two-hop information for distributed fault detection.
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4.1. Correlation Analysis

When performing distributed fault detection, it is first necessary to determine whether
the features between neighboring nodes are spatially correlated (i.e., whether the nodes
have the same feature trend over time), and distributed fault detection can only be per-
formed if the features have a high spatial correlation. This section uses a widely used spatial
correlation analysis method, the Pearson correlation coefficient (PCC) [29]. The Pearson
correlation coefficient is an accepted and valid indicator of correlation analysis (expressed
as r), ranging from −1 (highly negative correlation) to +1 (highly positive correlation) [30].
For two variables X and Y of a given sample size n, r can be expressed as:

r =
∑n

k=1(Xk − X)(Yk −Y)√
∑n

k=1(Xk − X)2
√

∑n
k=1(Yk −Y)2

(3)

where X and Y denote the average of X and Y. The spatial correlation between the device to
be detected and its neighboring nodes can be obtained from Equation (3), which represents
the covariance of X and Y divided by the product of the standard deviations of X and
Y. Fault detection can be performed based on the cumulative sum of the residuals of the
correlation features of the neighboring node and the faulty node only if there is a significant
positive spatial correlation between the faulty node and its two-hop neighboring nodes.

In addition, since the proposed method detects mismatch faults by comparing the
cumulative sum of residuals between multiple features related to the fault, it is necessary
to determine whether there is a feature correlation between multiple features. If the degree
of correlation between the two features is low, then detection using the cumulative sum of
residuals is less reliable. The Pearson correlation analysis is difficult to ensure good results
because the units of the feature metric may be different. In this case, a correlation analysis
method that can ignore the units of the features is required.

Random forest methods have significant advantages in analyzing feature importance
using small samples [31]. To select important features, a Permutation Importance score
(PI) is calculated for each decision tree of the random forest [32]. PI is obtained by ran-
domly shuffling each feature and computing the change in the performance of the random
forest. As shown in Equation (4), the importance score ranking is estimated by differ-
ences between the regression accuracy without randomly exchanging permuted out-of-bag
data (denoted as Ek) and the regression accuracy with randomly exchanging permuted
out-of-bag data (denoted as Exk). n denotes the number of decision trees included in the
random forest. Based on this, features are reordered from largest to smallest in the ranking
importance score.

PI =
1

n ∑n
k=1(Exk − Ek)

(4)

4.2. Operating Condition Difference Based Fault Detection

For features that vary significantly between operating conditions, labels can simply be
set based on the operating condition. As shown in Figure 4, the current values of the lure
lamp and the high-voltage metal mesh increase significantly when the SIL is in operation,
therefore, a threshold can be set to set different labels for the on and off conditions based
on historical data. For the time state (which only distinguishes between day and night),
the light intensity sensor values can be used to determine this. If the light intensity value
is less than 10 Lux, the current time is judged to be night, and vice versa for day. Based
on this, when detecting a clock chip fault, the faulty node can be judged according to the
operating status label of the neighboring node’s switch lights, without having to calculate
the difference between the current value of the faulty node and the neighboring node, thus
reducing the amount of data transmission and the amount of fault-detection calculations.
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Figure 4. Current values of (a) high-voltage metal mesh and (b) lure lamp.

There are two possibilities for a clock chip fault, one scenario is an abnormal light
intensity value and the other is an abnormal clock chip data. A clock chip fault will
result in abnormal local data which will affect the on/off status of the time-controlled SIL.
Specifically, the clock chip fault is detected based on the clock chip abnormality when the
node light intensity value is greater than 10 Lux and the lure lamp or high-voltage metal
mesh is turned on and estimated by the current value.

Since the operating condition of SILs can be simply classified as either on or off, day
and night can be indicated by whether the light intensity value is significantly greater than
0. Therefore, the operating condition of the clock chip fault can be indicated by the current
value of the lure lamp (denoted as CM), the current value of the high-voltage metal mesh
(denoted as CL), and the light intensity value L, as shown in Algorithm 1. TW represents
the operating condition number of the SILs. The lure lamp and high-voltage metal mesh
will only be switched on if the node determines that it is currently nighttime based on the
local time data. At this time, CM should be greater than 60 mA and CL should be greater
than 600 mA. Therefore, TW will be set to 1 and 0 otherwise. TL represents the day and
night conditions characterized by the light intensity value, stored as 0 and 1. 1 means
that it is currently day based on the light intensity value and 0 means that it is currently
night based on the light intensity value. As SIL-IoTs nodes are deployed in agricultural
fields, they should not be able to receive illumination from external light sources such as
streetlamps at night, and their light intensity value should be at a lower level. Therefore,
when the light intensity value is below 10 Lux, it is judged to be currently in a night state.

Algorithm 1: Calculating the operating condition TW and the time condition TL.

Input: CM, CL, L
Output: TW , TL

1 if CM > 60andCL > 600 then
2 TW ← 1
3 else
4 TW ← 0
5 end
6 if L > 10 then
7 TL ← 1
8 else
9 TL ← 0

10 end
11 return TW , TL;

The faulty node performs distributed fault-detection through the process of Algorithm 2
after obtaining the SIL operating condition and the day or night number based on the light
intensity value of its fault-free two-hop neighboring node. TW

y and TL
y represent TW and TL

of the node y (faulty node). S(TW) = {TW
1 , . . . , TW

K }, S(TL) = {TL
1 , . . . , TL

K} denote the TW
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and TL of all two-hop neighboring nodes of the node y, where K indicates the number of
two-hop neighboring nodes of the node y. STW and STL denote the accumulated sum of TW

and TL residuals of the faulty node and its two-hop neighboring nodes, where the initial
values of both STW and STL are set to 0. The final value of STW is obtained by accumulating
the absolute value of the residual value between TW

y and TW
i (each two-hop neighboring

node of node y). The final value of STL is obtained in the same way. When STW exceeds
STL , the abnormal clock chip data fault is detected and F3−W is uploaded to the back end.
When STW is less than STL , the light intensity value is abnormal, and the fault code F3− L
is uploaded to the back end. When STW is equal to STL , the result is uncertain, and the
corresponding fault label is F3−U.

Algorithm 2: Fault detection according to TW and TL.

Input: TW
y , TL

y , S(TW) = {TW
1 , . . . , TW

K }, S(TL) = {TL
1 , . . . , TL

K}
Output: FC

1 initialization: STW ← 0, STL ← 0;
2 for TW

i inS(TW) do
3 STW ← STW + |TW

i − TW
y |;

4 end
5 for TL

i inS(TL) do
6 STL ← STL + |TL

i − TL
y |;

7 end
8 if STW > STL then
9 return FC ← F3−W

10 else if STW < STL then
11 return FC ← F3− L
12 else
13 return FC ← F3−U
14 end

4.3. Interval Numbering Residuals Based Fault Detection

Not all faults have significant differences in operating conditions for the relevant
features. When there is no significant difference in operating conditions, it is neces-
sary to compare the data differences between the two features. Due to adverse factors,
e.g., environmental differences, deviations in sensor readings, aging of devices and weld-
ing processes, there may be large differences in the same features at the same time by
neighboring nodes, making it difficult to detect fault by residuals between the faulty and
neighboring node features directly. For instance, the light intensity value and solar panel
current value are affected by the degree of the dust cover, sunlight irradiation angle, device
installation location, and the degree of aging of the device. The light intensity value or solar
panel current value of different nodes under the same climatic environment and lighting
conditions may have large differences. As shown in Figure 5, although there are differences
in the relevant feature values of different nodes, the change trends of the feature values
at the same time are similar. Therefore, the historical data can be used for dimensionless
processing, i.e., the current feature value is estimated to be in what interval in the historical
data. Based on this, the proposed method sorts the features that fit this scenario based
on the historical data and sets the segment intervals, so that when a new feature value is
obtained, it is estimated to fall within a certain interval, completing the dimensionless pro-
cessing of the feature value. In this way, the type of fault can be determined by estimating
the residuals of the interval numbers of the corresponding features of the faulty node and
its neighboring nodes.
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Figure 5. Solar panels current values of different nodes with similar tendencies.

To quantify the distribution patterns of fault-related features at different nodes and to
reduce the storage of relevant parameters, the proposed method uses the quantile method
to construct mapping intervals. This method divides the range of probability distribution of
a random variable into multiple equal parts of numerical points and is commonly used as
median, quartile, percentile, etc. [33]. To take the quartile method as an example, suppose
a set of data X = x1, x2, x3, . . . , xn, where n denotes the number of data. After sorting
them in ascending order, choose Q1 = 1 + (n − 1) ∗ 0.25, Q2 = 1 + (n − 1) ∗ 0.5, and
Q3 = 1 + (n− 1) ∗ 0.75 as quartiles to divide X into four segments as shown in Figure 6.
A1, A2, A3 and A4 represent the quartiles based on the minimum (Min), Q1, Q2, Q3 and
maximum (Max) constituting the four equal intervals, based on which each piece of data in
X can be mapped to the corresponding interval as shown in Equation (5).

Min Max𝑄1 𝑄2 𝑄3

25% 25% 25% 25%

𝐴1 𝐴2 𝐴3 𝐴4

Figure 6. Diagram of quartile method.

f =


A1, when Min ≤ xi ≤ Q1

A2, when Q1 ≤ xi ≤ Q2

A3, when Q2 ≤ xi ≤ Q3

A4, when Q3 ≤ xi ≤ MAX

(5)

The quantile method is widely used in engineering applications due to its simplicity
and ease of use. However, current quantile-based distributed fault-detection methods
do not set intervals based on historical data but rather perform fault detection based on
multiple data from neighboring nodes simultaneously. For example, the process of the
quantile fault-detection method proposed in the literature [34] consists of:

Step 1: Collect information about neighboring nodes. Suppose the neighboring nodes
of node Si are N(Si) = Si1, Si2, . . . , Sik, then the dataset of neighboring nodes of node Si is
X(Si) = xi1, xi2, . . . xik.

Step 2: Sort X(Si) in descending order, extract the Q1, Q2, and Q3 values, and calculate
the difference between the value of each neighboring node and the median based on this,
as shown in Equation (6).

di = xi −Q2 (6)



Sensors 2023, 23, 6672 13 of 31

Step 3: Normalize data according to the Q1, Q2 and Q3 values and di, as shown in
Equation (7).

yi =
di

Q3 −Q1
(7)

Step 4: Compare the normalized value with the set threshold value θ and a fault
condition is judged when the threshold range is exceeded, as shown in Equation (8).

fSi =

{
Fault f ree, when |yi| ≤ θ

Fault, when |yi| > θ
(8)

If the number of neighboring nodes is less than four, the quadrature fault-detection
method will no longer work. Considering the low deployment density of SIL-IoTs nodes,
where each node may have only one or two two-hop neighboring nodes. Therefore, the
quartile method is unlikely to be effective. Since the data collected by SIL-IoTs nodes typi-
cally follows a historical cycle pattern, the proposed method uses the quantile method for
segmentation of historical data, mapping the currently collected data to the corresponding
interval numbers, as shown in Equation (5). Based on this, a mismatch fault between the
solar panel current value (denoted as CS below) and the light intensity value (denoted as L
below) can be detected by the following process, assuming that the faulty node Si has at
least one neighboring node that does not have an associated fault:

Step 1: The quantile method is used to obtain the quantile points of the fault-free
history data, and to generate segment intervals and numbers, as shown in Algorithm 3,
where A(CS), A(L), C(CS), and C(L) indicate segment intervals of CS and L and number-
ing of CS and L, respectively. The “sort()” function is to sort the set in ascending order, Qi
indicates the i− th quantile, and the “Min()” and “Max()” functions are used to take the
minimum and maximum values of the set, respectively, “C()” means the interval number, n
means the amount of historical data, and m is the number of segment intervals.

Algorithm 3: Conventional method of establishing CS and L segment intervals
and numbering for each node from historical data.

Input: CS = {CS
1 , . . . , CS

n}, L = {L1, . . . , Ln}
Output: A(CS) = {ACS

1 , . . . , ACS
m }, A(L) = {AL

1 , . . . , AL
m}, C(CS), C(L)

1 initialization: i← 1, j← 1;
2 CS ′ ← sort(CS), L′ ← sort(L);
3 while i < m do
4 QCS

i ← 1 + (n− 1) ∗ i/m;
5 i← i + 1;
6 end
7 ACS

1 ← [Min(CS ′), QCS

1 ), ACS

i ← [QCS

i−1, QCS

i ), ACS
m ← [QCS

m−1, Max(CS ′) + 1);
8 AL

1 ← [Min(L′), QL
1 ), AL

i ← [QL
i−1, QL

i ), AL
m ← [QL

m−1, Max(L′) + 1);

9 C(ACS

i )← i, C(AL
i )← i return A(CS), A(L), C(CS), C(L)

However, Arduino cannot store long-term historical data, thus it is necessary to iterate
through earlier data at the node side to calculate the quantile points, and the method process
is shown in Algorithm 4. Taking the light intensity value as an example, the initialized
interval set Aini(L) = AL

(ini,1), . . . , AL
(ini,m) is first set for all nodes based on the experience

of the earlier historical data. The set Lini = C1, . . . , Cm, a statistical set of initialized number
of intervals, consists of m zeros and is used to count the number of corresponding intervals
to which all sampled values belong during the iteration, where m denotes the number
of intervals. The solar panel current value is a fixed value of 3200 mA when the light
intensity is greater than 100,000 Lux, thus no count is performed when the light intensity is
greater than 100,000 Lux. The number of times is therefore not counted for light intensity
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values above 100,000 Lux. When the sensor collects the latest light intensity value Lt, it
determines thatLt belongs to the interval range AL

(ini,i) of Aini(L), and adds one to the
corresponding Ci value in Lini, thus counting the data distribution of light intensity values
during the iteration.

When the light intensity value is below 100 Lux several times (i.e., when the sun sets),
the sum of all interval statistics Ls and the interval of quantile index value La are counted
for that day, to calculate each quantile QL. As shown in Figure 7, when calculating the
quantile QL

2 , the lower limit of interval statistics Al and the upper limit Ar are initialized
to 0. When Ar is smaller than 2La, the value of Ar is assigned to Al and the value of Ar
becomes A′r = Ar + C1. When A′r is greater than 2La, the next step is judged; otherwise,
the A′r value is assigned to Al and the A′r value becomes A′′r = A′r + C2 until the latest Ar
value is greater than 2La. Based on this, the QL

(ini,2) index is determined to be closer to Al

or Ar to calculate QL
2 more accurately. Ar in Figure 8 is closer to 2La, so the upper bound of

AL
(ini,2) AL

(ini,2)(r) is used to calculate QL
2 . Since each interval contains La data equally, the

calculation can be based on the interval group distance, i.e., QL
2 = AL

(ini,2)(r)
2La
Ar

.

Algorithm 4: The L segment interval and numbering of each node is established
by iterations of the earlier data, and CS is the same.

Input: Lt
Output: A(L) = {AL

1 , . . . , AL
m}, C(L) = {CL

1 , . . . , CL
m}

1 initialization: Aini(L) = {AL
ini,1, . . . , AL

ini,m}, Lini = {C1, . . . , Cm} = {0, . . . , 0};
2 CS ′ ← sort(CS), L′ ← sort(L);
3 if Lt ≥ 100andLt < 100,000 then
4 for AL

ini,iinAini(L) do
5 if L + t ∈ AL

ini,i then
6 Ci ← Ci + 1;
7 end
8 end
9 end

10 if Lt < 100andLt+1 < 100andLt+2 < 100 then
11 LS ← ∑m

i=1 Ci, La ← LS/m;
12 for i← 1; i ≤ m; i ++ do
13 Al ← 0, Ar ← 0, c← 0;
14 for j← 1; j ≤ m, j ++ do
15 if Ar − i ∗ La < 0 then
16 Al ← Ar, Ar ← Ar + Cj, c← c + 1;
17 end
18 end
19 if i ∗ La − Al < Ar − i ∗ La then
20 QL

i ← AL
ini,c(l) ∗ (i ∗ La)/(Al);

21 else
22 QL

i ← AL
ini,c(r) ∗ (i ∗ La)/(Ar);

23 end
24 end
25 AL

1 ← [100, QL
1 ), AL

i ← [QL
i−1, QL

i ), AL
m ← [QL

m, 3200 + 1), C(CL
i )← i;

26 end
27 return A(L), C(L)
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𝐿 𝑄𝑖
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Figure 7. Accumulate interval statistics until Ar is greater than 2× La, where black lines represent
quantile index values and red dashed lines represent interval statistics. (a) Ar < 2× La, the current
cumulative index value does not exceed the quantile index value, and the next index value needs to
be accumulated. (b) Ar ≥ 2× La, The current cumulative index value does not exceed the quantile
index value, and the next index value needs to be accumulated.
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𝐿 𝑙Value
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1

𝑄1
𝐿

1 × 𝐿a

Figure 8. Calculate QL
2 according to A(ini, 2)L(r), where red dashed lines represent interval statistics

used to calculate QL
2 and blue line represents quantile index value.

Step 2: When there is a mismatch between the light intensity value and the solar panel
current value at the faulty node Si, node Si first calculates its own CS and L corresponding
interval numbers NCS

Si
and NL

Si
according to Algorithm 5. Second, the two-hop neighboring

node is identified by a secondary broadcast, and the two-hop neighboring nodes calculate
their own CS and L corresponding interval numbers NCS

n and NL
n , respectively, and send

them to node Si. It is notable that the two-hop neighboring nodes first need to make sure
that their solar panels and light intensity sensors are not open-circuit; otherwise, it does
not participate in the distributed fault detection.

Step 3: As shown in Algorithm 6, the F1 fault is detected by the accumulated residuals
of the collected interval numbering values of the two-hop neighboring nodes and the inter-
val numbering values of the faulty nodes. k denotes the number of two-hop neighboring
nodes without associated faults, θCS denotes a preset CS interval numbering deviation
threshold, and θL denotes a preset L interval numbering deviation threshold. θCS and θL is
used to determine whether there is a significant difference between the interval numbering
of the faulty node and the two-hop neighboring node. When detecting the F1 fault, both
the existence of significant differences between the interval numbers of the faulty node
and its two-hop neighboring nodes (denoted as SCS and SL) and the cumulative sum of
residuals between the interval numbers of the faulty node and its two-hop neighboring
nodes (denoted as S′CS and S′L) are counted.
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Algorithm 5: Calculating the interval numbers of CS and L of node Si.

Input: CS, CL

Output: NCS

Si
, NL

Si

1 initialization: A(CS) = {ACS ,...,ACS
m

1 }, A(L) = {AL,...,AL
m

1 };
2 for ACS

i inA(CS) do
3 if CS ∈ ACS

i then
4 NCS

Si
← C(ACS

i );
5 end
6 end
7 for AL

i inA(L) do
8 if L ∈ AL

i then
9 NL

Si
← C(AL

i );
10 end
11 end
12 return NCS

Si
, NL

Si
;

Algorithm 6: Fault detection according to significant difference SCS , S′L, and
cumulative sum of differences in interval numbering residuals S′CS , S′L.

Input: CS
y , Ly, N(CS) = {NCS

1 , . . . , NCS

k }, N(L) = {NL
1 , . . . , NL

k }
Output: FC

1 initialization: SCS ← 0, SL ← 0, S′CS ← 0, S′L ← 0;

2 for NCS

i inN(CS) do
3 S′CS ← S′CS + |NCS

i − NCS
y |;

4 if |NCS

i − NCS
y | > θCS then

5 SCS ← SCS + 1
6 end
7 end
8 for NL

i inN(L) do
9 S′L ← S′L + |NL

i − NL
y |;

10 if |NL
i − NL

y | > θL then
11 SL ← SL + 1
12 end
13 end
14 if SCS > SL then
15 return FC ← F1− CS

16 else if SCS < SL then
17 return FC ← F1− L
18 else if SCS = SL then
19 if S′CS > S′L then
20 return FC ← F1− CS

21 end
22 else if S′CS < S′L then
23 return FC ← F1− L
24 else
25 return FC ← F1−U
26 end
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When the significant difference between the CS interval number of the faulty node
and its two-hop neighboring nodes exceeds the difference between the L interval numbers,
there is an abnormal solar panel current value and the fault label F1− CS is uploaded
to the back end. When the significant difference between the CS interval number of the
faulty node and its two-hop neighboring nodes is lower than the difference between the
L interval numbers, there is an abnormal light intensity value and the fault label F1− L
is uploaded to the back end. When SCS = SL, the decision is made by the cumulative
sum of residuals of interval numbers. When the accumulated sum of residuals of the
faulty node and its two-hop neighboring nodes CS exceeds L, there is an abnormal solar
panel current value. When the cumulative sum of the residuals of the faulty node and its
two-hop neighboring nodes CS is less than that of L, there is an abnormal light intensity
value. When the cumulative sum of the residuals of CS and L of the faulty node and its
two-hop neighboring nodes are the same, the fault reason is uncertain and fault label F1-U
is uploaded.

Based on these three steps, the proposed method performs fault detection without
specifying a predefined threshold by transmitting only two-hop neighboring nodes CS

and the L interval number (sent as an unsigned char data type in C and occupying only
one byte) instead of the original data value. Therefore, the proposed method reduces
the additional communication overhead and the dependence of the method on empirical
threshold settings. In addition, the dual detection method [35] based on significant interval
differences and cumulative sum of residuals can detect both cases of significant inconsis-
tency in the trend of the faulty node and its two-hop neighboring nodes, as well as cases
where the differences are small.

4.4. Feature Residuals Based Fault Detection

Although sending interval numbers through neighboring nodes rather than directly
sending feature values can reduce the amount of data transmission, using interval number
residuals as a basis for distributed fault detection could weaken the fault characteristics
when there are not significant differences in fault-related features between nodes. Therefore,
the analysis can be performed directly on the differences between the fault-related char-
acteristics. For example, the mismatch between air temperature and temperature values
inside the electrical box is difficult to quantize using interval numbers or operating status
labels for the corresponding data. Considering the spatial correlation of temperature data in
the case of geographical proximity, a decision can be made based on the residual difference
between the temperature values of the faulty node and the neighboring nodes. As shown
in Figure 9, the trends and residual values of air temperature and temperature inside the
electrical box at different nodes are relatively small, thus, fault detection can be detected
by the residual values between the faulty node and neighboring node features. Because of
the low deployment density of SIL nodes, the two-hop neighboring nodes of a faulty node
may only be one or two, and it is difficult to obtain good performance in distributed fault
detection by voting. The residuals of air temperature values and temperature values inside
the electrical box can be compared to further detect the F2 fault.

Because the fault is determined directly by the residual value of the temperature, the
interval significant difference determination in the flow is not performed. The detection
process is shown in Algorithm 7. The input data are the air temperature value T0

y of
the faulty node, the temperature value in the electrical box T1

y and the air temperature
D(T0) = T0

1 , . . . , T0
k and the temperature value in the electrical box D(T1) = T1

1 , . . . , T1
k of

the two-hop neighboring nodes. When the cumulative sum of T0’s residuals of the faulty
node and its two-hop neighboring nodes exceeds the cumulative sum of T1’s residuals,
the result is that the air temperature sensor data are abnormal and the fault label F2− T0

is uploaded to the back end. When the accumulated sum of T0’s residuals of the faulty
node and its two-hop neighboring node is less than the accumulated sum of T1 residuals,
the result is that the temperature value in the electrical box is abnormal and the fault label
F2− T1 is uploaded to the back end. When the accumulated sum of residuals of the faulty



Sensors 2023, 23, 6672 18 of 31

node and its two-hop neighboring nodes T0 and T1 are the same, the result is uncertain,
and the corresponding fault label is F2−U.

Figure 9. (a) Variation trends of air temperature at different nodes are similar, and (b) variation trends
of temperature values inside the electrical box are similar.

Algorithm 7: Fault detection according to cumulative sum of T0’s and T1’s
residuals ST0 , ST1 .

Input: T0
y , T1

y , D(T0) = {T0
1 , . . . , T0

k }, D(T1) = {T1
1 , . . . , T1

k }
Output: FC

1 initialization: ST0 ← 0, ST1 ← 0;
2 for T0

i inD(T0) do
3 ST0 ← ST0 + |T0

i − T0
y |;

4 end
5 for T1

i inD(T1) do
6 ST1 ← ST1 + |T1

i − T1
y |;

7 end
8 if ST0 > ST1 then
9 return FC ← F2− T0

10 else if ST0 < ST1 then
11 return FC ← F2− T1

12 else
13 return FC ← F2−U
14 end

5. Experimental Setup
5.1. Experiment

The hardware implementation for the experimental setup is shown in Figure 10. Our
network consists of 7 SIL-IoTs nodes, and we run the experiment from August to October
2021. The data sampling interval is 5 s. Except for the faults due to unexpected factors, we
set up the following fault experiments on these nodes:
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• Cover the light intensity sensor or solar panel with strong and weak shading plastic
and sensor faults to simulate the mismatch between L and CS.

• Disconnect the power supply or insert false data into the temperature sensor readings
to simulate the mismatch between T0 and T1.

• Reboot the clock ship or install damaged modules to simulate the fault that the SIL is
not switched on according to schedule.

The fault labels are shown in Table 3, where F1 indicates the root cause of the mismatch
between the solar panel current value and the light intensity value, which can be divided
into the abnormal solar panel current value (denoted as F1− CS) and the abnormal light
intensity value (denoted as F1− L), respectively. F2 indicates the mismatch between the
air temperature value and the temperature value inside the electrical box, which can be
divided into the abnormal air temperature value (denoted as F2− T0) and the abnormal
temperature value inside the electrical box (denoted as F2− T1), respectively. F3 indicates
the root cause of the SIL not turning on the lure lamp and the high-voltage metal mesh at
the scheduled time, which can be divided into the abnormal light intensity value (denoted
as F3− L) and an abnormal clock chip (F3−W), respectively.

Components Details

Antenna Gain 3dBi, 50 Ω

Light intensity sensor MAX44009

Raspberry pi Zero

Voltage pulse count LM393

Box temperature 

sensor
DS18B20

Sound count FC-04

Air temperature DHT11

Clock chip DS3231

Communication
ZigBee CC2538 + 

CC2592

Control chip
Arduino 

ATMEGA328PB

Rain fall detector N/A

Repeater SONGLE DC5 V

Metal mesh 4-6 kV

Lure lamp
Black light tube, power = 

15 W

Solar charging 

controller
“Guanghe” GH-kzq

Lead acid battery “Guanghe” 12 V38 Ah

Solar panel “Guanghe”  power=80 W

4

3

7

1

5

6

2

R S

SIL-IoTs node Relay node Sink node and back-end

Node 7

Battery
Circuit 

board

Figure 10. A real-world application of 7 SIL-IoTs nodes, with white arrows indicating the direction
of data propagation, red arrow indicating the components and details of a SIL-IoTs node, and red
dashed arrows indicating the interior or details of corresponding components. White dashed arrows
indicating the real-world devices corresponding to different dots, where the number in dots indicating
device ID, R in the green dot indicating the relay node, and the S in grey dot indicating the sink node.

Table 3. Labeling of faults.

Fault Type Label Measurement

Solar panel current abnormal FCS

1 CS

Light intensity sensor fault FL
1 L

Air temperature sensor fault FT0

2 T0

Box temperature sensor fault FT1

2 T1

Lamp current abnormal FCL

3 CL

Metal mesh current abnormal FCM

3 CM
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Data from 0:00 on 1 September 2021 to 0:00 on 8 September 2021 are selected as
historical data to obtain the parameters of the proposed method. There are 120,919 pieces
of data per node, some of which are lost due to node maintenance. In addition, data from
0:00 on 9 September 2021 to 0:00 on 14 September 2021 are selected as test data, and each
node has 86371 pieces of data.

The performance of different methods is estimated by ten-fold validation, where each
validation selects 50% test data to verify the proposed method and ensure the reliability of
the results. All methods are simulated on a PC with Windows 10 operating system, Intel
Core i5-10400 CPU, and 16 GB RAM. In the simulation phase, all methods are written in
Python 3.8. Then, the proposed methods are written in C and embedded in Arduino of
SIL-IoTs node to estimate the energy consumption.

5.2. Comparison Method and Performance Indicators

In our experiments, four fault-detection methods designed for outdoor IoTs modules
are compared, namely the DFD method [14], TinyD2 method [7], DSFD method [16], and
TrusDet method [19]. All these methods are introduced and discussed earlier, where the
DFD and DSFD methods adopt a voting strategy. The TinyD2 and TrusDet methods use a
regression strategy. All methods use default parameters and are compiled using Python
3.8 and implemented on a PC with Windows 10 operating system, Intel Core i7-1165G7
2.8 GHz CPU, and 16 GM RAM. Assuming the fault status is positive, to evaluate the
performance of the different methods, detecting accuracy (the proportion of correct results
predicted by the model), false alarm rate (the probability of detecting fault-free data as
faulty data), and missing alarm rate (the probability of detecting faulty data as fault-free
data) is used. They are defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

FAR =
FP

TN + FP
(10)

MAR =
FN

TP + FN
(11)

where TP, TN, FP, and FN denote true positive, true negative, false positive (fault-free
sample estimated as fault sample), and false negative (fault sample estimated as fault-free
sample) samples, respectively.

6. Performance Evaluation

To demonstrate the effectiveness of the method, this section deals with it in three parts.
First, this section analyses the spatial correlation of seven nodes to ensure the feasibility of
distributed fault detection through neighboring device information. In addition, this section
discusses the correlation of different target features to assess the degree of correlation
between features. Second, this section evaluates the accuracy metrics of the proposed
method and the comparison method for different numbers of neighboring nodes. Finally,
this section shows the energy consumption of the proposed method through theoretical
discussion and experiments.

6.1. Correlation Analysis
6.1.1. Spatial Correlation Analysis

As shown in Figure 11, this section analyses the spatial correlation of 7 nodes based
on historical data, where [N1, N2, . . . , N7] represents the device IDs of 7 SIL-IoTs nodes in
Figure 10. In general, a Pearson correlation coefficient greater than 0.5 indicates a high
spatial correlation between the two features, while a coefficient above 0.8 indicates a high
spatial correlation. The results show that the features of all 7 SIL-IoTs nodes have a high
positive spatial correlation. The spatial correlation of the high-voltage metal mesh current
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values is relatively low because the values are influenced by the random discharge of each
node. The high-voltage metal mesh current values are only used to determine the operating
status of SIL, and the data input to F3 fault detection is labeled as 0 or 1, so the relatively
low spatial correlation has little impact. the reason for the low correlation between the N2
node solar panel currents and the other devices is that the N2 node deployment location is
obscured by buildings and trees.

(a) Air temperature (b) Temperature inside the electrical box

(c) High voltage current (d) Lure lamp current

(e) Solar panel current (f) Light intensity

Figure 11. Spatial correlation analysis of features related to distributed fault detection.

6.1.2. Feature Correlation Analysis

Figure 12 shows the degree of model fit and the contribution of the most relevant
features between the distributed fault-detection target features and other features in this
section. The lure lamp current values and high-voltage metal mesh current values are
only used to determine the operating state and not for residual analysis, thus they are not
analyzed for inter-feature correlation.

As demonstrated from the goodness-of-fit in Figure 12, the goodness-of-fit r2 for
all indicators fluctuates between 98% and 100%, indicating that the target features can
be accurately predicted by other highly correlated features. In addition, the blue line in
Figure 12 shows the contribution of the features corresponding to the air temperature (T0)
and the temperature inside the electrical box (T1) and the solar panel current value (CS)
and the light intensity value (L). The results show that T0 and T1 are the most correlated
features and CS and L are the most correlated features, and that the contribution of each of
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these features to the corresponding feature exceeds 70%, i.e., the correlation between the
features is strong and can be used for residual comparison.

T0 T1 CS L
75

80

85

90

95

100

Feature contribution

Goodness-of-fit r2

L contribution: 91.05%

T1 contribution: 81.18%

T0 contribution: 79.51%

CS contribution: 90.27%

98.85%
99.76%

98.47%
99.57%

Figure 12. Correlation analysis results of four features in residual analysis.

6.1.3. Variance Analysis

The variability of the historical data of the above 7 nodes is analyzed by the quartile
method. The degree of variability of fault-related characteristics between the nodes is
shown in Equation (12), where xi and xj denote the values at the same quartile for node i
and node j, respectively.

di,j = 2
xi − xj

xi + xj
(12)

Data with solar panel current values below 100 mA and light intensity values below
10,000 Lux are excluded to refine the distribution of data for 7 devices. As shown in
Figure 13, the variance between air temperature and temperature inside the electrical
box is significantly lower than 10%, while the variance between solar panel current and
light intensity is significantly higher than 10%. The mean quartile variance between the
different nodes of the air temperature is only 1.91%, indicating that the air temperature
values at the different nodes have a relatively similar distribution trend. Similarly, the
mean quartile variation between nodes for the temperature inside the electrical box is
3.46%, indicating a similar trend in the distribution of this feature between nodes. The
mean quantile differences of 19.96% and 12.87% for solar panel current and light intensity
indicate that there are high distribution differences between these two fault features, making
it difficult to detect the F1 fault directly through the residuals between nodes. Since the lure
lamp current values and high-voltage metal mesh current values are adapted to analyze
differences in operating conditions, thus they are not analyzed for variance.
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Figure 13. Historical data difference of 7 nodes expressed by quartile.
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6.2. Influence of Quantile Parameters on the Mismatch between Solar Panel Current Values and
Light Intensity Values

The choice of a different number of quantile numbers affects the accuracy of the CS

and L interval mapping. When the number of quantiles is larger, CS and L can be finely
divided into more intervals, which contributes to more accurately mapping CS and L
to the corresponding interval number. However, the increase in the number of quantile
numbers leads to more storage and computational resource consumption for the distributed
fault-detection method. Therefore, this section sets the quantile parameters to [4, 6, 8, 10]
for detecting CS and L mismatch faults. In addition, when the quantile parameter is
increased, the detecting threshold for significant differences in interval numbers also affects
the performance of distributed fault detection, thus this section sets the detecting threshold
to no more than half of the quantile parameter. Figures 14–17 show the quantile values of
CS and L for different quantile parameters. Since CS and L are close to 0 for long periods of
time at night, the data close to 0 are divided into separate intervals.

As illustrated from Figures 14–17, the CS and L intervals for different nodes vary
significantly, with the results as significant when deciles are used. For example, the values
of the same decile of CS and L for nodes 2, 5, and 6 are significantly smaller than the other
nodes, mainly because these three nodes are more affected by the environment. In addition,
the light intensity sensor is strongly influenced by the translucency of the transparent
housing. Nodes 6 and 7 consider the water’s edge, which is strongly influenced by humidity,
and the transparent housing is susceptible to soiling, resulting in low light intensity sensor
values. These factors are difficult to avoid when the SIL-IoTs node is actually deployed, thus
this section does not screen out such situations to restore the situation when the SIL-IoTs
node is actually deployed and disturbed by environmental factors.
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Figure 14. Parameter settings when iterating into ten intervals based on early data.
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Figure 15. Parameter settings when iterating into eight intervals based on early data.
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Figure 16. Parameter settings when iterating into six intervals based on early data.
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Figure 17. Parameter settings when iterating into four intervals based on early data.

Figures 18 and 19 show the results of the proposed method for the F1 fault for different
quantile intervals and different threshold conditions. The results show that the parameter
setting “10-3” or “10-2” for the F1 fault can achieve a high detection accuracy. The horizontal
coordinates indicate the number of different quantile intervals and different threshold
conditions, e.g., “4-1” indicates that the fault detection is based on four segment intervals
and a threshold condition where the residual value between the fault node and the two-hop
neighboring nodes intervals is greater than 1. According to Figure 18, the best results for
F1− CS fault are obtained for ten segment intervals and interval numbering residuals
(θ(CS) in Algorithm 5) greater than 3, while the best results for F1− L fault are obtained for
ten segment intervals and interval numbering residuals (θL in Algorithm 5) greater than
2. As the number of segment intervals increases, the detection accuracy and F1-score of
the F1 fault increases; however, the increase in the interval numbering residual detecting
threshold is not necessarily beneficial to the detecting accuracy and F1-score.

Figure 19 demonstrates the performance of the false alarm rate and the missing alarm
rate for different quantile intervals as well as for different threshold conditions. Consistent
with the detecting accuracy and F1-score results in Figure 18, the best trade-offs are achieved
for F1− CS fault when ten inter-quartile intervals are used and inter-quartile numbering
residuals are greater than 3, and for F1−L fault when ten inter-quartile intervals are used
and inter-quartile numbering residuals are greater than 2. The false alarm rate and the
missing alarm rate change as the need for fault-detection sensitivity changes. Therefore,
the appropriate fault-detection parameters can be selected based on a trade-off between the
two to meet the needs of different scenarios. In the case of distributed fault detection for
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SIL-IoTs, either “10-2” or “10-3” can be used for the F1 fault to achieve good performance.
In this section, the “10-3” parameter setting is used subsequently.

Figure 18. Detecting accuracy and F1-score of F1 fault under different parameters, where “4-1”
denotes detecting F1 fault by 4 inter-quartile intervals and inter-quartile numbering residuals greater
than 1.

Figure 19. False alarm rate and missing alarm rate of F1 fault under different parameters.
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6.3. Accuracy of Different Methods

This section compares the proposed distributed fault-detection methods and the
accuracy metrics of the four compared methods. The metrics of the proposed method are
shown as blue bar graphs in Figure 20. Figure 20a shows that the proposed method has the
highest accuracy for all fault categories except F2, while the other methods fail to detect
F2− T0 fault effectively, indicating that setting detecting thresholds and comparing them
to residual values is not conducive to detecting abnormal temperature values inside the
electrical box.
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Figure 20. Distributed fault-detection performance of different methods.

The above results show that the proposed methods can achieve good performance for
faults F1, F2, and F3. In addition, the fault SIL-IoTs nodes only have one to three two-hop
neighboring nodes, thus it is difficult to obtain good performance using the voting method
for distributed fault detection. Detecting faults by way of interval numbering residuals
or feature value residuals not only reduces the dependence on the setting of threshold
parameters but also avoids the difficulty in detecting faults when there are not enough
neighboring nodes.

6.4. Impact of Different Numbers of Neighboring Nodes

To investigate the impact of different numbers of neighboring nodes on the distributed
fault-detection method, this section compares the performance of the proposed method
and comparison methods based on one-hop neighboring nodes with those based on two-
hop neighboring nodes. The results show that the proposed method achieves the high-
est detecting accuracy and F1-score under both the one-hop and two-hop neighboring
node conditions.

As shown in Figure 21, the metrics of the different methods based on one-hop neighbor-
ing nodes are represented as bar charts with narrower dashed borders, where the number
of neighboring nodes used for fault detecting based on one-hop neighboring nodes is fewer
than or equal to the case when it is based on two-hop neighboring nodes. The proposed
method and the DFD method show a slight decrease in detecting accuracy and F1-score
when the number of neighboring nodes is reduced, which indicates that the proposed
method has some dependency on the number of neighboring nodes. The results of the
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TinyD2 method show some improvement in detecting accuracy and F1-score when the num-
ber of neighboring nodes is reduced, which results from the exclusion of information about
neighboring nodes with similar states. In summary, the proposed method achieves the best
results compared to comparison methods in both the one-hop and two-hop neighboring
node cases.

Figure 21. Performance of different methods based on one-hop and two-hop neighboring nodes.

6.5. Lightweight Analysis of the Proposed Method

Due to the limited computational resources of the SIL-IoTs (using Arduino with
20 MHz CPU speed, 32 KB of program memory, and 2 KB RAM size for node-level decision-
making), the proposed method should be lightweight. Based on this, the proposed method
is computationally simple, requiring only a small number of parameters to be pre-stored in
each node, as well as a simple accumulation and calculation to obtain the detection results,
helping to reduce the ratio of computational to storage capacity of the control chip.

To evaluate the lightweight performance of the proposed method, this section deploys
the proposed method on an Arduino chip using a C program. The original program,
which does not participate in compile-time data acquisition etc., occupies 19.6% of RAM
(402 bytes) and 17.5% of Flash (5656 bytes) in the Arduino. When the proposed method is
added, the program takes up 20.6% of RAM (420 bytes) and 20.6% of Flash (6644 bytes) in
the Arduino. Therefore, the proposed method uses an additional 0.9% of RAM (18 bytes)
and 3.1% of Flash (988 bytes), which has little impact on the Arduino.

6.6. Energy Consumption of the Proposed Method

Due to the limited energy of the SIL-IoTs node, this section evaluates the proposed
method in terms of data transfer energy consumption as well as the energy consumption
of the proposed method running on the Arduino. The argumentation and experimental
results show that the proposed method has low energy consumption.

The proposed method detects F1 and F3 faults by requiring the neighboring nodes
to send either the interval number or the operating condition information (represented
in C by unsigned char, i.e., one byte) to the faulty node, thus reducing the additional
communication overhead and energy consumption caused by the transmission of sensor
measurements (floating-point data). Assuming that the faulty node has an F1 fault and
there are k two-hop neighboring nodes, the energy required to transmit the two floating-
point data to the faulty node by other distributed methods can be calculated using the data
transmission energy formula [36]:

Et−ij = n× (α12 + α2dk
ij) (13)
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where α12 and α2 are the energy consumption parameters of the base band and amplifica-
tion circuits of the sending node, dij denotes the distance from node i to node j, k is the
propagation path attenuation factor, typically an integer between 2 and 4, and n denotes
the length of the data to be sent. A total of 4 bytes of floating-point-type data need to
be sent for each two-hop neighboring node when detecting F1 and F3 faults. Therefore,
the total energy consumption of the other methods to perform one data transmission is
4× k× (α12 + α2dk

ij). The faulty node also consumes energy to receive the data, which is
calculated as:

Er = n× α11 (14)

where α11 denotes the receiving node circuit energy consumption parameter. Therefore,
the total energy consumption of the other methods to perform one data transmission
is 4× k× α11. Since the proposed method only requires two bytes of data per two-hop
neighboring node when detecting F1 and F3 faults, the total energy consumption in terms
of data transmission is one quarter of that of the other methods. Similarly, the energy
consumption of the proposed method is also one quarter of that of the other methods in
terms of data transmission.

To accurately calculate the energy consumption of the proposed method in the Ar-
duino chip, this section uses an AC/DC-type electrical parameter meter to measure the
total energy consumption of performing 10,000 distributed fault detection. The experi-
mental apparatus and circuit connections used to measure the energy consumption of the
proposed method are shown in Figure 22, where the brand of the AC/DC-type electrical
parameter measuring instrument used is model PM9200, Napui Electronic Technology Co.,
Ltd., Dongguan, China. To ensure the stability of the power supply, a triple-channel DC
benchtop power supply, brand Keithley (Tektronix, Berkshire, UK), model 2231A-30-3, is
used in the experiment. the red line in the figure is the positive pole, the blue line is the
negative pole, and the black dotted line indicates the direction of data transmission. The
energy consumption data monitored by the electrical parameter meter is transferred to the
computer via USB and stored in the relevant software developed by the manufacturer.

To reduce the impact of sensor data acquisition and other functions on the energy
evaluation, no sensors are added to the PCB and only data written in advance is used
for detection in the experiments. To improve the reliability of the results, we repeat three
times with and without the proposed method. The experimental results are based on the
scenario where the faulty node has three two-hop neighboring nodes, which is a case with
many neighboring nodes in this scenario. The results of the multiple experiments are
shown in Table 4. The average total active power when running the proposed method is
1.1724 mWh, while the average total active power when not running the proposed method
is 1.1672 mWh. The additional active power consumed by running the proposed method
10,000 times is 0.0053 mWh, which is 0.45% of the total active power when not running
the proposed method. In terms of battery capacity, the proposed method consumes an
additional 4.67× 10−4 AH to run 10,000 times. The 12 V, 38 AH battery of SIL-IoTs nodes
used in this paper can be used to run the proposed method over 813 million times. In
summary, the proposed method proposed is suitable for SIL-IoTs because of its low energy
consumption for operation.

Table 4. Energy consumption statistics of the proposed method in Arduino.

Experimental Times Total Active Energy (mWh) Total Ah Average Power (mW)

With the proposed method
1 1.1715 0.1021 0.4217
2 1.1697 0.1019 0.4209
3 1.1764 0.1025 0.4235

Without the proposed method
1 1.1663 0.1016 0.4197
2 1.1679 0.1018 0.4202
3 1.1675 0.1017 0.4201
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Figure 22. Schematic diagram and physical connection diagram of energy consumption experimental
equipment for the proposed method.

7. Conclusions

In this study, a fault-detection scheme for SIL-IoTs is proposed to address faults that
cannot be estimated by single-node information. Based on the experimental results, the
following conclusions are drawn: (1) The proposed method achieves an average F1-score of
92.42% and 95.59% based on one-hop and two-hop neighboring nodes, respectively, demon-
strating high performance in fault detection. (2) When compared to existing methods, the
proposed method outperforms them significantly, with an average F1-score improvement
of at least 48.65%. This highlights the superiority of using the cumulative sum of residu-
als over traditional approaches involving threshold setting or single-feature comparison.
(3) The demonstration and experiments reveal that the proposed method reduces the en-
ergy consumption of data transmission for information interaction between nodes by 25%.
Moreover, the additional energy consumption on the Arduino chip is minimal, accounting
for only 0.27% of the total power.

The above advantages demonstrate that the proposed method performs well in de-
tecting different fault types and accommodating varying numbers of neighboring nodes.
Additionally, the method is lightweight in terms of energy consumption, parameter usage,
and system resources when implemented on the Arduino chip. Thus, it fulfills the need for
an efficient and resource-friendly distributed fault-detection method.

It is worth noting that the proposed method may not achieve 100% detection accuracy
due to the presence of certain noise signals, such as sensor faults and electromagnetic
interference caused by high-voltage discharge [5]. Detecting these types of noise signals
can be challenging. To overcome this limitation, future work could explore the fault-
detection scheme’s performance under conditions of low reliability in data acquisition and
transmission. This would involve investigating methods to improve fault detection in
the presence of such challenging noise signals. Furthermore, the proposed method relies
heavily on historical data and prior knowledge. Future research efforts could focus on
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designing a highly adaptive algorithm capable of self-learning fault characteristics even
with limited historical data. This would enable the system to continuously improve its fault-
detection capabilities and adapt to changing environmental conditions. By addressing these
potential future directions, further advancements can be made to enhance the robustness
and adaptability of the fault-detection scheme for SIL-IoTs.
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