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Abstract: Efficient detection and evaluation of soybean seedling emergence is an important measure
for making field management decisions. However, there are many indicators related to emergence,
and using multiple models to detect them separately makes data processing too slow to aid timely
field management. In this study, we aimed to integrate several deep learning and image process-
ing methods to build a model to evaluate multiple soybean seedling emergence information. An
unmanned aerial vehicle (UAV) was used to acquire soybean seedling RGB images at emergence
(VE), cotyledon (VC), and first node (V1) stages. The number of soybean seedlings that emerged was
obtained by the seedling emergence detection module, and image datasets were constructed using the
seedling automatic cutting module. The improved AlexNet was used as the backbone network of the
growth stage discrimination module. The above modules were combined to calculate the emergence
proportion in each stage and determine soybean seedlings emergence uniformity. The results show
that the seedling emergence detection module was able to identify the number of soybean seedlings
with an average accuracy of 99.92%, a R2 of 0.9784, a RMSE of 6.07, and a MAE of 5.60. The improved
AlexNet was more lightweight, training time was reduced, the average accuracy was 99.07%, and the
average loss was 0.0355. The model was validated in the field, and the error between predicted and
real emergence proportions was up to 0.0775 and down to 0.0060. It provides an effective ensemble
learning model for the detection and evaluation of soybean seedling emergence, which can provide a
theoretical basis for making decisions on soybean field management and precision operations and
has the potential to evaluate other crops emergence information.

Keywords: emergence evaluation; unmanned aerial vehicle; imagery; ensemble learning model;
growth stages; emergence proportion

1. Introduction

Smart agriculture promotes the deep integration of modern information technology
and agricultural development; it helps to realize precise crop field management, improve
crop production indicators, and contribute to sustainable agricultural development [1,2].
The application of optical imaging-based crop phenotype information collection platforms
and data analysis technology is an important way to build crop growth models and obtain
high-dimensional and rich phenotype datasets. It can provide the basis for quantitative
decision-making and management in the agricultural development process [3,4]. Seedling
stage is an important stage of crop growth; accurate and rapid access to crop emergence
information helps to make field management decisions efficient and accurate crop growth
assessments [5–7].

Satellite, UAV, and ground-based phenotyping platforms have been developed to
improve the efficiency and accuracy of crop information detection in the field. The crops
at the seedling stage are young, and the satellite platform is limited by the temporal
and spatial resolution of data acquisition, and the revisit cycle is long and interfered
with by the atmosphere, clouds, rain, and snow [8,9], so it is more difficult to apply it
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to seedling crop information detection. The images acquired by the ground platform
have high resolution, but the imaging coverage is small, and the information collected
is easily affected by ground conditions, which cannot meet the rapid detection of crop
information in a large field area [10]. The UAV platform can obtain crop information at
low altitude levels without direct contact with crops, regardless of field ground conditions,
and with high resolution, providing an effective solution for crop phenotype analysis and
assessment in the field [11,12]. Agricultural data come from a wide variety of sources, types,
and structures, and artificial intelligence (AI) algorithms can quickly and automatically
analyze agricultural data with these characteristics [13]. Under field conditions, manual
counting of emergence information is tedious and time-consuming and is subject to serious
human error. UAV platforms have improved the ability to effectively collect high-resolution
images of crops at the field scale, and the combination of AI algorithms and UAVs provides
conditions for research into crop emergence information detection.

The UAV image resolution is critical, and reducing or increasing resolution will affect
crop feature extraction and recognition accuracy [14]. Resolution is closely related to flight
altitude, with different crop coverage in the images at different flight altitudes, giving
variability in the crop information extracted by UAV [15]. Dai et al. [16] achieved accurate
extraction of information on cotton emergence, canopy cover, and growth uniformity
using UAV RGB images and support vector machines (SVM), and they found that image
resolution had a large impact on the model. Banerjee et al. [17] combined spectral and
morphological information extracted from UAV multispectral images to effectively estimate
wheat emergence using machine learning regression analysis, but the lower resolution
posed difficulties in detecting the number of wheat emergences. The improved YOLOv4
proposed by Gao et al. [18] achieved accurate detection of maize numbers; they used
depth-separable convolution and improved network structure to make the model more
lightweight and reduce the number of model parameters, but the smaller range of acquired
features for maize in the images made it less efficient. There will be some variation in
the detection accuracy of the model for images acquired during different crop growth
periods [19]. Du et al. [14] used UAV images to develop a mixed pixel decomposition
model that can improve the accuracy of wheat basic seedling number inversion, which
has high accuracy and applicability from the three-leaf stage to the overwintering stage.
Jin et al. [20] effectively assessed the plant density of wheat at emergence from UAV
images using SVM, but there were differences in recognition results for images acquired at
different growth periods. High-quality datasets have been found in previous studies to
be essential for model performance improvement. Liu et al. [21] considered that in order
to make the model more accurate and efficient, data under different conditions could be
collected extensively, and thus high-quality datasets could be built. The RiceNet model
constructed by Bai et al. [22] estimated the location, plant size, and number of rice seedlings
and achieved accurate rice planting management, but the datasets lacked diversity. Zaji
et al. [23] implemented wheat spikelet localization and counting through a hybrid U-Net
architecture, achieving good accuracy but with the problem of insufficient data quantity.

By summariaing the above research, it was found that the following issues need to
be addressed: The image resolution has a large impact on the model, and the appropriate
UAV flight height is closely related to the resolution. The lightweighting of the model
is important for further research. The detection accuracy of the model varies for images
acquired during different growing periods of the crop. Lack of diversity in the dataset and
insufficient data sample size are common problems. Some of these problems can be solved
by data augmentation, integration and optimization of algorithms, and determination of
the optimal UAV flight height, while reduction of the total model parameters and creation
of high-quality datasets are also essential and will be addressed in our study.

Therefore, our study innovatively proposes to construct an ensemble learning model.
By improving, optimizing, and fusing multiple algorithms, we build a soybean emergence
model based on UAV RGB imagery to achieve one-stop detection and evaluation of various
soybean emergence information. The specific objectives included: (1) to construct an
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seedlings emergence detection module to obtain the number of soybean seedlings as well
as to determine the optimal UAV sampling range by using UAV to collect images at different
flight altitudes; (2) to evaluate the adaptability of two deep learning models, MobileNetV2
and AlexNet, for growth stages discrimination and explore the role of image enhancement
in improving data quality and increasing model accuracy; and (3) to integrate the indicators
to build an ensemble learning model to determine soybean seedling emergence uniformity
by calculating emergence proportion, and guide intelligent field management and precision
operations for soybeans during the seedling stage.

The rest of the paper is structured as follows: Section 2 contains the materials and
methods used in this study. Section 3 analyses and discusses the results of the model and
the application evaluation undertaken. Section 4 discusses the results of the study, the
reasons for the experimental errors, and future prospects. Section 5 concludes the study.

2. Materials and Methods
2.1. Experimental Materials and Data Acquisition

The experimental site was at North 15, Jianshan Farm, Heihe City, Heilongjiang
Province, China (48◦86′22′′ N, 125◦36′43′′ E). A schematic diagram of the experimental site
and planting mode is shown in Figure 1.
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Figure 1. Schematic diagram of the experimental site and planting mode.

The overall view of the experimental site was obtained by image stitching after aerial
photography by UAV; the total area of the experimental site was 54 hectares, and only part
of the experimental area was shown here. In terrain conditions, the height lies between
324 m and 359 m above sea level. The main soybean varieties, Beidou 37 and Longken
3401, were selected and planted in three rows on a 1.1 m monopoly; each was planted in
half of the field and was followed by the same number of plots. The marginal effect of
monopolies can be fully exploited to increase soybean yields by increasing the number of
soybean seedlings retained per unit area [24]. In the planting mode, the spacing between
each two rows of soybeans is 22.5 cm, and the height of the monopoly is 25 cm.
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Using the DJI P4 Multispectral UAV (DJI, Shenzhen, Guangdong, China) as an image
data acquisition platform. It integrates one RGB sensor and five multispectral sensors
(R, G, B, RE, and NIR), each with 2 megapixels. Set the UAV flight parameters through
DJI GS Pro software and shoot with the lens vertically down, original image resolution is
1600 × 1300 pixels. Figure 2 shows the UAV physical picture.
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Figure 2. DJI P4 Multispectral UAV physical picture.

The UAV flight height is generally set artificially to ensure flight safety, no obstacles,
and clear image acquisition; this mostly relies on rules of thumb for decision-making [15].
Consequently, when using UAV for soybean field image acquisition, the best flight height
should be selected and sufficient resolution maintained to balance field coverage and
algorithm recognition accuracy. The experiment was carried out at the early stage of
soybean growth; if the flight height was too high, the algorithm would have difficulty
recognizing the small soybeans in the images. If the flight height was too low, it would
increase the flight time and affect efficiency. Therefore, in our study, three flight heights
were used to acquire images: 3 m, 4 m, and 5 m, which were detected by the algorithm and
then analyzed to determine the optimal UAV flight height.

Sixty monitoring sites were selected in the test plots for the experiment. During the
soybean seedling stage, weeding, pest and disease control, fertilizer, and water retention
are needed during the VE stage. The VC stage is important for weed control, and in the
V1 stage, attention should be paid to weeds and pests. Thus, images acquired during these
three stages (VE, VC, and V1) were used for the study. Soybeans were sown on the plot on
25 April and soybeans emerged from 16 May until 2 June when full V1 stage coverage was
achieved. Soil temperature and cumulative temperature information was monitored from
26 April to 2 June and is shown in Table 1. The low temperatures in the early stages led to a
late emergence of soybeans, which began to emerge rapidly when temperatures increased
in the later stages. Considering the image quality, the images were chosen to be acquired in
the absence of wind or breeze. In the soybean field environment, light and dark variations
in light, complex weather conditions, and images acquired under complex backgrounds
will affect the model’s performance. To reduce the impact of the above factors on model
performance, a large number of soybean seedling images were acquired in a variety of
environments, including sunny, cloudy, and rainy days and conditions with different light
variations, as well as during different time periods in the morning, midday, and evening,
respectively. Some of the images had V2 stages in them, and they were excluded. While
the UAV completed the image acquisition task, the emergence status at that date at each
monitored site was recorded manually.
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Table 1. Soil temperature averages and cumulative temperature information.

Date Soil Temperature Averages Cumulative Temperature

4.26–5.15 9.75 ◦C 154.3 ◦C
5.16–6.2 16.1 ◦C 265 ◦C

2.2. Ensemble Learning-Based Soybean Seedling Emergence Detection Model

Combining the seedling emergence detection module, the seedling automatic cutting
module, the growth stage discrimination module, and the emergence proportion calculation
module, an ensemble learning model was constructed to realize one-stop detection of
soybean seedling emergence. Ensemble learning trains several individual learners to
complete the learning task through certain combination strategies, finally forming a strong
learner. It can be applied to classification, regression, feature selection, and outlier detection.

2.2.1. Seedling Emergence Detection Module

The seedling emergence detection module was constructed by Otsu with connected
component analysis. The acquired soybean RGB images in the field were Otsu binarized
and converted to color images, and then the number of soybean seedlings was calculated
by the connected component analysis algorithm. Otsu is a classical adaptive thresholding
algorithm for grayscale image thresholding segmentation, with the idea of finding the
best threshold to maximize the inter-class variance of two classes after clustering [25]. As
calculated using Equation (1) [26].

σ2(k) = w0(µ− µ0)
2 + w1(µ− µ1)

2 (1)

where σ2 is the inter-class variance, k is the threshold, the value of k when σ2(k) takes the
maximum value is the optimal threshold, w0 is the probability of occurrence of target image
elements, w1 is the probability of occurrence of background image elements, µ is the image
grayscale mean, µ0 is the target grayscale mean, and µ1 is the background grayscale mean.

The connected component analysis algorithm is generally used for binary images to
find and label pixels that have the same pixel value and are adjacent to each other. In the
experiment, the connected component analysis algorithm was adapted to soybean color
image characteristics so that it could be directly applied to color images converted by
Otsu binarization. Further, the soybean contours were detected, the contours found were
traversed and marked by the minimum outer rectangle, and their positions and numbers
were plotted to achieve emergence number detection. Each contiguous region was analyzed
for one soybean to reduce redundant information and not contain parts of soybeans from
other periods. Analysis using 8 contiguous regions, including the top, bottom, left, right,
top-left, top-right, bottom-left, and bottom-right positions in the images in the immediate
vicinity of 8 directions [27]. It was defined as Equation (2).

N8(P) = N4 ∪ (x + 1, y + 1), (x + 1, y− 1), (x− 1, y− 1), (x− 1, y + 1) (2)

where N4 is the 4 contiguous regions, x is the horizontal pixel coordinate, and y is the
vertical pixel coordinate.

The coefficient of determination (R2), root mean square error (RMSE), and mean
absolute error (MAE) were used as evaluation metrics (Equations (3), (4), and (5), respec-
tively) [17]. R2 can reflect the fit degree of the trend line between the number of predicted
soybean seedlings and real soybean seedlings. RMSE is the error dispersion degree between
the number of predicted and real seedlings, representing the algorithm’s stability. MAE is
the average error between the number of predicted and real seedlings, which indicates the
algorithm’s accuracy.

R2 =
∑ i(ŷi − y)
∑ i(yi − y)

(3)
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RMSE =

√
∑ i(ŷi − yi)

2

N
(4)

MAE =
∑ i|ŷi − yi|

N
(5)

where i is the i-th monitoring site, the range of i is 1–60, and the summation limit is 60. yi
is the number of real seedlings in the i-th monitoring site, ŷi is the number of predicted
seedlings in the i-th monitoring site, y is the mean value of the number of seedlings in each
monitoring site, and N is the number of monitoring points.

2.2.2. Seedling Automatic Cutting Module

Five hundred images collected by UAV were chosen to identify and label soybean
seedlings by the seedling emergence detection module, and the detected soybean seedlings
were cut using an automatic cutting algorithm to build image datasets; some images are
shown in Figure 3. The image size was adjusted to 255 × 255 × 3, and labels were made to
distinguish between VE as “0”, VC as “1”, and V1 as “2”, for a total of 3000 images.
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iŷ  is the number of predicted 

seedlings in the i-th monitoring site, y  is the mean value of the number of seedlings in 

each monitoring site, and N is the number of monitoring points. 

2.2.2. Seedling Automatic Cutting Module 

Five hundred images collected by UAV were chosen to identify and label soybean 

seedlings by the seedling emergence detection module, and the detected soybean seed-

lings were cut using an automatic cutting algorithm to build image datasets; some images 

are shown in Figure 3. The image size was adjusted to 255 × 255 × 3, and labels were made 

to distinguish between VE as “0”, VC as “1”, and V1 as “2”, for a total of 3000 images. 

   

(a) (b) (c) 

Figure 3. Images of soybean seedlings obtained by automatic cutting: (a) VE stage images; (b) VC 

stage images; (c) V1 stage images. 

In order to obtain a neural network model with good performance and recognition 

accuracy that can detect crop information at different growth stages, more diverse and 

representative datasets were constructed using image enhancement techniques to train 

the model. Operations such as brightness, horizontal flip, saturation adjustment, random 

cropping, and scaling were performed on the original images to obtain the enhanced 

Figure 3. Images of soybean seedlings obtained by automatic cutting: (a) VE stage images; (b) VC
stage images; (c) V1 stage images.

In order to obtain a neural network model with good performance and recognition
accuracy that can detect crop information at different growth stages, more diverse and
representative datasets were constructed using image enhancement techniques to train
the model. Operations such as brightness, horizontal flip, saturation adjustment, random
cropping, and scaling were performed on the original images to obtain the enhanced images,
which were combined with the original images to form a new dataset. The imbalance of
sample distribution in the datasets will lead to negative effects such as overfitting and
difficulty in feature extraction. In order to ensure the model learning effect, 3000 images
per stage in the datasets, or 9000 images in total, were used as the input layer of the deep
learning model.

2.2.3. Growth Stage Discrimination Module

The growth stage discrimination module was the main part of the soybean seedling
emergence detection model, which classified the growth stage (VE, VC, or V1) by discrimi-
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nating the soybean seedling images from the automatic cutting module. The model should
be sufficiently lightweight to ensure its recognition performance and interference resistance
in the field environment. Deep learning shows great potential in remote sensing monitoring
of crop growth at the field scale [28], of which MobileNetV2 and AlexNet were selected
to construct separate models for soybean seedling image characteristics and fully extract
feature information.

MobileNetV2 is a lightweight neural network proposed by Sandler et al. in 2018,
retaining the deep separable convolution from the previous version and adding two mod-
ules for inverted residuals and linear bottlenecks [29]. The architecture of MobileNetV2 is
shown in Figure 4.
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Figure 4a is an inverted residual block structure. Inverted residual blocks adopt the
structure of ascending and descending first, which can reduce the information loss, receive
rich feature information, and then improve accuracy. Linear bottlenecks improve the
nonlinear activation function ReLU6 after the layer with a smaller output dimension in the
network to linear activation, which solves the problem of feature loss when compressing
high-dimensional features to low-dimensional features [30]. Based on the soybean seedling
image features, the MobileNetV2 network structure was designed as shown in Figure 4b,
consisting of a two-dimensional convolutional layer, a bottleneck layer, a global average
pooling layer, and a fully connected layer.

AlexNet is a typical model in a convolutional neural network, consisting of five convo-
lutional layers, three pooling layers, and three fully connected layers. The convolutional
layer efficiently extracts deeper feature information from a small region of pixels in the
images using a sliding calculation at stride 1; the convolution process is shown in Figure 5.
Max-pooling reduces information loss by retaining the most significant image features, and
the fully connected layer takes the main computational load and stores the final feature in-
formation of the model. AlexNet is normalized by LRN to suppress the feedback of smaller
neurons and amplify the feedback of larger neurons, speed up the model convergence by
the ReLU activation function, and introduce Dropout to prevent overfitting.

To evaluate the performance of the growth stage discrimination module and to ensure
that soybean images are sufficiently diverse and representative to avoid the problem
of weak model generalization due to single soybean image features, MobileNetV2 and
AlexNet were compared for testing accuracy on the original image datasets (3000 images)
and enhanced image datasets (9000 images), respectively. Dividing the training and testing
sets by a ratio of 3:1, the distribution of image datasets is shown in Table 2.
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Table 2. Distribution of image datasets.

Image Types Growth Stages Labels Training Sets Numbers Testing Sets Numbers

Original images
VE 0 750 250
VC 1 750 250
V1 2 750 250

Enhanced images
VE 0 2250 750
VC 1 2250 750
V1 2 2250 750

Accuracy is one of the important metrics to evaluate the overall performance of a
model, but for some specific tasks, the model needs to meet requirements for low parameter
numbers, time efficiency, and stability. Using training time, average loss and average
accuracy as evaluation metrics, the average loss, and average accuracy were calculated as
shown in Equations (6) and (7).

AL =
eL
e

(6)

AA =
eA
e
× 100% (7)

where AL is the average loss, AA is the average accuracy, eL is the sum of loss after each
epoch, eA is the sum of accuracy after each epoch, and e is the number of epochs.

2.2.4. Emergence Proportion Calculation Module

Soybean emergence uniformity is highly significant and positively correlated with
yield; soybeans that emerge later cannot compete with those that emerged earlier and
do not grow vigorously, resulting in yield loss. Uneven soybean emergence includes the
simultaneous presence of multiple growth stages of soybeans after emergence, failure
to timely convert soybeans from the previous stage to the next growing stage within a
reasonable period of time, small seedlings caught in large seedlings, and a low number of
seedlings emerged, resulting in a poor emergence rate. The emergence proportion calcu-
lation module combined the output of the above modules: first, we obtained the overall
number of soybean seedlings; second, we obtained the results of identifying the growth
stages of all soybean seedlings; next, we calculated the soybean emergence proportion for
each growth stage; and finally, we determined whether soybean seedling emergence was
uniform. The emergence proportion was calculated as shown in Equation (8).

EP =
TPi
ST

(8)

where EP is emergence proportion, TPi is the number of soybean seedlings that emerged at
stage i, i is VE, VC or V1, and ST is overall number of soybean seedlings emerged.
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To validate the model for practical effects in the field, a total of six dates—19 May,
20 May, 22 May, 23 May, 25 May, and 26 May—were selected between 16 May and
2 June, and 30 images acquired by UAV were used for emergence information detection on
each date.

All models were in Python language, using Pycharm as a compiler. Deep learning was
trained and tested using TensorFlow 2.5 and its built-in Keras module, applying Anaconda,
CUDA, and cuDNN. The processor is an Inter(R) Core(TM)i5-1035G1 CPU @1.00GHz 1.19,
running on Windows 10, 64 bit. The adapter parameters were displayed as Inter(R) UHD
Graphics, NVIDIA GeForce MX350.

3. Results
3.1. Performance Evaluation of Seedling Emergence Detection Module

UAV images acquired at three different flight heights were examined with this module.
On the one hand, the performance of the module was evaluated, and on the other hand, the
optimal flight height for the UAV was determined. The detection results for three different
flight heights were displayed visually, including the number of real seedlings and predicted
seedlings, as shown in Figure 6. The results were highlighted by using red rectangular
boxes to mark the target locations and blue to mark the number of seedlings.
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Figure 6. The detection results for three different flight heights: (a) The detection results of 3 m;
(b) The detection results of 4 m; (c) The detection results of 5 m.

The monitored points were 60, and the images taken by UAV were predicted using
the seedling emergence detection module and compared with the number of real seedlings
measured manually. The results are shown in Figure 7.

Analysis of Figure 7 shows that when the UAV flight height was 3 m, in the results
of the comparison between the number of predicted and real seedlings, R2 was 0.9551,
RMSE was 3.68, and MAE was 3.08. When the flight height was 4 m, R2 was 0.9784, RMSE
was 6.07, and MAE was 5.60. When the flight height was 5 m, R2 was 0.8451, RMSE was
23.05, and MAE was 20.88. The average accuracy of detecting images acquired at three
flight heights was 95.64%, 99.92%, and 93.54%, respectively. When the flight heights were
3 m and 4 m, R2 was able to reach above 0.95, and the average accuracy was above 95%.
Taken together, the R2 and average accuracy of the 4 m were higher, and although it was
lower than the 3 m in two indexes, RMSE and MAE, it could obtain a larger range of field
information and improve detection efficiency.

Morphological characteristics of soybean can vary between growing environments and
between varieties. In order to determine whether the module can accurately detect other
soybean varieties and soybean seedlings grown in different regions, we chose the Circular
Agriculture Research Center of Guangdong Province (21◦16′46′′ N, 110◦25′86′′ E), which
is geographically significantly different from Jianshan Farm, to carry out the experiment.
Nine of the main planted soybean varieties in Heilongjiang Province were selected as the



Sensors 2023, 23, 6662 10 of 19

study objects: Beidou 37, Longken 3401, Mengdou 36, Heike 60, Jiuyan 13, Longken 310,
Nenao 5, Heihe 43, and Heihe 52. The forms are round, broad, and lance-leaved, etc. A drip
irrigation pipe was placed between each of the two rows of soybeans in the experiment,
and drip irrigation was used to keep the soil moist and promote soybean growth.
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By comparing the experiments at three different flight heights, we found that the best
results were achieved at 5 m. The results of the inspection of 50 images show that the
average recognition accuracy was 99.75% and the average recognition error was 0.25%,
which produced some differences from Jianshan Farm. The overview of the experiment
area and detection results are shown in Figure 8.
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This was mainly due to the different spacing of the soybean seedlings at planting,
which was 7.1 cm at Jianshan Farm and 16.5 cm here. The larger plant spacing reduced the
problem of overlap between plants during soybean growth, making identification more
accurate. This further demonstrates that the module we used does not produce errors
depending on the soybean variety and that the module is reliable. This also provided
us with ideas for further research, and for the identification of crops with different plant
spacing, we should make several attempts to choose the best UAV flight height to obtain
the data. This part of the experiment allowed the module’s performance to be verified, and
all data used in the next experiments carried out were sourced from Jianshan Farm.

3.2. Performance Evaluation of Growth Stage Discrimination Module

MobileNetV2 and AlexNet were analyzed to determine the best model to use as the
backbone network for the growth stage discrimination module. The input data for this
module were obtained from 4 m images by an automatic cutting module. Both models
used Adam as the optimization algorithm with 150 iterations, and the trend of model test
accuracy for the four cases is shown in Figure 9. From Equation (9), the model accuracy
was defined.

A =
NC
NT

(9)

where A is the model accuracy, NC is the number of images correctly classified, and NT is
the number of all images.

As can be seen from Figure 9, the test accuracy of both models fluctuated smoothly in
magnitude compared to before enhancement. Image enhancement improved image quality,
enriched the amount of information, and enhanced image interpretation and recognition.
MobileNetV2 reached over 90% accuracy in 43 epochs, while AlexNet achieved it in
2 epochs and remained stabilized afterwards, indicating that AlexNet converges faster and
more consistently. The evaluation of each performance of the model is available, as shown
in Table 3.
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Table 3. Model performance evaluation.

Datasets Training Time Average Loss Average Accuracy

MobileNetV2-original 0.79 s/step 0.1048 82.29%
MobileNetV2-enhanced 0.65 s/step 0.0762 90.71%

AlexNet-original 0.67 s/step 0.0904 81.87%
AlexNet-enhanced 0.54 s/step 0.0603 97.05%

Soybean seedling image datasets had the characteristics of a complex background
and different morphological features of leaves. As shown in Table 3, facing this type of
dataset, MobileNetV2 lacked scattered regions of interest and a single scale of feature
extraction, so it caused poor recognition results. The optimal performance was achieved
using AlexNet, with an average accuracy of 97.05%, an average loss of 0.0603, and a training
time of 0.54 s/step. However, the model was not lightweight enough; the total number
of parameters for the model was 29,751,811. Improvements can be made to the model to
improve all its metrics.

The number of total parameters for the model can be reduced by improving the
network structure, which can reduce training time. The different sensitivity of the model to
various parameters will lead to different experimental results, and the model’s accuracy
and stability can be improved by finding the optimal combination of different parameters.
Therefore, the fully connected layer structure of AlexNet was improved to 1024 and 256,
and the model was tested under the optimal parameters, dropout was 0.6, batch size was
32, and learning rate was 0.0001. The trend of test accuracy and loss of improved AlexNet
is shown in Figure 10.

Improved AlexNet was used to discriminate soybean growth stages, and the input
images were 255× 255× 3. The convolutional kernel size kept getting smaller from 7 to 5 to
3, while the feature map sizes were also reduced by overlapping maximum pooling in half at
layers 1, 2, and 5, and after the 5th convolutional layer, the image features were sufficiently
refined. The final results show that the number of total parameters for the improved model
was reduced to 6,140,419, the average accuracy was 99.07%, the classification accuracy was
98.99% in VE, 99.01% in VC, and 99.21% in V1, the average loss was 0.0355, and the training
time was 0.53 s/step. The improved model not only achieved higher recognition accuracy
but also had a smoother convergence process and fewer total parameters. At this point, we
have obtained an optimal growth stage discrimination module that has been repeatedly
trained so that different experiment areas and different soybean varieties do not affect the
effectiveness of the module.
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3.3. Model Actual Effect Verification

By combining the outputs of the seedling emergence detection module, the seedling
automatic cutting module, and the growth stage discrimination module, we were able to
calculate the soybean seedling emergence proportion at each stage and construct the en-
semble learning-based soybean seedling emergence detection model, as shown in Figure 11.
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Figure 11. Ensemble learning-based soybean seedling emergence detection model.

The actual effect of the ensemble model was verified by field experiments. Firstly,
we were able to obtain the number of detected soybean seedlings. After classifying the
growth stages of these detected seedlings, we were able to apply the model to calculate the
proportion of seedlings at different growth stages in conjunction with Equation (8). The
results of the predicted and real emergence proportions are shown in Table 4.

According to Table 4, the error between predicted and real emergence proportions was
low, with a maximum of 0.0775 and a minimum of 0.0060. The dynamic process of soybean
seedling emergence is shown in Figure 12. Combined with the agronomic requirements of
soybean growth, 3–4 days after VE stage soybean seedlings were rapidly converted to VC
stage, and on May 25, half of the soybean seedlings had been converted to VC stage, and a
small amount of V1-stage soybean seedlings appeared. The number of VC-stage soybean
seedlings had surpassed VE-stage by May 26. When VC-stage soybean seedlings appeared,
the soybean growth stages in the field were mostly two stages (VE, VC, or VC, V1) or three
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stages coexisting (VE, VC, and V1). The overall emergence was more uniform, in line with
the dynamic pattern of soybean growth over time.

Table 4. The results of predicted and real emergence proportions.

Date
Predicted Emergence Proportion Real Emergence Proportion Error

VE VC V1 VE VC V1 VE VC V1

5.19 0.9380 0.0261 0.0359 0.9830 0.0170 0 0.0450 0.0091 0.0359
5.20 0.9440 0.0339 0.0221 0.9568 0.0432 0 0.0128 0.0093 0.0221
5.22 0.7960 0.1524 0.0516 0.8548 0.1126 0.0326 0.0588 0.0398 0.0190
5.23 0.5948 0.3015 0.1037 0.6723 0.2659 0.0618 0.0775 0.0356 0.0419
5.25 0.4495 0.4054 0.1451 0.4892 0.4163 0.0945 0.0397 0.0109 0.0506
5.26 0.2830 0.5487 0.1683 0.3275 0.5547 0.1178 0.0445 0.0060 0.0505
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4. Discussion
4.1. Analysis Based on Other Crops in Emergence

It can be seen that the module built in our study performs well overall but still lacks in
some aspects. Sun et al. [31] constructed the Wheat Ear Counting Network (WECnet) using
UAV images for accurate counting and density estimation of wheat. WECnet achieved
R2, RMSE, and MAE of 0.95, 6.1, and 4.78 on the global wheat dataset, and R2 of 0.886 in
UAV image counting, with an error rate of 0.23%. The model constructed in our study
outperforms WECnet in terms of R2, RMSE, and error rate, but MAE is not as good as
WECnet. Feng et al. [6] estimated the number of cottons (R2 = 0.95) and canopy size
(R2 = 0.93) using ResNet18; although R2 was not better than the model in our study, it had a
higher image resolution and UAV flight height, which was superior in terms of acquisition
efficiency. Some scholars have estimated the number of maizes under different planting
densities using U-Net with the highest R2 of 0.95 [32]; using ResNet18 to estimate maize
emergence uniformity, the accuracy was 0.97, 0.73, and 0.95 in three different metrics; in
our study, the accuracy of over 0.90 was achieved in each condition; however, maps were
created to visualize the emergence in their study [33]. In our study, by designing three
sampling ranges to balance the relationship between UAV flight height and recognition
accuracy, we can provide ideas for efficient detection of crop emergence.

By comparing the results obtained by some scholars in similar studies, the method-
ology, experimental design, and sensors used in our study can be useful for conducting
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similar studies at present. Specifically, the RGB sensors demonstrate a strong capability
in crop emergence information monitoring; although they cannot achieve crop growth
monitoring by analyzing the spectral information of the crop as spectral sensors can, the
RGB sensors can be analyzed by extracting features such as color, texture, and shape of
the crop from the image. We chose to conduct experiments at two experimental sites with
different geographical conditions and acquire images in different field environments. It is
important to take care of these experimental designs when conducting similar studies, as it
is important for the model to be applied in more scenarios and to demonstrate the model’s
ability to generalize.

4.2. Analysis Based on Model-Generated Errors

There were problems with individual soybean seedlings being misclassified as other
stages in the model prediction process, as shown on May 19 and May 20, when the actual
soybean growth in the field did not reach the V1 stage. Thus, the causes of the error were
analyzed: (1) The experimental site was preceded by corn; the presence of some corn
stalks in the field, smooth stalks that reflect light more strongly and are similar in color
to soybean seedlings, was mistakenly detected as soybean seedlings and misjudged for a
certain stage. (2) Strong light caused soybean seedlings to appear white and could not be
fully extracted and identified, resulting in missed detection. (3) Sowing spacing was small,
and some of the vigorously growing soybean seedlings were interconnected, detected as
one, and misclassified as other species during classification. (4) Weeding measures were
taken in a timely manner during field management, with fewer or no weeds appearing
in the early stages. The errors caused by weeds were reduced by setting thresholds, but
some weeds with similar morphology to soybean seedlings were easily misclassified as
soybean seedlings.

There was some variability in the model outputs due to the different ways in which
soybean seedlings are composed of characteristics at different growth stages. Our model
enabled the identification of VE, VC, and V1 stages, but control measures are still needed to
ensure efficient and high-quality soybean growth in subsequent growth stages such as V2
and V3. As soybean seedlings grow progressively more vigorously, further improvement
or optimization of the model and attempts to combine it with other algorithms will be
needed in order not to affect the recognition results. For the construction of this module,
the differences in detection accuracy between stages were reduced, verifying the power of
deep learning in crop information detection, demonstrating the important role of image
enhancement, and providing a method for other crops to carry out information detection
in different growth stages.

4.3. Summary and Analysis of Future Prospects

For these detection models, the complexity of the structure, the memory footprint,
and the low number of images in the dataset will affect their application in more scenarios
in the future. The present detection model is processed and analyzed on the computer
after UAVs collect images from the field. The trend is to deploy it on mobile devices so
that collection can be performed anytime and on demand, data can be uploaded instantly,
and statistical analysis results can be presented immediately. This requires the model to
be sufficiently lightweight and reduce memory consumption. Therefore, some advanced
techniques, such as network pruning and weight quantization, can be considered to reduce
the model’s complexity and memory footprint [34,35]. Tang et al. [36] proposed a new
automatic pruning method called sparse connectivity learning (SCL), which resulted in a
significant reduction in the number of model operations and computational resources. Hu
et al. [37] proposed a novel channel pruning method via class-aware trace ratio optimization
(CATRO) to reduce the computational burden and accelerate model inference. If the number
of images or other signaling information in the dataset is not sufficient for model training,
the use of transfer learning techniques can be considered [38,39]. Zheng et al. [40] proposed
a method of transferable feature learning and instance-level adaptation to improve the
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generalization ability of deep neural networks so as to mitigate the domain shift challenge
for cross-domain visual recognition.

The YOLO series algorithms have shown strong capability in detecting the emergence
of crop seedlings. Compared to the YOLO series algorithms, the ensemble learning model
constructed in our research has been improved and optimized to make the model lighter,
reducing computational time and resources. By combining different base models, the
ensemble model can reduce the risk of overfitting a single model and improve the overall
generalization capability [41]. This has been confirmed in previous studies carried out
by many scholars. Liao et al. [42] presented a global and local ensemble network for
objects in aerial images; the strengths and weaknesses of Yolov5 and CenterNet were
fully considered, and the accuracy of the ensemble model constructed was significantly
improved over the previous model. However, as mentioned earlier, for aerial images,
different flight altitudes may lead to different detection results for the model, which
is something missing in their study. Usha et al. [43] integrated the faster R-CNN and
YOLO models to achieve vehicle detection and traffic density estimation by constructing
EnsembleNet. The accuracy of EnsembleNet, faster R-CNN, and YOLO was 98%, 97.5%,
and 95.8%, respectively. EnsembleNet achieved higher detection accuracy than the single
model, but in terms of processing time, EnsembleNet took more time than the other two
models. In the experiments, it was found that the execution time of the soybean emergence
ensemble model was reduced by 18% compared to the cumulative time of multiple single
models, allowing for increased efficiency while maintaining recognition accuracy. The issue
of the execution time of the ensemble model was also illustrated in the study by Hanse
et al. [44]. They constructed EnsemblePigDet for pig detection, and the execution time of the
ensemble model was slower than that of the single model. This issue was fully considered
at the initial stage of our research, and the complex structure of the single model was
improved during the integration of multiple models, enabling the overall execution time
of the ensemble model to be reduced. To conclude, in future research on the application
of ensemble models, in addition to considering factors such as accuracy and stability, we
should focus on how to reduce the execution time of the models, which will enable us to
improve efficiency and carry out more accurate operations in future applications.

4.4. Model Scalability and Use of Other Sensors

In our study, the detection of emergence information for soybean seedlings using
RGB sensors demonstrates that RGB sensors are capable of this task. However, with the
continuous development of precision agriculture and various sensors, there are already
many types of sensors that are widely used in agriculture, such as spectral sensors. UAV
spectral imaging technology is a fast and new type of farmland environmental monitoring
technology that can quickly obtain instant spectral images of farmland crops and obtain the
growth information of field crops. Some scholars have used UAV spectral data combined
with algorithms to achieve effective estimation of soybean yield [45]. In the future, we
can consider other sensor data, such as multispectral or hyperspectral images. And, in
order for the model to accommodate information from different sensors, it may involve
adapting the model structure and parameters or even creating a sensor fusion model that
can take advantage of RGB and multispectral/hyperspectral sensors to provide a more
comprehensive and accurate analysis.

In addition to considering how models can be improved and optimized, and the
causes of errors, cost may also be a key consideration if a long-term study is undertaken.
The cost of maintaining the UAVs and the cost of deploying and maintaining an ensemble
of models can be much higher than using a single model. This includes computational
costs and the costs associated with data storage and processing. A cost-benefit analysis
will help elucidate the possibility of implementing the proposed approach in a day-to-day
working environment.
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5. Conclusions

This study developed an ensemble learning model for assessing soybean emergence
information using UAV RGB images. The model can be used to detect soybean num-
bers, identify soybean growth periods, and calculate soybean emergence proportions in
each period.

UAVs carrying different sensors need to be adjusted to the appropriate flight height
to be able to acquire useful images for analysis. The focus of our study was to explore the
optimal flight height for RGB sensors carried by UAVs. Three flight heights were selected
to capture images in the experiment and identified using our proposed algorithm, which
provides ideas for the selection of the optimal flight height for obtaining seedling crop
information using UAV RGB sensors. Not only was the optimal UAV sampling range
determined, but the influence of image resolution on the accuracy of soybean feature
extraction and recognition was reduced, while the efficiency of UAV image acquisition was
improved. In the image information acquired by the UAV, there may be noise in the data due
to wrong data collection and inaccurate GPS coordinates, which will affect the performance
of the model. We have established a high-quality dataset through image enhancement
technology, which effectively enhances the crop feature information in the images, improves
the generalization ability and efficiency of the model, and makes the model more stable.
In real-world agricultural scenarios, the value of such systems would be significantly
increased by providing real-time data to allow immediate field management decisions, in
which model lightweighting has an important role. By improving and optimizing AlexNet
in our study, the total parameters of the model were reduced by more than four times. The
use of these treatments in combination with multiple algorithms allows the model to be
lightweight while maintaining a certain level of accuracy in complex environments and
areas with different geographic conditions, which can provide a basis for real-time data
processing in the future.

The overall assessment of soybean field emergence information using the model shows
that the error between the predicted and the real emergence proportion was small, and
the uniformity of soybean emergence could be effectively determined. The model can be
used as a powerful tool for comprehensively assessing soybean field emergence, helping
agricultural workers make better field management decisions, and providing ideas for
applying deep learning models to real-time processing of field data.
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