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Abstract: This paper proposes a novel vehicle state estimation (VSE) method that combines a physics-
informed neural network (PINN) and an unscented Kalman filter on manifolds (UKF-M). This
VSE aimed to achieve inertial measurement unit (IMU) calibration and provide comprehensive
information on the vehicle’s dynamic state. The proposed method leverages a PINN to eliminate
IMU drift by constraining the loss function with ordinary differential equations (ODEs). Then, the
UKF-M is used to estimate the 3D attitude, velocity, and position of the vehicle more accurately using
a six-degrees-of-freedom vehicle model. Experimental results demonstrate that the proposed PINN
method can learn from multiple sensors and reduce the impact of sensor biases by constraining the
ODEs without affecting the sensor characteristics. Compared to the UKF-M algorithm alone, our VSE
can better estimate vehicle states. The proposed method has the potential to automatically reduce the
impact of sensor drift during vehicle operation, making it more suitable for real-world applications.

Keywords: IMU calibration; unscented Kalman filtering on manifolds; physics-informed neural
network; vehicle state estimation; multi-sensor fusion

1. Introduction

The rapid development of sensor technology and intelligent transportation systems [1]
in recent years has led to the introduction of new vehicle chassis subsystems by original
equipment manufacturers [2]. These subsystems improve specific vehicle performance,
making driving more efficient and effective. Vehicle chassis subsystems not only make driv-
ing more convenient [3], but they also make the vehicle a complex autonomous system. The
optimal coordination of chassis system (OCCS) [4] is applied to coordinate different com-
plementary chassis subsystems. However, accurate vehicle state information is required for
chassis coordinated control in order to correctly coordinate subsystems and identify driving
conditions [5]. Furthermore, sensor noise can affect the accuracy, reliability, and continuity
of vehicle state information. Extensive research [6,7] has been conducted to investigate
various estimation algorithms based on cost-effective sensors and available measurements.

With the development of sensor technology, the use of vehicle control sensors such
as the global navigation satellite system (GNSS) and the inertial measurement unit (IMU)
has increased. In the OCCS, the IMU plays a crucial role in measuring the angular rate
and acceleration of the vehicle body, enabling accurate calculations of the vehicle's attitude,
velocity, and position [8]. However, due to installation errors [9] or coupling effects between
the IMU and vehicle motion [10], IMU misalignment is inevitable. Indirect state estimation
methods [9,10] are proposed to mitigate the drift of IMUs. To achieve advanced control,
such as the OCCS, the coordinator requires multiple advanced sensor inputs and more
estimation outputs, primarily to avoid conflicts downstream in subsystems [2]. This has
motivated us to develop a method that leverages the relationships between advanced
sensors to eliminate IMU drift.

Sensors 2023, 23, 6665. https://doi.org/10.3390/s23156665 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23156665
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9136-8091
https://doi.org/10.3390/s23156665
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23156665?type=check_update&version=1


Sensors 2023, 23, 6665 2 of 23

The extended Kalman filter (EKF [11]) and unscented Kalman filter (UKF [12]) are
commonly used for optimal integration between the GNSS and inertial navigation system
(INS). The unscented Kalman filter on manifolds (UKF-M) [13] is a novel filtering algo-
rithm that provides more accurate and robust navigation estimates. Compared with the
existing state-of-the-art integrated navigation algorithms, the UKF-M-based integrated
navigation estimation algorithm [14] has higher accuracy and faster convergence speed.
These methods incorporate various vehicle/tire models and real-time states [15] to han-
dle disturbances and noise. However, the local linearization operation of EKF/UKF can
introduce significant estimation errors [7]. Additionally, sensor offset can cause integration
errors in the INS/GNSS model [16].

A virtual sensor (VS) [17] can be used to replace a redundant sensor, which can
mitigate sensor noise. A VS is a type of software sensor that can integrate multiple data
sources to improve system reliability. Kim et al. [18] combined the adaptive Kalman filter
with a deep neural network (DNN) to estimate the sideslip angle. The proposed model
utilized the DNN output as a VS. Combining the EKF/UKF model with the DNN-based VS,
this model not only provided accurate estimates of the sideslip angle but also quantified
the uncertainty associated with the estimation. In another study, Kim et al. [19] used a
long short-term memory (LSTM) network to filter the noise and bias of the original sensor
data. Leandro et al. [20] combined a neural network and a Kalman filter to estimate the
vehicle's roll angle. The neural network output was used as the pseudo-roll angle to
build the Kalman module. Soriano et al. [21] proposed a neural network-based calibration
method for a two-axis accelerometer. Their experimental results demonstrated that the
accelerometer error model based on the neural network had better accuracy and robustness
than the explicit accelerometer error model method.

The data-driven vehicle model [18–20] serves as an approach for establishing VS.
These models utilize a data-driven approach to estimate vehicle states by leveraging the
hidden relationships between them. In the development of data-driven vehicle dynamics
models, the linear time-invariant (LTI) state-space model [22–25] is commonly employed.
Experimental results [23–25] demonstrated that the LTI-based data-driven vehicle model
outperformed comparative vehicle dynamics models. However, these data-driven ve-
hicle models [18–20,23–25] rely on the assumption that the selected supervised learning
vehicle states accurately represent the true vehicle states. This assumption can impact
the effectiveness of online learning in these models. Additionally, due to the influence of
sensor noise [26], neural network-based models may introduce errors without physics-
based models.

The physics-informed neural network (PINN) [27] is a novel deep learning method
that integrates domain-specific knowledge into a neural network architecture. Xu et al. [28]
proposed a PINN-based model for unmanned surface vehicle dynamics. Compared
with traditional neural networks, their PINN-based unmanned surface vehicle dynamics
model had better prediction accuracy for the sway and surge velocity and rotation speed.
Franklin et al. [29] used PINN as a hybrid virtual sensor to estimate the flow metering in oil
wells. Wong et al. [30] demonstrated that PINN can effectively mitigate the impact of noise
in data originating from low-quality sensors. In state estimation, combining PINN with a
state-space model formulation can avoid computationally costly time integration [31].

In this study, we propose a vehicle state estimation (VSE) method that combines
PINN and UKF-M (PINN UKFM). The contributions of the paper can be divided into two
main parts.

• We use PINN as a data-driven vehicle dynamics model to establish a VS, using the IMU
calibration values as the output. By leveraging the loss calculation method of PINN,
the vehicle dynamics can be integrated with the data-driven model, enabling the
incorporation of information from multiple sensor sources during vehicle operation.
The experimental results in a real vehicle platform indicated that the PINN-based
model effectively integrates multiple sensor inputs to achieve improved estimation of
the vehicle’s state, surpassing both the physical and neural network-based models.
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• Based on the IMU calibration values, we utilize the UKF-M algorithm to estimate the
altitude, velocity, and position of the vehicle. By fusing data from multiple sensors,
PINN UKFM provided accurate and comprehensive vehicle states that included six-
dimensional vehicle dynamics, 3D attitude, speed, and position, which can be used in
various vehicle dynamic control systems. For example, the six-dimensional vehicle
dynamics can define the chassis motion, which can be used in OCCS. The 3D position
can be applied to vehicle navigation in a GNSS-denied environment. The experimental
results indicated that the PINN-based model can effectively incorporate multiple
sensor inputs to mitigate IMU biases and enhance the accuracy of the existing state-of-
the-art integrated navigation algorithm, UKF-M.

The rest of work is organized as follows: Section 2 introduces the vehicle model,
the PINN UKFM sensor states, and defines the PINN UKFM problem. Next, Section 3
introduces the proposed PINN UKFM algorithm. In Section 4, the proposed method is
tested using realistic vehicle data. Rainy weather is used as an experimental condition as it
reduces the road adhesion coefficient and increases the nonlinearity of vehicle dynamics.
Finally, Section 5 presents the conclusions of this paper.

2. Estimation Problem
2.1. The Vehicle Model

The PINN UKFM algorithm used a six-degrees-of-freedom (6-DoF) kinematic vehicle
model [32] to obtain accurate state estimates. As shown in Figure 1, the model could
define the chassis movement [33], which included the navigation and vehicle body co-
ordinates [5]. The starting point of the navigation coordinates was defined as the track
start. The navigation coordinates consisted of three variables: E (east), N (north), and
U (upward).
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Figure 1. The 6-DoF vehicle model coordinates.

The vehicle body’s coordinate origin point was located at its center of mass and the
right-hand rule was used. The x-, y-, and z-directions pointed forward, left, and upward,
respectively. Acceleration and velocity could be broken down into longitudinal acceleration
ax/velocity vx, lateral acceleration ay/velocity vy, and vertical acceleration az/velocity
vz. The vehicle’s direction angle was defined as the rolling angle (around x, roll rate ωx),
pitching angle (around y, pitch rate ωy), and heading angle (around z, yaw rate ωz). Finally,
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other vehicle states could be extrapolated from these. For example, the sideslip angle β
could be calculated through the following trigonometric operation:

β = tan−1
(

vy

vx

)
(1)

2.2. The Sensor States

In the experiment, the vehicle had multiple sensors, including the GNSS, IMU, mea-
surement steering wheels (MSW), wheel force transducers (WFT), 2-axis optical sensors
(S-Motion), and a monocular camera. The experimental platform structure is presented in
Section 4.1. Due to the real-time computation requirement, the signals from the monocular
camera were not used in the PINN UKFM algorithm. The sensor inputs of PINN UKFM
are introduced in Table 1.

Table 1. The sensor inputs of PINN UKFM.

Sensor Types Signal Name Symbol Units

GNSS Easting E m
GNSS Northing N m
GNSS Altitude U m
GNSS UTM velocity Vgps m/s
IMU Roll angle ϕ rad
IMU Pitch angle Θ rad
IMU Yaw angle ψ rad
IMU Vertical velocity vz m/s

S-Motion Longitudinal velocity vx m/s

S-Motion Longitudinal
acceleration ax m/s2

S-Motion Lateral velocity vy m/s

S-Motion Longitudinal
acceleration ay m/s2

S-Motion Vertical acceleration az m/s2

S-Motion Roll rate ωx rad/s
S-Motion Pitch rate ωy rad/s
S-Motion Yaw rate ωz rad/s

WFT Wheel force Fx, Fy, Fz kN
WFT Wheel torque Mx, My, Mz kN·m
MSW Steering wheel angle δs rad

The symbols E and N represented easting and northing in the navigation coordinates.
Using the universal transverse mercator (UTM) and the navigation starting point, easting
and northing were transformed from the GNSS coordinates into the navigation coordinates.
The UTM velocity was calculated from navigation coordinates as:

vgps =

√
(Et − Et−1)

2
+ (Nt − Nt−1)

2
+ (Ut −Ut−1)

2

dt
(2)

where dt is a single GNSS interval, and t and t − 1 are GNSS coordinate timestamps.

2.3. Problem Definition

The PINN-based VS was defined as a time-series forecasting model in which sen-
sor signals were taken as discrete variables. Assuming that “n” represents the current
timestamp, the PINN module input states were defined as:

X = [Xn−L, Xn−L+1, . . . , Xn]

Xn =
[

X(1)
n , X(2)

n , . . . , X(ϑ)
n

] (3)
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where n− L is the starting time step, X represents the sensor signals shown in Table 1, and
ϑ is the number of sensor signals.

PINN was used as a universal function approximator to achieve IMU calibration.
Building upon previous artificial intelligence-based techniques and the integration of the
Kalman filter for estimation [23], the calibrated values were called “pseudo-states.” By
applying the conservation principles derived from the vehicle dynamics, the pseudo-states
satisfied the conservation principles originating from the vehicle dynamics. Therefore, the
PINN module output states were defined as:

ûθ =
[
û(1)

θ , û(2)
θ , . . . , û(ι)

θ

]
(4)

where ûθ represents the pseudo-states, and ι is the number of pseudo-states. Based on
the LTI state space assumption, the pseudo-states were inputted to ODEs to compute the
integrated states. The sensor measurements of these integrated states z were represented as:

z = [zn+1, zn+2, . . . , zn+F]

zn+1 =
[
z(1)n+1, z(2)n+1, . . . , z(κ)n+1

] (5)

where [n + 1, n + 2, . . . , n + F] represent the output timestamps, κ is the number of the
integrated states, and n + F is the ending time step.

For better integration with the vehicle control, the authors hypothesized that the
vehicle physical model satisfied an LTI state-space model [23,24], which could be defined as:{ .

x = Axt +Bt
yt = Cxt +Dt

(6)

where xt+1 is the state variable at next time step, xt is the state variable at current time step,
yt represents the output variable at current time step, BtandDt are disturbances or noise,
and

.
x denotes the rate of change of the state variable. It should be noted that the system

dynamics and output equations did not change over [n + 1, n + 2, . . . , n + F].
By utilizing the LTI state-space model, the output of the PINN module could be used

to compute the other vehicle states. Based on the ODE constraints, PINN ensured the
estimated IMU states satisfied the physical relationships among sensor measurements.

Next, the pseudo-states were inputted into the UKF-M-based IMU-GNSS sensor-fusion
model [34]. Using these pseudo-states, the UKF-M module could estimate both the velocity
and position of the vehicle.

3. Methodology
3.1. Structure of the Proposed VSE

In recent years, there has been growing interest in the development of multi-sensor
systems for vehicle state estimation due to their potential to improve accuracy and robust-
ness in complex environments. The proposed PINN UKFM is one such system, integrating
multiple sensors to estimate the vehicle dynamics in real time. The architecture of our
proposed PINN UKFM is illustrated in Figure 2 and consisted of three modules: the sensors
module, the PINN module, and the UKF-M module.

The sensors module in PINN UKFM consisted of various sensors, such as GNSS, IMU,
MSW, WFT, and S-Motion. These sensors provide rich information about the vehicle's mo-
tion, including its position, velocity, acceleration, and orientation. For adaptive reduction
of data noise, the PINN module was employed to learn the complex, nonlinear relationship
between the sensor signals and the filtered vehicle states. Specifically, the PINN module
used the time-series sensor signals as input and outputted the corresponding pseudo-states.
These pseudo-states were then fed into the UKF-M module, which used a state-space
model to estimate the vehicle's position, velocity, and other parameters. By combining the
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strengths of both PINN and UKF-M, the proposed PINN UKFM achieved accurate and
robust vehicle state estimation.
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3.2. The PINN Module

In practical applications, different sensors may measure data with noise and drift due
to their different characteristics and working environments. To obtain accurate vehicle
state estimation, we used PINN to integrate the vehicle dynamics into a neural network
architecture. The PINN module punished the loss function with ODEs and algebraic
equations to make the sensor data consistent with the vehicle dynamics. The PINN module
fused the data from multiple sensors to reduce measurement errors and make the data
more consistent with the actual vehicle dynamics.

Therefore, the PINN module found the angle and velocity by integrating the accelera-
tion and angular velocity. Temporal interaction is widely used in establishing data-driven
vehicle models [19,25], as it can capture the complex temporal and hidden correlations
for better state prediction. Therefore, a temporal model consisting of an encoder layer, a
temporal interaction layer, and a decoder layer was proposed, as shown in Figure 3.
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The encoder layer was used to embed and encode sensor signal X. Data were mapped
into the high dimension through the multilayer perceptron (MLP). The encoder layer was
defined as:

et = σ(WembXt + bemb) (7)

where et denotes the embedded feature vector. Additionally, the MLP contained the weight-
ing matrix Wemb, bias term bemb, and the rectified linear unit function (ReLU) activation
function σ [35].

Since vehicle states have temporal interactions, the temporal interaction layer sup-
posed the temporal interactions of different hidden states. The time dimension of et
was connected:

e0 = Concat(et), t ∈ [n− L, n] (8)

where the embedded feature vectors were concatenated to form e0. Then, the PINN module
learned the temporal interaction:

el = σ
(

W l
timeel−1 + bl

time

)
, l = 1, 2, . . . , s (9)

where el−1 and el are the input and output of layer l, respectively.
The decoder layer predicted the pseudo-states as:

ûθ = (Wdeces + bdec) + upast (10)

where upast represents the past measurement of the IMU, and ûθ refers to the pseudo-states
that represent the IMU calibration values. We defined the residual between the pseudo-
states and past measurement of the IMU as the drift of the IMU. This structure was similar
to the residual block in a residual network [36]. (Wdeces + bdec) = ûθ − upast represented
the latent (hidden) solution of the drift of IMU. The PINN determined the parameter θ of
the NN [27] by minimizing the loss function:

θ = argmin L(θ)
L(θ) = LF(θ) +Ldata(θ)

Ldata(θ) =
1

Nd

Nd
∑

i=1
|ûθ(X; θ)− u(X)|2

LF(θ) =
7
∑

k=1
ωk·
[

1
F

1
NF

n+F
∑

t=n+1

NF

∑
i=1
|gk(ûθ(X; θ), Xn, zt)|2

]
+

12
∑

k=8
ωk·
[

1
NF

NF

∑
i=1
| fk(ûθ(X; θ), Xn)|2

] (11)

where LF(θ) represents the mean square error of residuals of the physics-based equa-
tions; Ldata(θ) represents the mean square error of residuals of the measurement data;
ω1, ω2, . . . , ω12 denote the weights associated with physical constraints; Nd and NF rep-
resent the batch size; u(X) represents the future measurement of the IMU; t represents
the output timestamps; F represents the forecast horizon; g(ûθ(X; θ), Xn, t) represents
the ordinary differential equations [37]; and f (ûθ(X; θ), Xn, t) represents the algebraic
equations [37]. The ODEs and algebraic equations were utilized as an additional regular-
ization term [38]. By minimizing the loss function of the physics-based equations, we could
incorporate the laws of physics into the NN [38–40].

When used for computing partial differential equations (PDE), the LF(θ) in PINN is
typically used to penalize the degree to which the model violates physical laws. However,
the PDE-based LF(θ) was not applicable in the continuous time modeling and prediction
problems addressed in this paper. The physical laws of vehicle dynamics models are often
subject to ODEs and algebraic equations. To address this, we drew inspiration from the
approach of a physics-constrained neural network (PCNN) [39,40] and neural ordinary
differential equations (NODEs) [41,42]. PCNN is a specific variant of PINN that introduces
a regularization parameter to control the trade-off between data and knowledge-based
regularization [43]. In NODEs, the hidden layers of a neural network are treated as the
states of an ODE, and an ODE solver is used to compute the evolution of these states.
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Specifically, we incorporated ODEs to represent the dynamic evolution of the system and
used algebraic equations to represent the vehicle dynamics model.

The PINN module provided the signals of the pseudo-states, which represented the
rate of change of the state variable

.
x in the LTI state space. The inputs and outputs of the

PINN module were denoted as:

X(1−22) =
[

ax, ay, az, ωx, ωy, ωz, vx, vy, vx, ϕ, Θ, ψ, Myl , Myr , Fx f l , Fxrl , Fy f l , Fyrl , dE, dN , dU , δs

]
ûθ(X; θ)(1−6) =

[
ax, ay, az, ωx, ωy, ωz

] (12)

where dE, dN , and dU are the navigation coordinates minus the current vehicle coordinates [44].
The ordinary differential equations were represented as:

gq(ûθ(X; θ), Xn, zt) = X(q+6)
n + ûθ(X; θ)(q) × dt − z(q)t , q = 1, 2, . . . , 6

g7(ûθ(X; θ), Xn, zt) =
3
∑

i=1
[X (i+6)

n × dt +
ûθ(X;θ)(i)×dt

2

2

]
− z(7)t

(13)

where X(7−12)
n =

[
vxn , vyn , vzn , ϕn, Θn, ψn

]
are the initial states of ODE outputs;

z(1−6)
t =

[
vxt , vyt , vzt , ϕt, Θt, ψt

]
are the measurements of ODE outputs at timestamp t; and

dt is the time interval between n and t. By minimizing g1 ∼ g6, the pseudo-states could in-
corporate information from the related vehicle states. The state z(7)t represents the position
change of the vehicle, which was represented as:

z(8,9,10)
t = [dEt , dNt , dUt ]

z(7)t =
√
(Et − En)2 + (Nt − Nn)2 + (Ut −Un)2 =

√
(dEt)

2 + (dNt)
2 + (dUt)

2 (14)

where [ E, N, U] are the outputs of variable yt in the LTI state-space vehicle model. By
minimizing g7, the physical knowledge of yt was incorporated into the physics-informed
loss function. The position-updated formula of the vehicle dynamics [45] may affect the
learning effectiveness of the neural network. Therefore, we used the Euler integral to
calculate the displacement of the vehicle. By utilizing the loss calculation method of
PINN, the ODE vehicle dynamics could be combined with a data-driven model to consider
multiple sensor sources.

Algebraic equations capture simple dependence relationships among vehicle states [37].
The algebraic equations representing the linear dynamics in the LTI state space could be
written as

.
x = AXn +Bn. By minimizing the loss of ûθ(X; θ)− .

x, we could incorporate
the physical dynamics model into the physics-informed loss function. The referenced vehi-
cle dynamics model was based on the two-degree-of-freedom (2-DOF) vehicle dynamics
model [23,45]. To simplify the vehicle dynamics [23], we decoupled the longitudinal and
latitudinal dynamics by neglecting the influence of the latitudinal and longitudinal forces.

The algebraic equation of f8(ûθ(X; θ), Xn) was represented as:

f8(ûθ(X; θ), Xn) = a(1)xn − ûθ(X; θ)(1)

X(7,13,14)
n =

[
vxn , Myl,n , Myr,n

]
ma(1)xn = Fen + Fbn + Fsn + Ffn − FDn

a(1)xn = 1
m

(
k1 ×Myl,n + k2 ×Myr,n + mgγ + mgµ− kDv2

xn

(15)

where a(1)xn is calculated based on the vehicle longitudinal dynamics; Fen represents the
transmitted force of the vehicle; Fbn represents the brake force of the vehicle; m is the gross
vehicle mass; and Myl,n and Myr,n represent the y-axis torque of the two front wheels. We
assumed Fen and Fbn were transmitted to the front wheels and converted into Myl,n and
Myr,n , respectively (the experimental car was a front-wheel drive vehicle). Therefore, the
transmitted and brake forces were calculated using the least squares method. Additionally,
a small slope angle was assumed. Therefore, the dissipative force was Fsn = 0 and the
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frictional force was Ffn = mgµ. Here, g represented the gravitational constant and µ was the
road–wheel static friction coefficient. The air drag force FDn was calculated based on the
longitudinal velocity and the drag coefficient kD. The parameters k1, k2, µ, and kD were
calculated using the least squares method to realize online learning of the parameters.

In this paper, the tire force was directly measured. This allowed for the direct cal-
culation of the longitudinal acceleration a(2)xn from the measured tire force. The algebraic

equation of a(2)xn was represented as:

f9(ûθ(X; θ), Xn) = a(2)xn − ûθ(X; θ)(1)

X(15,16)
n =

[
Fx f l,n , Fx f r,n

]
a(2)xn = 1ג

m

(
Fx f l,n + Fx f r,n

) (16)

where Fx f l,n and Fx f r,n are the front left and right wheel longitudinal forces, respectively;

a(2)xn represents the longitudinal acceleration, 1ג is the parameter 1ג) =
Fx f l,1+Fx f r,1

max1
), and

[Fx f l,1 , Fx f r,1 , ax1 ] represents the known measurement data.
The algebraic equation of f10(ûθ(X; θ), Xn) was calculated from the vehicle latitudinal

dynamics, which was represented as:

f10(ûθ(X; θ), Xn) = a(1)yn − ûθ(X; θ)(2)

X(7,8,12,22)
n =

[
vxn , vyn , ωzn , δsn

]
δ fn = 1

i δsn

ma(1)yn = Fy f l,n + Fy f r,n + Fyrl,n + Fyrr,n

a(1)yn = 1
m

[
−2Cvyn−2C(l f−lr)ωzn

vxn
−mvxn ωzn + 2Cδ fn

] (17)

where C represents the tire cornering stiffness; l f and lr represent the distances from the
center of the vehicle’s mass to the front and rear axles, respectively; ωz denotes the yaw
rate; Fy f l,n , Fy f r,n , Fyrl,n , and Fyrr,n denote the lateral tire forces at the front left/right and rear
left/right wheels, respectively; δsn represents the steering wheel angle; δ fn represents the
front wheel steering angle; and i denotes the function of the variable steering gear ratio [46].
This was a linear tire model and we assumed the vehicle had equal cornering stiffness for
all four wheels.

Similar to a(2)xn , we directly calculated the latitudinal acceleration a(2)yn from the mea-

sured tire force. The algebraic equation of a(2)yn was represented as:

f11(ûθ(X; θ), Xn) = a(2)yn − ûθ(X; θ)(2)

X(17,18)
n =

[
Fy f l,n , Fyrl,n

]
a(2)yn = 2ג

m

(
Fy f l,n + Fy f r,n

) (18)

where Fy f l,n and Fy f r,n represent the front left and right wheel latitudinal forces, respectively;

a(2)yn represents the latitudinal acceleration; and 2ג is the parameter 2ג) =
Fy f l,1+Fy f r,1

may1
).

The algebraic equation of f12(ûθ(X; θ), Xn) was calculated from the kinematic vehicle
model, which was represented as:

f12(ûθ(X; θ), Xn) = ω
(1)
zn − ûθ(X; θ)(6)

βn = tan−1
[

lr
l f +lr

tan
(

δ fn

)]
ω
(1)
zn = vxn

l f
× sin(βn)

(19)

where βn represents the vehicle slip angle.
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The physics-based equations presented in this paper, (g1−7(ûθ(X; θ), Xn, zt) and
f8−12(ûθ(X; θ), Xn)), were applicable within the LTI state space. This implied that the pseudo-
states were assumed to remain constant over the time interval [n + 1, n + 2, . . ., n + F]. This
assumption ensured the validity and applicability of the equations mentioned earlier,
allowing for the incorporation of physics-based constraints into the neural network model.

The PINN module utilized the PyTorch deep learning framework. To consider the
dynamics of different states, the Adam optimizer with a 0.001 learning rate was used to
train the network. The model was trained using a Nvidia GTX 3080Ti GPU.

3.3. The UKF-M Module

The UKF-M is a novel UKF on manifolds, with versatility that allows direct application
to numerous practical manifolds. For stochastic processes on Riemannian manifolds, the
theory of Lie groups [47] is used to define the vehicle's attitude estimation. The IMU-GNSS
sensor-fusion model [34] was a UKF-M-based filter, which is a standard 3D kinematic
model based on inertial inputs. The UKF-M algorithm utilized in PINN UKFM was based
on the methodology proposed in [34]. The modification of PINN UKFM involved using the
outputs of the PINN module to replace the original IMU measurements.

The states of a moving vehicle in a discrete dynamic system are represented as:

χn ∈M =
{

Cn ∈ R3×3, vn ∈ R3,Pn ∈ R3, bgn ∈ R3, ban ∈ R3
}

(20)

where χn denotes the state of a vehicle belonging to a parallelizable manifold M; n is the
current timestamp; vn = (vEn

, vNn
, vUn

) is the velocity vector (vEn
–velocity east and vNn

-
velocity north); Pn = (En, Nn, Hn) is vehicle coordinate in the navigation coordinates;
bgn =

(
bωx, n , bωy, n , bωz, n

)
is the gyro bias; ban =

(
bax, n , bay, n , baz, n

)
is the accelerometer

bias; and Cn is a special orthogonal group that represents 3D rotation [47].

SO(3) :=
{

Cn ∈ R3×3
∣∣∣CnCn

T = 1, detCn = 1
}

(21)

where 1 is the identity matrix. Based on the time derivative of CnCn
T = 1, a skew-

symmetric matrix CT
n

.
Cn was obtained:

Cn
T

.
Cn +

.
Cn

T
Cn = 0 (22)

The CT
n

.
Cn as a skew-symmetric matrix is often noted as [ω]× :

Cn
T

.
Cn = [ω]× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (23)

where [ω]× is in the Lie algebra of SO(3). The Lie algebra is a vector space and can be
decomposed into:

[ω]× = ωx

0 0 0
0 0 −1
0 1 0

+ ωy

 0 0 1
0 0 0
−1 0 0

+ ωz

0 −1 0
1 0 0
0 0 0

 (24)

where ω =
[
ωx, ωy, ωz

]
is in the vector of angular velocities. For the ω constant, we

obtained the ODE solution:
Cn = exp

(
[ω]×n

)
(25)
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where exp() is the exponential map on the SO(3) [42] and C0 = I. The exp() map was
derived from the time derivatives of χn ∈M. The vector fields were defined as:

V1(Cn) = Cn

1
0
0

ˆ

, V2(Cn) = Cn

0
1
0

ˆ

, V3(Cn) = Cn

0
0
1

ˆ

(26)

whereˆis the hat map [47], and V1, V2, and V3 are the vector fields.
Similar to the Gaussian belief of the Kalman filter, the UKF-M algorithm builds a

probability distribution as χn ∼N(χ̂n, Pn) for the random variable χn ∈M as:

χn = ϕ(χ̂n, ξn), ξn ∼N(0, Pn) (27)

where χ̂n is viewed as the mean estimate at timestep n; ϕ is the propagation function;
ξn ∈ Rd is a random Gaussian vector; N is the Gaussian distribution; and Pn ∈ Rd×d is
the covariance matrix. ϕ(χ̂n, ξn) ∈M is obtained by starting from χ̂n and integrating the
vector field ∑d

i=1 ξ i
nVi (d is the dimension of the associated vector fields).

Consider that the probability distribution of χn is p(χn). The additional information
about χn is obtained from the measurement yn as:

yn = h(χn) + vn (28)

where h is the observation function, and vn ∼N(0, Rn) denotes the white Gaussian noise.
The UKF-M module used the gyro measurements and acceleration as inputs to update
the random variable χ. The measurements of this standard 3D kinematic model were
represented as:

yn =
{

µn ∈ R3, abn ∈ R3
}

(29)

where µn =
(
ωxn , ωyn , ωzn

)
represents the gyroscope, and abn =

(
axn , ayn , azn

)
denotes

the accelerometer. The UKF-M algorithm [34] updated the state and covariance by combin-
ing measurements yn and system states χn.

In PINN UKFM, the output of the PINN module was utilized to filter the noise and
minimize the norm errors. Pseudo-states ûθ served as the calibrated IMU measurements
for the filtering process. The states of the pseudo-states were represented as:

yn = yn′ = ûθ =
{

µn ∈ R3, abn ∈ R3
}

(30)

where yn′ = ûθ represents the PINN module output as the pseudo-states.
Using the propagation function [34], PINN UKFM built the vehicle model. First, the

gyro measurements were inputted to calculate the rotation matrix:

Cn+1 = Cnexp
((

µn − bgn + w(0:3)
n

)
× dt

)
(31)

where exp is the exponential map on the SO(3), and dt is the integration step. In this
vehicle model, w(0:12)

n represented the noise, and w(0:3)
n , w(3:6), w(6:9), and w(9:12) were the

submatrices of w(0:12)
n . Next, the vehicle acceleration was inputted to calculate the calibrated

vehicle acceleration:
a = Cn

(
abn − ban + w(3:6)

)
+ g (32)

where g = [0, 0,−9.82] represents the gravitational constant and a represents the calibrated
vehicle acceleration. Based on the calibrated vehicle acceleration, the model updated the
vehicle speed as:

vn+1 = vn + adt (33)
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where vn = (vEn
, vNn

, vUn
) denotes the velocity vector. Based on the vehicle velocity

vector, the model updated the vehicle position vector as:

Pn+1 = Pn + vn × dt +
a× dt

2

2
(34)

where Pn = (En, Nn, Un) is the vehicle coordinates in the navigation coordinates. Finally,
the model uploaded the gyro and accelerometer biases as:

ba,n+1 = ba,n + w(6:9) × dtbg,n+1 = bg,n + w(9:12) × dt (35)

where bg,n represents the gyro bias, and ba,n represents the accelerometer bias.
The probability distribution of χ and the propagation function remained unchanged;

therefore, the posterior distribution p(χn|yn′) was calculated as p(χn|yn). The pseudo-
states yn′ provided information about the sigma point ξn. First, the sigma points ξn were
computed as:

ξ jn =


col
(√

(λ+ d)Pn

)
j
, j = 1, . . . , d

−col
(√

(λ+ d)Pn

)
j
, j = d + 1, . . . , 2d

λ =
(
α2 − 1

)
d

(36)

where λ is the scale parameter [48]; α is a free parameter chosen by the practitioner [49] (α
must be small); d is the dimension of the associated vector fields; Pn is the covariance matrix
at timestep n; and col represents that the j column of the matrix is the weight associated
with the j point. Second, these sigma points passed through the vehicle model to yield the
set of transformed sigma point yjn :

yjn =

{
h(ϕ(χ̂n, 0)), j = 0

h
(
ϕ
(
χ̂n, ξ jn

))
, j = 1, . . . , 2d (37)

where h(ϕ(χ̂n, 0)) is the unnoisy state model, h is the observation function (as in Equations
(31–35)), and χ̂n is the prior mean estimate of the current state. Third, the mean and
covariance of the transformed sigma points [30] were computed as:

yn = vmy0n + ∑2d
j=1 vjyjn

Pynyn = ∑2d
j=0 vj

(
yjn − yn

)(
yjn − yn

)T
+ Rn

Pξnyn = ∑2d
j=1 vjξ jn(yjn−yn)

vm = λ
λ+d , vj =

1/2
λ+d

(38)

where yn represents the mean of the transformed sigma points; Pynyn is the covariance
of the transformed sigma points; Pξnyn is the cross-covariance of the transformed sigma
points; vm and vj are weights; and Rn is the covariance matrix of white Gaussian noise.
Next, PINN UKFM employed the Kalman updated equation to update the state and
covariance as:

Kn = PξnynP−1
ynyn

χ̂+
n = ϕ(χ̂n, Kn(yn′ − yn))

Pn
+ = Pn −KnPynynKn

T
(39)

where yn′ is the PINN module output (pseudo-states), Kn is the gain matrix, χ̂+
n is the

posterior mean estimate state, Pn is the prior estimate covariance matrix of the current
state, and Pn

+ is the posterior estimate covariance matrix.
The unscented transformation [50] was employed to approximate the posterior p(ξn|yn′)

for ξn as:
p(ξn|yn′) ∼N

(
ξn, Pn

+
)

ξn = Kn(yn′ − yn)
(40)
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where ξn represents the noise-free mean.
The unscented approximation to the posterior p(ξn|yn′) was thus the distribution of

a Gaussian ξn + ξn
+ with ξn

+ ∼N
(
0, Pn

+
)

[34]. Then, PINN UKFM approximated the
posterior distribution p(χn|yn′) as:

χn ≈ ϕ
(
χ̂+
n , ξn

+), ξn
+ ∼N

(
0, Pn

+
)

χ̂+
n = ϕ

(
χ̂n, ξn

)
χn ≈ ϕ

(
ϕ
(
χ̂n, ξn

)
, ξn

+) (41)

where ξn
+ represents the posterior noise. The posterior distribution p(χn|yn′) boiled

down to a Bayesian estimation problem [47] that incorporated the information from the
PINN module.

In this paper, we focused on describing how PINN UKFM updated the state estimation
χ̂+
n and covariance matrix Pn

+ when pseudo-states yn′ arrived. Additionally, the UKF-
M algorithm could propagate the state without sensor measurement [34], which was
implemented in our program.

4. Experimental Results
4.1. Vehicle Platform

A vehicle platform was built to validate the proposed algorithm. The hardware
configuration is shown in Figure 4. The sensors included GNSS, IMU, MSW, WFT, S-
Motion, and a camera. D[WE-43A-USB and Dewesoft SIRIUS acquisition systems were
used. The DEWE-43A-USB system obtained the S-Motion and MSW signals through high-
speed CAN channels, while the Dewesoft SIRIUS system collected the WFT signals through
high-speed CAN channels. A computer was used for all data acquisition.
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First, the Mako G-192B monocular camera [51], produced by the Allied Vision Com-
pany, captured image data of the environment. Then, the starNeto XW-GI [52] provided
the IMU and GNSS data, using differential methods to measure both position and atti-
tude. $GPFPD was selected as the starNeto communication protocol to acquire signals
for [E, N, U, ϕ, Θ, ψ, ve, vn, vz]. In the third step, the S-Motion system, produced by Kistler,
provided signals for

[
vx, ax, vy, ay, az, ωx, ωy, ωz

]
. In the fourth step, the MSW by Kistler

was used to measure the steering wheel angle, speed, and torque. Finally, the WFT by
Kistler was used to measure the wheel forces and moments under dynamic conditions for
the left and right front wheels. The WFT provided signals for

[
Fx, Mx, Fy, My, Fz, Mz

]
in the
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front wheels and three axes of WFT, similar to the vehicle body coordinates. The hardware
implementation in the test vehicle [52–56] is shown in Figure 5.
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layer. The prediction states of the PINN module were the IMU calibration values.  

subPINN: To address the influence of loss backward during training, a single-output 

scheme of the PINN was implemented. The vehicle dynamics/kinematic models were 

used to build the data-driven model [𝑎𝑥, 𝑎𝑦, 𝜔𝑧]. This subPINN had the same structure as 
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32, 64} was used to reduce the computational complexity and improve accuracy. The 

Figure 5. The test vehicle.

The test was conducted on cement pavement at Jiangsu University, and the vehicle
trajectory is shown in Figure 6. The weather during the test was rainy, which reduced
the tire–road friction coefficient and increased the nonlinearity of the vehicle's dynamic
relationships. A total of 85% of the data were used for training and to verify the PINN
module, while the remaining 15% were reserved for testing. The dataset included scenarios
such as an overpass (high speed), a school (low speed), a slope, traffic lights, and vehicle
turning. The road scene could be changed by altering the dataset splits. In the experiment,
the last 15% of the dataset was used to evaluate the performance of PINN UKFM.
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4.2. Parameter Settings and Training of All Comparative Methods

PINN: The structure of the PINN was chosen as {22, 32, 32×5, 64, 128, 128, 64, 32, 6}.
For easy calculation of vz, we subtracted the gravity vector from the acceleration az during
data processing [34]. The layer {22, 32} was the encoder layer, and the layers {32, 32×5, 64,
128, 128, 64, 32} were the temporal interaction layers. The layer {32, 6} was the decoder
layer. The prediction states of the PINN module were the IMU calibration values.

subPINN: To address the influence of loss backward during training, a single-output
scheme of the PINN was implemented. The vehicle dynamics/kinematic models were
used to build the data-driven model

[
ax, ay, ωz

]
. This subPINN had the same structure

as the PINN and a single output. Specifically, for training
[
az, ωx, ωy

]
, the structure {1, 2,

32, 32, 64} was used to reduce the computational complexity and improve accuracy. The
inputs of

[
az, ωx, ωy

]
were [az,vz], [ωx,ϕ], and [ωy,Θ], respectively. Different from the UTM

coordinates, the attitudes did not differ greatly, so they were directly inputted here.
MLP [24,25,57]: The multilayer perceptron (MLP) is a commonly used approach for

building data-driven vehicle dynamics models. The structure of the MLP used in this study
was inspired by [24] and was chosen as {22, 32, 32×5, 64, 128, 128, 64, 32, 6}. The ReLU
activation function was applied between each layer. Different from the approach used
in [24], we used the layers {32, 32×5} as the temporal interaction layers, which is a common
approach in data-driven dynamics modeling [25].

LSTM [24,57,58]: Long Short-Term Memory (LSTM) is another classic method used
to build data-driven dynamics models, which is employed for predicting the acceleration
and angular velocity of vehicles [57,58]. LSTM is known for its ability to capture temporal
dependencies in the data. In this study, LSTM was implemented with a general transforma-
tion structure as {22, 32, 128, 32, 6}, where {22, 32} and {32, 6} represented the MLP layers.
The exponential linear unit (ELU) [35] function was applied after the first layer, and {32, 32,
128} represented the two LSTM layers.

Physical models [23,45]: The yaw rate formulas based on longitudinal/lateral dynam-
ics and kinematic models were used in this paper. The longitudinal dynamics parameters
were calculated using the least squares method [23]. The lateral dynamics parameters
were computed based on the actual vehicle parameters (l f , lr, m) and the relationships

between states (C =
Fy
ay

). We assumed the yaw rate was an LTI state. Therefore, a kinematic
model [45] was used to calculate the yaw rate.

The wheel force [Fx, Fy] measured by WFT could be utilized to calculate the acceleration
through algebraic equations. Additionally, we used the linearly constrained least squares
method to combine these dynamics as:

maxn =
(
K1 ×Myl,n +K2 ×Myr,n +K3mg−K4v2

xn

)
+K5Fx f l,n +K6Fx f r,n +K7

mayn = K8

(
−4Cvyn−2C(l f−lr)ωzn

vxn m −mvxn ωzn +
2Cδn

m

)
+K9Fy f l,n +K10Fy f r,n +K11

(42)

where K1∼K6,K8∼K10 represent the parameters of the least squares method, and
K7 and K11 represent the coefficients of the least squares method.

The resulting states of the physical models are illustrated in Figure 7. In the experiment,
we not only compared the prediction states with the sensor signals but also compared the
integration states

[
vx, vy, vz, ϕ, Θ, ψ

]
with the integrated sensor signals, which could be

expressed as:

Zt = Z0 +
∫ t

i=0
uidt (43)

where Z0 is initial state, t is the timestamp, and ui =
[
ax, ay, az, ωx, ωy, ωz

]
are the states at

timestamp i.



Sensors 2023, 23, 6665 16 of 23
Sensors 2023, 23, x FOR PEER REVIEW 16 of 23 
 

 

  

Figure 7. The results of physical models. 

As shown in Figure 7, the “Algebraic equation  represented the calculation results of 

Equations (16) and (18). The “Linearly constrained least square  represented the calcula-

tion results of Equation (42). By combining the forces and dynamics, the output of this 

equation provided a better fit to the IMU measurements. This method could fit multiple 

sensors to improve the accuracy of the dynamics, when the IMU measurements were ac-

curate. However, due to the IMU drift, the integration error of this model was relatively 

large. The “Dynamics  represented the longitudinal/lateral dynamics model based on 

Equations (15) and (17), which is commonly used for vehicle control. In this paper, “Line-

arly constrained least square  and “Dynamics  were established based on the IMU meas-

urement data. Therefore, the results of these models were close to the IMU measurements 

but also had large integration errors.  

To maintain visual clarity, we only used the vehicle dynamics (“Dynamics ) and kin-

ematic models for comparison. MLP and LSTM also utilized the PyTorch deep learning 

framework. We employed the Adam optimizer with a 0.001 learning rate to train the net-

work. The models were trained using the Nvidia GTX 3080Ti GPU. All models, including 

PINN, subPINN, MLP, and LSTM, were trained using the same training dataset. However, 

there was a difference in the loss calculation method. Different from the loss calculation 

method established by PINN, MLP and LSTM used the IMU measurements to build data-

driven vehicle models [25,57,58]. These methods commonly assumed that the ground 

truth states of the vehicle were accessible. In this paper, we used highly accurate S-motion 

data as a surrogate for the actual vehicle state for MLP and LSTM training.  

4.3. Validation of the PINN Module 

In this subsection, we compare the PINN module with the MLP, LSTM, and vehicle 

dynamics/kinematic models and vehicle measurements. These data-driven models were 

trained using the dataset described in Section 4.1. The root mean square error (RMSE) 

[24,59] was used to evaluate the performance of the models, which was represented as: 

RMSE =  √
1

𝒮
∑(𝜘𝑖 − 𝜘�̂�)

2

𝒮

𝑖=1

 (44) 

where 𝒮    1800 is the predicted steps, 𝜘𝑖 = [𝑢𝑖 , 𝒵𝑖]  represents the i-th value of the pre-

dicted results, and 𝜘�̂� represents the i-th value of the reference results (sensor measure-

ments).  

Table 2 presents the RMSEs of the predicted states using different methods. The re-

sults demonstrated that except for longitudinal/lateral acceleration, the PINN-based ap-

proaches (PINN and subPINN) estimated the vehicle state more accurately. The inferior 

Figure 7. The results of physical models.

As shown in Figure 7, the “Algebraic equation” represented the calculation results
of Equations (16) and (18). The “Linearly constrained least square” represented the cal-
culation results of Equation (42). By combining the forces and dynamics, the output of
this equation provided a better fit to the IMU measurements. This method could fit mul-
tiple sensors to improve the accuracy of the dynamics, when the IMU measurements
were accurate. However, due to the IMU drift, the integration error of this model was
relatively large. The “Dynamics” represented the longitudinal/lateral dynamics model
based on Equations (15) and (17), which is commonly used for vehicle control. In this
paper, “Linearly constrained least square” and “Dynamics” were established based on
the IMU measurement data. Therefore, the results of these models were close to the IMU
measurements but also had large integration errors.

To maintain visual clarity, we only used the vehicle dynamics (“Dynamics”) and
kinematic models for comparison. MLP and LSTM also utilized the PyTorch deep learning
framework. We employed the Adam optimizer with a 0.001 learning rate to train the
network. The models were trained using the Nvidia GTX 3080Ti GPU. All models, including
PINN, subPINN, MLP, and LSTM, were trained using the same training dataset. However,
there was a difference in the loss calculation method. Different from the loss calculation
method established by PINN, MLP and LSTM used the IMU measurements to build data-
driven vehicle models [25,57,58]. These methods commonly assumed that the ground truth
states of the vehicle were accessible. In this paper, we used highly accurate S-motion data
as a surrogate for the actual vehicle state for MLP and LSTM training.

4.3. Validation of the PINN Module

In this subsection, we compare the PINN module with the MLP, LSTM, and ve-
hicle dynamics/kinematic models and vehicle measurements. These data-driven mod-
els were trained using the dataset described in Section 4.1. The root mean square er-
ror (RMSE) [24,59] was used to evaluate the performance of the models, which was
represented as:

RMSE =

√√√√ 1
S

S

∑
i=1

(
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Table 2 presents the RMSEs of the predicted states using different methods. The
results demonstrated that except for longitudinal/lateral acceleration, the PINN-based
approaches (PINN and subPINN) estimated the vehicle state more accurately. The inferior
prediction performance on longitudinal/lateral acceleration was attributed to sensor drift.
By integrating the acceleration to obtain velocity, it was shown that the PINN-based
methods could effectively take the influence of other sensors and realize IMU calibration.

Table 2. The RMSEs of the predicted states using different methods.

Model ax ay az ωx ωy ωz

MLP 0.1117 0.1524 0.2729 0.0164 0.0171 0.0174
LSTM 0.1167 0.1444 0.2626 0.0171 0.0175 0.0167
PINN 0.2733 0.3904 0.2806 0.0110 0.0084 0.0058

subPINN 0.2301 0.3606 0.2167 0.0076 0.0049 0.0036
Model vx vy vz ϕ Θ ψ
MLP 20.2365 25.2757 2.7479 0.1027 0.1865 0.3334

LSTM 19.6955 24.8413 0.5609 0.0613 0.1391 0.3856
PINN 1.3007 4.6707 0.5609 0.0806 0.0429 0.0475

subPINN 1.8171 7.3559 0.4169 0.0312 0.0113 0.0217

As shown in Figure 8, the estimation results of [a x, vx, ay, vy

]
were obtained. “Sensor

ax integration” was the ODE states inferred from the original signals using Equation (43)
and is shown in green. The PINN model incorporated both longitudinal/lateral vehicle
dynamics and LTI-based vehicle displacement, which yielded higher-precision results than
the subPINN model. Compared with the MLP and LSTM models, the PINN model had
better prediction accuracy of the integrated states. This was due to the PINN model being
able to incorporate more dynamics knowledge into the data-driven model.
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and sensor measurements.

The estimation results of states [a z, vz, ωx, ϕ, ωy, Θ, ωz, ψ
]

were obtained as shown
in Figure 9. The experiment of [a z, ωx, ωy] aimed to reduce the noise in acceleration and
angular velocity by combining the PINN module with the linear ODEs. As the noise impact
on the S-Motion sensor increased over time, the subPINN model demonstrated superior
accuracy in estimating the state variables while maintaining the sensor data characteristics
and reducing noise. Both the PINN and subPINN models used the vehicle kinematic model
in modeling ωx. The subPINN model converged more readily in yaw rate prediction than
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the other models. Compared to the MLP and LSTM models, the subPINN model had better
prediction accuracy in each state.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 23 
 

 

subPINN model offered advantages in terms of training efficiency and high accuracy re-

sults. This gave the subPINN model a certain attractiveness for engineering implementa-

tions. However, the subPINN model could not establish connections between multiple 

states like the PINN model in order to achieve more comprehensive modeling. Therefore, 

the PINN model performed better in terms of longitudinal/lateral dynamics accuracy.  

 

 

Figure 9. The prediction results of states [𝑎𝑧, 𝑣𝑧, 𝜔𝑥, 𝜑, 𝜔𝑦, Θ, 𝜔𝑧, 𝜓] and sensor measurements. 

4.4. Validation of PINN UKFM  

The experimental results presented above demonstrated the advantages of the PINN 

module, but some issues in the comparison still remained. The vehicle states were not 

connected through a vehicle-based model during the comparison, which failed to reflect 

the impact of the estimation states on the vehicle dynamics. Compared to other vehicle 

states, the cm-level GNSS positioning could better reflect the effectiveness of the presented 

estimation states. 

In this subsection, the UKF-M module based on the output of the PINN module is 

demonstrated. This module reduced state noise through the Gaussian noise hypothesis. 

Figure 10 shows the trajectories of PINN UKFM and sensor inputs. The vectors [𝐸, 𝑁, ℎ] 

were entered at 20 Hz. The covariance matrices of the point were iterated quickly, which 

could not encapsulate the performance improvement of PINN UKFM. 

Figure 9. The prediction results of states [a z, vz, ωx, ϕ, ωy, Θ, ωz, ψ
]

and sensor measurements.

The subPINN model estimated a single vehicle state, which simplified the training
process and enabled easier convergence during training. In contrast, the training process
of the PINN model was more complex and it was difficult to achieve optimal results. The
subPINN model offered advantages in terms of training efficiency and high accuracy results.
This gave the subPINN model a certain attractiveness for engineering implementations.
However, the subPINN model could not establish connections between multiple states like
the PINN model in order to achieve more comprehensive modeling. Therefore, the PINN
model performed better in terms of longitudinal/lateral dynamics accuracy.

4.4. Validation of PINN UFM

The experimental results presented above demonstrated the advantages of the PINN
module, but some issues in the comparison still remained. The vehicle states were not
connected through a vehicle-based model during the comparison, which failed to reflect
the impact of the estimation states on the vehicle dynamics. Compared to other vehicle
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states, the cm-level GNSS positioning could better reflect the effectiveness of the presented
estimation states.

In this subsection, the UKF-M module based on the output of the PINN module is
demonstrated. This module reduced state noise through the Gaussian noise hypothesis.
Figure 10 shows the trajectories of PINN UKFM and sensor inputs. The vectors [E, N, h]
were entered at 20 Hz. The covariance matrices of the point were iterated quickly, which
could not encapsulate the performance improvement of PINN UKFM.
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Figure 10. Compared trajectories at 20 Hz GNSS position.

Therefore, the frequency of the trajectory coordinates was reduced to 1 Hz through
downsampling. As illustrated in Figure 11, the results obtained using PINN UKFM were
superior to those obtained using the conventional UKF-M algorithm. Without coordinate
input, the vehicle coordinates were updated in the vehicle model using the UKF-M module.
The PINN module could reduce the influence of vehicle sensor drift and provided a reliable
state estimation result that was closer to the true state of the vehicle. Therefore, the updated
vehicle position of PINN UKFM was also closer to the true vehicle state.
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Additionally, the UKF-M module could estimate the vehicle speed, which included
[ve, vn, vu]. However, the [ve, vn, vu] were not inputted into the PINN module. Next,
the modeling results were compared to the measurement states to verify PINN UKFM
correctness. As shown in Figure 12, compared to the UKF-M algorithm, PINN UKFM could
better estimate vu.
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Considering that the cm-level GNSS positioning has a great impact on the covariance
matrix, the velocity at the 1 Hz GNSS position was also compared, as shown in Figure 13.
The PINN UKFM results were significantly better than the UKF-M results.
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Evidently, PINN UKFM exhibited remarkable performance in vehicle state estimation,
although there was still potential for further improvement. A possible enhancement lies in
leveraging the signals from the CAN bus to replace the WFT and MSW sensors. The CAN
bus grants access to a wealth of vehicle sensor data, including valuable information such as
the steering angle, throttle opening, and brake pressure. By incorporating these signals as
inputs to the model, a dynamic vehicle model could be constructed, enabling more accurate
state estimation. Additionally, the S-Motion sensor can also be replaced by a cheaper IMU.
Using more universal CAN bus signals and IMUs, the model could be implemented on
more vehicle platforms without being limited by specific sensors.

5. Conclusions

In this study, a novel method for vehicle state estimation combining PINN and UKF-M
has been proposed. The sensor module collects various sensor signals and feeds them into
the PINN module. The PINN module automatically calibrates the IMU by utilizing the
ODE relationships that exist between multiple sensors. The PINN-based model mitigates
sensor errors and facilitates sensor fusion, leveraging the LTI hypothesis for loss calculation
in order to reduce noise and bias in the original sensor data. It exhibits clear advantages
in multi-sensor fusion compared to existing data-driven vehicle dynamics models. The
resulting pseudo-states are then used as inputs to the UKF-M module to model the vehicle
trajectory. The experimental results confirmed its effectiveness, with the PINN module
successfully eliminating IMU drift and the PINN UKFM trajectory exhibiting less deviation
from the cm-level GNSS positioning than the UKF-M trajectory. In the future, we aim to
explore more cost-effective solutions to implement the PINN UKFM method. Additionally,
the authors intend to use PINN UKFM in OCCS control.
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