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Abstract: Lane detection is one of the most fundamental problems in the rapidly developing field
of autonomous vehicles. With the dramatic growth of deep learning in recent years, many models
have achieved a high accuracy for this task. However, most existing deep-learning methods for
lane detection face two main problems. First, most early studies usually follow a segmentation
approach, which requires much post-processing to extract the necessary geometric information
about the lane lines. Second, many models fail to reach real-time speed due to the high complexity
of model architecture. To offer a solution to these problems, this paper proposes a lightweight
convolutional neural network that requires only two small arrays for minimum post-processing,
instead of segmentation maps for the task of lane detection. This proposed network utilizes a simple
lane representation format for its output. The proposed model can achieve 93.53% accuracy on the
TuSimple dataset. A hardware accelerator is proposed and implemented on the Virtex-7 VC707
FPGA platform to optimize processing time and power consumption. Several techniques, including
data quantization to reduce data width down to 8-bit, exploring various loop-unrolling strategies
for different convolution layers, and pipelined computation across layers, are optimized in the
proposed hardware accelerator architecture. This implementation can process at 640 FPS while
consuming only 10.309 W, equating to a computation throughput of 345.6 GOPS and energy efficiency
of 33.52 GOPS/W.

Keywords: convolutional neural network; lane detection; QuantLaneNet; hardware architecture; FPGA

1. Introduction

The rapid development of autonomous vehicles requires continuous improvement
in the ability to perceive the environment around the vehicle. One of the main perception
modules is vision-based lane detection. Traditionally, the task of lane detection has been
attempted by using hand-crafted algorithms, such as color-based [1,2] or Hough Trans-
form [3,4]. Despite being able to detect at rapid speed, these methods prove to be limited
as they are not robust enough against the vast variations in real-world road scenes, such as
poorly marked lanes, shadows, low illumination, or occlusion. More recently, this problem
has been mainly shifted towards the field of deep learning, more specifically Convolutional
Neural Networks (CNNs), as they are capable of outstanding accuracy across numerous
applications. Wen et al. [5] propose a unified viewpoint transformation (UVT) method
that transforms the camera viewpoints of different datasets into a common virtual world
coordinate system to tackle the dataset bias between the training and test datasets to im-
prove lane detection performance. Li et al. [6] presents a framework of two types of deep
neural networks to learn the structures for visual analytics. The first is the convolutional
neural network (CNN) to build global objects (location and orientation). The second is the
recurrent neural network (RNN) to detect local visual lanes in a traffic scene. This work
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leads to superior recognition performance. Kim et al. [7] present a method that combines
the random sample consensus (RANSAC) algorithm with the convolutional neural net-
work (CNN) to improve the accuracy of traffic lane detections. RetinaNet [8] proposes a
detection and classification method for various types of arrow markings and bike markings
on the road in various complex environments using a one-stage deep convolutional neural
network (CNN). LkLaneNet [9] proposes a novel multi-lane detection method called Large
Kernel Lane Network to detect multiple lanes accurately and efficiently in challenging
scenarios. ZF-VPGNet [10] builds a multi-task learning network consisting of multi-label
classification, grid box regression, and object mask. This work obtains the correct results
and achieves high accuracy and robustness. Alam et al. [11] propose a lane detection
method using the microlens array-based light field camera image that uses the additional
angular information. This approach increases accuracy in challenging conditions, such as
illumination variation, shadows, false lane lines, and worn lane markings. Chao et al. [12]
combine a deep convolutional neural network to classify the lane images at the pixel
level with the Hough transform to determine the interval and the least square method to
fit lane marking. This approach helps to improve the accuracy performance to 98.74 %.
Zhang et al. [13] use a monocular camera to study a lane-changing warning algorithm for
highway vehicles based on deep learning image processing. This system improves vehicle
driving safety in a low-cost manner. SUPER [14] proposes a novel lane detection system
consisting of a hierarchical semantic segmentation network as the scene feature extractor
and a physics-enhanced multi-lane parameter optimization module for lane inference. This
approach provides better accuracy.

These above approaches show their effectiveness in improving the accuracy perfor-
mance; however, the calculation costs are incredibly high because they utilize a heavy
deep learning network. These networks need to be simplified to apply this application on
embedded devices with limited resources. LLDNet [15] introduced a lightweight CNN
model based on an encoder–decoder architecture that makes it suitable for being imple-
mented in embedded devices. Podbucki et al. [16] present an NVIDIA Jetson Xavier AGX
embedded system to process video sequences for lane detection. Jayasinghe et al. [17]
propose a simple, lightweight, end-to-end deep learning-based framework coupled with
the row-wise classification formulation for fast and efficient lane detection. This system
is implemented on an Nvidia Jetson AGX Xavier embedded system to achieve a high
inference speed of 56 frames per second (FPS). Liu et al. [18] propose a lightweight network,
named as LaneFCNet, combined with the conditional random field for lane detection to
reduce processing time. Hassan et al. [19] discuss an improved CNN-based detection
system for autonomous roads to identify potholes, cracks, and yellow lanes. This system is
implemented and verified on the Jetson TX2 embedded system. Due to the limitations of
processing power, memory, and other resources of the embedded devices, these approaches
are hard to reach in real-time for their processing.

To speed up processing for real-time applications, the hardware platforms are used to
design and implement. Martin et al. [20] present an algorithm for detecting lane markings
from images. It is designed and implemented in Field Programmable Gate Arrays (FPGA)
technology on Zynq-7000 System-on-Chip (SoC). The algorithm uses traditional computer
vision techniques to obtain lane markings and detect driving lanes. Kojima et al. [21] presents
an autonomous driving system consisting of lane-keeping, localization, driving planning,
and obstacle avoidance that are implemented as software in the embedded processor on
FPGA. Wang et al. [22] propose a detailed procedure that helps guide the performance
optimization of parallelized ADAS applications in an FPGA-Graphics Processing Unit
(GPU) combined heterogeneous system. Kamimae et al. [23] develop an SoC FPGA based on
the Helmholtz Principle to control unmanned mobile vehicles for the FPGA design competition.
Peng et al. [24] build a multi-task learning framework for lane detection, semantic segmenta-
tion, 2D object detection, and orientation prediction on FPGA. The performance on FPGA is
optimized by software and hardware co-design to achieve 55 FPS. A CNN for drivable region
segmentation from a LiDAR sensor called ChipNet [25,26] is designed and implemented on
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FPGA, which achieves 79.43 FPS. Utilizing the scheme presented in [27], RoadNet-RT [28] de-
signs and implements a CNN on FPGA using 8-bit quantization. Their FPGA implementation
achieves 197.7 FPS. These approaches obtain good performance in processing speed; however,
the trade-off among processing speed, accuracy, hardware resources, and power consumption
is not fully discussed in these studies.

The segmentation is a common strategy for lane detection works. This strategy
typically outputs a pixel map with an identical size to the input RGB image, where each
pixel is classified into a different class, such as roads, cars, pedestrians, etc. U-Net [29]
presents a full convolution network and training strategy that relies on the strong use
of data augmentation to work with very few training images and yields more precise
segmentations in the biomedical field. ENet [30] proposes a novel deep neural network
architecture on embedded systems to perform real-time semantic segmentation. SegNet [31]
presents a segmentation engine consisting of an encoder network and a corresponding
decoder network followed by a pixel-wise classification layer. The decoder uses pooling
indices computed in the max-pooling step of the corresponding encoder to perform non-
linear upsampling. This eliminates the need for learning to upsample. The upsampled
maps are sparse and are then convolved with trainable filters to produce dense feature
maps. This design achieves good segmentation performance. Zou et al. [32] propose a
hybrid deep architecture by combining the convolutional neural network (DCNN) and the
recurrent neural network (DRNN), where the DCNN consists of an encoder and a decoder
with fully-convolution layers, and the DRNN is implemented as a long short-term memory
(LSTM) network. The DCNN abstracts each frame into a low-dimension feature map, and
the LSTM takes each feature map as a full-connection layer in the timeline and recursively
predicts the lane. The LSTM is found to be very effective for information prediction and
significantly improves the performance of lane detection in the semantic segmentation
framework. Davy et al. [33] design a branched, multi-task network for lane instance
segmentation, consisting of a lane segmentation branch and a lane embedding branch
that can be trained end-to-end. The lane segmentation branch has two output classes,
background or lane, while the lane embedding branch further disentangles the segmented
lane pixels into different lane instances. This approach can handle various lanes and cope
with lane changes.

While methods utilizing the segmentation technique yield accurate results, they suffer
from low efficiency. For example, lane markings are slim and continuous lines that do not
require clusters of dense pixels to represent. Moreover, segmentation requires significant
post-processing to extract geometric information about the lane lines, which introduces
further inefficiency. Figure 1 illustrates lane segmentation. Recent studies attempted to
solve this problem by substituting dense pixel segmentation for sparser or more descriptive
representations. Inspired by the Region Proposal Network (RPN) of Faster R-CNN [34],
Line-CNN [35] utilizes the line proposal unit (LRU) to predict lanes using predefined
straight rays. PolyLaneNet [36] attempts to frame lane detection as a polynomial regression
problem. UFAST [37] proposes a row-wise formulation, where the output is a series of
horizontal locations corresponding to predefined row anchors. This work puts emphasis
on obtaining real-time speed. Later, CondLaneNet [38] adds a vertical range and offset
map to improve the row-wise formulation. Another approach is PINet [39], which predicts
sparse key points from the input image, which is then clustered into different instances
by an embedding branch. However, the runtime results of these models are evaluated
on power-hungry GPUs. Despite obtaining state-of-the-art accuracy, the massive power
consumption of these GPUs proves impractical for power-constrained systems on cars.
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Figure 1. Lane instance segmentation: each pixel in the prediction is classified into a separate
class, denoted by a different color. While visually informative, this formulation requires much
post-processing to extract geometric information.

In this work, we propose a simple and efficient lane representation format alongside a
lightweight lane detection CNN, named QuantLaneNet, to achieve real-time processing
at the low cost of hardware design resources and power consumption. Meanwhile, the
accuracy of traffic lane detection is relatively close to the related works. The contributions
of this paper are summarized as follows:

• To efficiently represent the geometric information of lane markings, we propose a
lightweight format that only requires two small arrays for minimum post-processing
instead of segmentation maps. Using our format as the shape for the output, we
propose a simple and lightweight CNN for the task of lane detection. The model
consists of three encoder stages to extract features from the input image and two
output branches that produce the two matrices which make up our proposed lane rep-
resentation format. Our model only contains 102k parameters and achieves 348.34 FPS
on the NVIDIA Tesla T4 GPU.

• To optimize processing speed and power consumption, a corresponding hardware
accelerator is designed and implemented on Xilinx Virtex-7 VC707 FPGA as a Periph-
eral Component Interconnect Express (PCIe) device. By optimizing the techniques,
such as data quantization to reduce data width down to 8-bit and exploring various
loop-unrolling strategies for different convolution layers, and pipelined computation
across layers, our architecture achieves very high throughput while consuming very
little power compared to other studies. Using the verification system described in
Section 5.2, our FPGA system achieves 640 FPS while consuming only 10.309 Watts
(W), which equates to a throughput of 345.6 giga operations per second (GOPS) and an
energy efficiency of 33.52 GOPS/W. The trade-off in accuracy due to data quantization
is negligible, and the overall accuracy is relatively close to that of the related works.

The rest of the paper is organized as follows. Section 2 presents the background of
this work. Section 3 presents the proposed lane representation format and CNN model,
along with training and evaluation details. Section 4 describes several optimizations for
designing a hardware accelerator, and the implementation of the final design is presented
in Section 5. Finally, Section 6 concludes this paper.
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2. Background
2.1. Convolutional Neural Networks

Convolutional neural networks (CNNs) have gained prominence in the field of com-
puter vision due to their ability to capture spatial patterns in images. For images, their
visual meaning comes from local and global patterns instead of the values of each individ-
ual pixel that makes up the image. By applying sliding windows (called kernels) on the
input image, CNNs can capture local patterns from each group of pixels. During training,
the values of the kernels (called parameters or weights) can be “learned” so that each
convolutional layer can extract the correct features relative to its purpose, as opposed to
handcrafted kernels that can be susceptible to variations in the environment.

Each convolutional layer can be configured differently by changing its kernel size,
padding, stride, and dilation. A larger kernel size can give the layer a bigger depth of field
but will increase the number of parameters dramatically. Padding is used to add border
pixels to the input to preserve the output size. Stride determines the step size of the sliding
kernel. It affects the receptive field of the layer and will typically reduce the size of the
output, unless padding is applied. Dilation adds gaps in the kernel so that the kernel’s
depth of field can be increased without adding more parameters. All of these values can be
used in combination with each other for many reasons, such as manipulating the size of
the output or emphasizing local or global patterns, among others.

A convolutional layer is typically followed by a non-linear activation function, such as
ReLU or sigmoid. In a supervised training context, a dataset with inputs and human-labeled
correct outputs is used. The inputs are fed through the model, and a “score”, formally referred
to as the loss, is calculated from the outputs and the labels using the loss function. Through
backpropagation, the parameters within the model are incrementally adjusted to minimize
the loss value through many training iterations. Based on many elements such as purpose,
the shape of the output, model’s architecture, etc., the loss function will have to be carefully
chosen, or in many cases, developed, to achieve the best accuracy.

2.2. Data Quantization

Data quantization is a commonly used technique with the main aim of decreasing the
quantity of discrete values present in a given system. The method involves representing
a continuous or high-resolution range of values with a limited range of discrete values,
typically in a much lower bit width. The utilization of this technique extends to diverse
fields, including signal processing, data compression, and machine learning. Within the
domain of machine learning, it assumes a pivotal role in the optimization of neural network
inference. Instead of retaining the floating-point values used in training, the technique
converts these values into a low-precision representation to use in inference. This not
only reduces the memory footprint of the system but also decreases processing time and
complexity significantly.

Despite the numerous advantages of quantization, the data precision of the system
will inevitably be compromised. The amount of memory/speed to precision trade-off will
have to be evaluated by the designer to best fit the requirements of each specific system.

2.3. Dataset and Accuracy Formulation

The open-source TuSimple dataset [40], which annotates lanes as the sets of horizon-
tal coordinates corresponding to fixed vertical coordinates. TuSimple dataset includes
3626 video clips, 3626 annotated frames for the training phase, and 2782 video clips for the
testing phase. These videos cover the good and medium weather conditions at different
daytime. They include 2-lane, 3-lane, and 4-lane roads in different traffic conditions. The
main evaluation metrics for TuSimple are accuracy, false positive, and false negative. Ac-
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curacy is defined by Equation (1), where Cclip is the number of correct points in the frame
and Sclip is the number of requested points:

accuracy =
∑clip Cclip

∑clip Sclip
(1)

False positive (FP) and false negative (FN) are defined by Equations (2) and (3),
respectively, where Fpred is the number of wrongly predicted lanes, Npred is the number of
all predicted lanes, Mpred is the number of missed ground-truth lanes in the prediction and
Ngt is the number of all ground-truth lanes:

FP =
Fpred

Npred
(2)

FN =
Mpred

Ngt
(3)

3. Proposed Network
3.1. Lane Representation Format

In this paper, we propose an efficient row-wise formulation to minimize post-processing,
as shown in Figure 2a. The goal of our proposed formulation is to use a much smaller
amount of data compared to segmentation maps. This approach minimizes the amount of
post-processing required while still providing sufficient geometric information on the lane
markings. To achieve this, our model predicts lanes as a small group of key points sampled
at regular vertical intervals. These key points are represented in the output as a grid of size
32× 64 called row-wise classification and a column of size 32× 1 called vertical range. Each
cell in the vertical range has a value between 0 and 1, and cells that are ≥0.5 denote lane
presence in the corresponding classification rows. Once the classification rows are identified,
the horizontal locations of the lane can be determined by the cells with the highest value in
each row. This pair of arrays is replicated for every lane predicted by our model. Additionally,
we also experimented with the offset map described by CondLaneNet [38] and PINet [39]. The
results of our experimentations are discussed in Section 3.5.

With this formulation, an RGB image of size 3× 256× 512 can be represented by as
little as a 4× 32× 64 and a 4× 32× 1 array for 4 lanes. Compared to the size of the input
image, the output is over 47 times smaller.

3.2. Network Architecture

Utilizing our formulation, we propose QuantLaneNet, a lightweight CNN for the task
of lane detection. Figure 2 shows the overall architecture of our model. The model consists
of 3 encoder stages to resize the input down to 32× 64 to reduce inference time on the
subsequent layers. The resized feature maps are then fed to 2 parallel output branches that
predict the row-wise classification and vertical range. The fundamental unit block of our
model is a sequence of 3 layers, convolution, batch normalization [41], and ReLU, which
will be denoted as “conv+bn+relu” for the remainder of this paper.

Each encoder stage consists of 3 “conv+bn+relu” layers to half the height and width
of the input while doubling the number of channels. Dropout [42] with p = 0.2 is applied
to every convolution layer during training to minimize overfitting. Figure 2b shows the
structure of the 3 encoder stages in our model.

The row-wise classification branch, shown in Figure 2c, contains 3 “conv+bn+relu”
layers and a convolution layer with linear activation at the end. Through each layer,
the input size is maintained while the number of channels is halved. The absence of an
activation function at the last layer is to maintain the difference between values on the
same row. To elaborate, because only the cell with the highest value in each row is needed,
applying a non-linear activation would compress the difference between the highest cell
and the rest of the cells. With the lower precision used by our hardware accelerator, such
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compressed difference will be lost. In training, sigmoid is applied to the output of the
classification branch to be compatible with cross-entropy loss.

3 × 256 × 512

Row-wise classification
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QuantLaneNet

(a)

Figure 2. Proposed model overall architecture (C denotes the number of lanes): (a) Lane representa-
tion format, (b) Encoder stages, (c) Row-wise classification branch, and (d) Vertical range branch.

In the vertical range branch, shown in Figure 2d, convolution layers are chosen as
opposed to dense layers like UFAST [37] and CondLaneNet [38]. Dense layers are not
preferable for hardware designs since they require a large number of weights. The vertical
branch shares a similar structure to the classification branch, with 3 “conv+bn+relu” layers
followed by a “conv+sigmoid” layer at the end. Through each layer, the width of the input
is decreased by half so that the final output only has a width of 1, as presented in our
proposed formulation. Also, following the proposed formulation, the sigmoid function is
chosen for the last layer to keep the output values between 0 and 1.

Similar to the encoder stages, dropout with p = 0.2 is also applied to every convolution
layer to minimize overfitting, except for the last layer of both branches.

3.3. Loss Functions and Training Details

For training, two loss functions are applied to each output branch:

1. Classification loss: For the row-wise classification branch, the loss is calculated for
each row separately and subsequently summed up. Equation (4) shows the classifi-
cation loss, where C is the number of lanes, h is the classification height, clsi,j,: is the
classification prediction at row j lane i, cls∗i,j,: is the corresponding ground truth and
LCE denotes the cross-entropy loss:

Lcls =
C

∑
i=1

h

∑
j=1

LCE(clsi,j,:, cls∗i,j,:) (4)
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2. Vertical loss: Similar to classification loss, the vertical loss is the sum of all cross-
entropy loss on each lane. Equation (5) shows the vertical loss, where C is the number
of lanes, verti,: is the vertical prediction at lane i, vert∗i,: is the corresponding ground
truth and LCE denotes the cross-entropy loss:

Lvert =
C

∑
i=1

LCE(verti,:, vert∗i,:) (5)

The total loss for training is the weighted sum of the above loss terms. Equation (6)
shows the total loss:

Ltotal = Lcls + Lvert (6)

All input images are resized to 256× 512 and normalized from RGB values between 0
and 255 to values between 0 and 1. The number of lanes is fixed to 4 as the number of lanes
present in the majority of images in the dataset. Labels are converted from the format of the
dataset to our proposed format. The source code is written in PyTorch [43], a deep learning
framework for the Python programming language [44]. The model is trained using Adam
optimizer [45] and the learning rate is kept 1e-3 as default. Due to the limited memory of
the training GPU, the batch size is set to 16. Finally, we trained the model for 150 epochs,
and the epoch with the highest accuracy is chosen as the final model.

3.4. Accuracy Evaluation

We trained and evaluated our model using the open-source TuSimple dataset. To
evaluate our model, the predictions are converted back into TuSimple’s annotation format.
Framerate is sampled while running on an NVIDIA Tesla T4. Results and comparison
details are shown in Table 1. The results show our design takes only 0.540 giga floating point
operations (GFLOPs), much smaller than the related works. In addition, our processing
speed (384.3 FPS) is also much greater than the related works. Meanwhile, the accuracy
(93.53 %) is slightly lower than the related works. The demonstrations of some Tusimple
video samples are shown in Figure 3. The results show that the prediction outputs are
matched to the labels.

Table 1. TuSimple dataset evaluation and comparison details.

Model Input Size GFLOPs GPU FPS Acc% FP% FN%

PINet (1H) [39]

256× 512

1.183

RTX 2080 TI

40.0 95.81 5.85 3.30

PINet (2H) [39] 2.032 35.0 96.51 4.67 2.54

PINet (3H) [39] 2.880 30.0 96.72 3.65 2.43

PINet (4H) [39] 3.728 25.0 96.75 3.10 2.50

UFAST-Res18 [37]
288× 800

8.436
GTX 1080 TI

322.5 95.87
- -

UFAST-Res34 [37] 16.959 175.4 96.06

CondLaneNet-S [38]

320× 800

10.300

RTX 2080 TI

220.0 95.48 2.18 3.80

CondLaneNet-M [38] 19.700 154.0 95.37 2.20 3.82

CondLaneNet-L [38] 44.900 58.0 96.54 2.01 3.50

SqueezeNet [46]

288× 512

3.558

GTX 1080 TI

111.0 95.27 4.94 4.88

MobileNet_v2 [46] 4.154 71.0 96.34 4.67 5.18

GoogLeNet [46] 4.457 83.0 95.71 4.71 5.26

PolyLaneNet [36] 360× 640 1.748 TITAN V 115.0 93.36 9.42 9.33

Ours 256 × 512 0.540 Tesla T4 348.3 93.53 10.25 8.89
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Figure 3. Some results for TuSimple dataset.

3.5. Experiments with Offset Map

As row-wise classification is a sparse representation of the input image, one of its points
actually covers a large number of pixels. For the input and output size of our model, a point
in classification covers an 8× 8 grid in the input. To further refine the locations of the point
in row-wise classification, PINet [39] and CondLaneNet [38] used the offset map. This map
is a matrix of the same size as row-wise classification, with each cell having a value between
0 and 1. For each identified point in row-wise classification, the corresponding value in the
offset map (between 0 and 1) is mapped to the width of the grid to pinpoint the exact horizontal
coordinate of the point. The working principle of the offset map is illustrated in Figure 4, while
Figure 5 shows a visualization of the output with the offset map applied.

3 pixels
(offset = 0.416)

(144, 328)

(147, 332)

4 pixels
(fixed)

8

8

Figure 4. Refinement via offset map. The coordinates of the point after refinement are indicated by
the red color.

Figure 5 shows that the offset map can help visually smooth out the lane coordinates.
However, the effect this output has on overall accuracy still needs to be evaluated. To deter-
mine whether the offset map is required in our model, we added another output branch for
the offset output. This branch is identical in structure to the row-wise classification branch
(Figure 2c), except that the last layer uses the sigmoid function for activation to keep the
values between 0 and 1.

This branch is trained using the L1 loss. Because ground truth does not exist at cells
that lane lines do not pass through, we follow PINet by ignoring these cells when calculating
loss. Equation (7) shows the offset loss, where Ge is the group of points where row-wise
classification exists in the ground truth, cx is the offset prediction, c∗x is the corresponding
ground truth and ‖.‖1 denotes the L1 loss.
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Without offset With offset

Figure 5. The addition of an offset map can help smooth out the output points.

Lo f f set = ∑
cx∈Ge

‖cx − c∗x‖1 (7)

To train this version of our model, the offset loss is added to the total loss, as shown in
Equation (8).

Ltotal = Lcls + Lvert + Lo f f set (8)

Finally, the accuracy comparison between the base model and the model with the
offset map added is presented in Table 2. It can be seen that while an offset map can bring
visual improvements to the output, its impact on accuracy is minimal, raising only 0.02% in
accuracy. This is because while the coordinates of the points without offset have a tendency
to zigzag along the line, they still run across the line, thus preserving the geometry of the
curve. Because of this, the offset map is ultimately excluded from our final model, as the
accuracy impact is not worth the trade-off in additional computations.

Table 2. Accuracy impact of the offset map.

Acc FP FN

W/o offset 93.53% 10.25% 8.89%

W/ offset 93.55% 10.15% 8.79%

4. Proposed Hardware Architecture
4.1. Data Quantization

In specific application hardware designs, efficient fixed-point arithmetic is usually
preferred to floating-point, due to the significant resource utilization required by floating-
point. Data quantization is a commonly used technique that is also natively supported by
PyTorch. In this work, post-training static quantization to 8-bit is utilized.

Accuracy impact after quantization is shown in Table 3. Quantizing weights and
activations down to 8-bit carries a 0.06% accuracy loss compared to the 32-bit floating point,
which is determined to be acceptable, especially since such data width enables significant
hardware optimization. More specifically, as presented in [27], each Xilinx’s DSP48E2 core can
perform two 8-bit multiplications simultaneously, albeit with a common multiplicand. Thus,
8-bit arithmetic has the potential to double the throughput compared to wider data widths.
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Table 3. Accuracy of 8-bit quantization.

Acc FP FN

32-bit float 93.53% 10.25% 8.89%

8-bit quant 93.47% 10.38% 9.03%

4.2. Overall Design

The overall design of our proposed hardware accelerator is presented in Figure 6.
Due to the small size of our model, along with the quantized data width, we were able
to store the entire model using on-chip block RAMs. Within the design, a 3-D tensor of
size C× H ×W is treated as a H ×W 2-D image, with each pixel being the concatenated
bytes across all channels. For example, a 16 × 128 × 256 tensor would be stored as a
128× 256 image, with each pixel being 16× 8 = 128-bit wide.

FIFO FIFO... ...

...

Input 
FIFO

Output 
BRAM

Line buffer Conv

ReLU

Sigmoid

PE

conv
(enc_0)

conv
(enc_1)

conv
(cls_0)

conv
(cls_3)

conv
(vert_3)

conv
(vert_0)

Weight write

Weight RAM

AXI4 Interface

Figure 6. Overall design of the proposed hardware accelerator.

Each layer is comprised of a line buffer [47]. This buffer receives input pixel by pixel
and lines up the valid sliding window for the subsequent processing element (PE) to
compute the multiply–accumulate (MACC) output and the activation. Data flow between
each layer is synchronized by intermediate First-in First-out memories (FIFOs), where a
layer would read a pixel from the preceding FIFO if it is not empty, and push the output
pixels into the succeeding FIFO. All the weights are stored in their respective layer using
block RAMs.

This arrangement allows for very highly pipelined computation across layers, as the
line buffer of each layer starts receiving data as soon as the first pixel is available from the
preceding layer. Because of this, the computation time of the entire model is only slightly
longer than the computation time of the first layer. Coupled with the lack of need to fetch
data from off-chip DRAM, our accelerator is able to achieve a very high processing speed.
The detailed evaluation of the proposed accelerator is presented in Section 5.

4.3. Convolution Parallelism

A typical convolution layer with no parallelism would follow a nested loop approach
as presented in Algorithm 1, where L1 iterates through all output pixels, L2 iterates all
output channels, L3 iterates all input channels and, finally, L4 iterates through all values in
the kernel. To utilize the massive level of parallelism offered by FPGAs, a common approach
is to unroll these loops. However, since our model contains many convolution layers with
lots of different configurations, a uniform unrolling strategy may become inefficient for
certain layers. Because of this reason, several unrolling strategies were explored.
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Algorithm 1 Standard convolution

1: for (r,c)← 0 to (Hy,Wy) do . L1
2: for fo← 0 to Cy do . L2
3: Y[fo][r][c]← bias[fo]
4: for fi← 0 to Cx do . L3
5: for (kr,kc)← 0 to (Hk,Wk) do . L4
6: Y[fo][r][c] += X[fi][r+kr][c+kc]*kernel[fo][fi][kr][kc]

The first and most straightforward strategy, named Incha, aims to unroll L3 along with
L4, as described by Algorithm 2. Assuming K is the kernel size (e.g., K = 9 for kernel 3× 3),
Cx is the number of input channels, Cy is the number of output channels and .∗ denotes
element-wise matrix multiplication, Cx × K multiplications would take place at the same
time in parallel, and Cy clock cycles would be needed to produce one output pixel.

Algorithm 2 Incha convolution

1: for (r,c)← 0 to (Hy,Wy) do . Incha-L1
2: for fo← 0 to Cy do . Incha-L2
3: Y[fo][r][c]← sum(X[:][r:r+Hk-1][c:c+Wk-1] .* kernel[fo][:][:][:]) + bias[fo]

However, for cases where layer Ln has Cx = a and Cy = b, followed by layer Ln+1
with Cx = b and Cy = c, assuming b > a and b > c, layer Ln can only produce an output
pixel every b clocks, thus limiting layer Ln+1 to receive an input pixel every b clocks. The
theoretical speed of layer Ln+1 is one pixel every c clocks, but since b > c, such speed
cannot be achieved. For such cases, it is more beneficial for layer Ln+1 to produce a pixel
every b clocks instead of c, thus keeping pace with layer Ln. Moreover, in this configuration,
layer Ln+1 would only need to perform K × c parallel multiplications instead of K × b,
thus consuming less hardware resources. This unroll strategy, named Outcha, is shown
in Algorithm 3, where Outcha-L3 is completely unrolled and performed simultaneously.
An Outcha convolution module performs Cy × K multiplications parallelly and produce an
output pixel every Cx clock cycles.

Algorithm 3 Outcha convolution

1: for (r,c)← 0 to (Hy,Wy) do . Outcha-L1
2: Y[:][r][c]← bias[:]
3: for fi← 0 to Cx do . Outcha-L2
4: for fo← 0 to Cy do (unroll) . Outcha-L3
5: Y[fo][r][c] +=sum(X[fi][r:r+Hk-1][c:c+Wk-1].* kernel[fo][fi][:][:])

4.4. Convolution Designs

Based on the unroll strategies presented in Section 4.3, several hardware designs
for convolution were made. Based on the analysis presented in Section 4.5, a suitable
version is chosen for every layer in the model. Figure 7 shows all the designs for the
convolution layer. A convolution module consists of a line buffer that aligns the sliding
window for the PE to compute. The PE, depending on which unroll version, contains a
configuration of a multiplier array, followed by one or more adder trees to sum up the
multiplied products. This multiply–accumulate (MACC) result is then passed into an
activation module, which in our model is either ReLU, sigmoid, or linear (no activation).
ReLU is computed by a multiplexer and sigmoid is implemented using Piecewise Second-
order Approximation [48]. Batch normalization and convolution are merged into one single
convolution layer by PyTorch during the quantization process.

For Incha strategy, three versions were designed: single, double, and quad. Incha-single is
designed to perform Algorithm 2 exactly as presented, with an array of Cx × K multipliers
followed by an adder tree to sum up all the multiplied products. Utilizing the dual 8-bit
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multiplier presented in [27], Incha-double is designed to double the throughput of Incha-
single by computing two Incha-L2 loops while using the same number of DSP48E2 cores.
The products are then summed up using two adder trees. Finally, for certain layers, two
Incha-single modules are combined to create Incha-quad.
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Outcha single

Line buffer
Conv

ReLU

Sigmoid

PE

...

Incha double

Single 8-bit multiplier (int)

Dual 8-bit multiplier (int)

ƒ(𝑥)

ƒ(𝑥)

ƒ(𝑥)
ƒ(𝑥) ...

Incha double

ƒ(𝑥)

ƒ(𝑥)
Scaling factor change
(int × fixed = fixed ⇒ int)

ƒ(𝑥)
Activation:
ReLU (int) / Sigmoid (fixed)

Adder (int)

(a) (c)

(b) (d)

Figure 7. Several versions for convolution module: (a) Incha-single, (b) Incha-double, (c) Incha-quad,
and (d) Outcha-single.

For Outcha strategy (Algorithm 3), only the single version is designed as this strategy
is not suitable to have its throughput doubled by the dual 8-bit multiplier. This module
consists of Cy parallel slices, where each slice contains an array of K multipliers, followed
by an adder tree and an adder-accumulator. Dual 8-bit multipliers are used by pairs of
adjacent slices. This module produces one output pixel for every Cx clocks by computing
Cy × K multiplications simultaneously.

At synthesis time, a suitable version is chosen for every layer, and the architecture of
the layers remains fixed afterward. The analysis details for choosing convolution versions
are presented in Section 4.5.

4.5. Convolution Designs Analysis

Due to our proposed model having 17 layers with different configurations, it is imper-
ative that the suitable convolution architecture is applied to each layer to strike the best
balance between hardware resources and computation throughput. To find the best combi-
nation, we devised and synthesized 6 different configurations to quantitatively analyze.
These configurations are synthesized on the Virtex-7 VC707 FPGA, running at 250 MHz.
Since most of these configurations are too large to implement on real FPGA, their through-
put values are calculated from the simulated clock count. Figure 8 illustrates the different
configurations and Figure 9 shows the analysis results.

Config1 Config2 Config3 Config4 Config5 Config6

Incha single Incha double Incha quad Outcha single

Figure 8. Different hardware configurations for analysis.
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Figure 9. Hardware utilization of different configurations versus throughput.

We first applied the most basic convolution version, Incha-single, to every single layer.
This is illustrated in Figure 8 as Config1. As can be seen in Figure 9, this configuration
yields the lowest throughput out of all the analyzed configurations. To increase through-
put, we next applied Incha-double, which is the version that computes 2 multiplications
simultaneously, to all the layers (Config2 in Figure 8). Looking at Figure 9, it can be seen
that throughput has been roughly doubled, at the cost of hardware resources. In fact, this
configuration consumes all the DSP cores available of the Virtex-7 FPGA, which forces
Vivado to use LUTs (Look Up Tables) to implement the remaining multiplications. This
configuration also requires slightly more LUTs than the available number. Lastly, we ap-
plied the most resource-intensive convolution version, Incha-quad, to all layers (Config3).
This convolution version computes 4 multiplications in parallel by having 2 Incha-double
engines inside. As expected, the throughput of Config3 doubles Config2 while consuming
a massive amount of resources. The number of multipliers required is so much higher
than the available DSP cores, that Vivado has to synthesize almost 400% the available
LUTs to make up for. Flip-flops and BRAMs also exceed the available amount by 34% and
53%, respectively. With these first 3 configurations, it can be seen that applying the same
convolution version to all layers uniformly will result in a very inefficient design, either for
throughput or hardware resources. A combination of different versions that results in the
best trade-off is necessary.

One characteristic of QuantLaneNet that can be used to optimize resources without
trading performance is the fact that in the encoder stages, every third convolution layer
has a stride of 2, while the rest has a stride of 1. These layers only produce an output row
for every two input rows received. Because of this, the succeeding layers can afford to
compute twice as slowly without introducing a significant bottleneck to the system, as they
have a gap every time the preceding layers finish a row. This is illustrated in Figure 10,
with the first 3 signals being the valid signals of the first 3 layers. The third layer, enc_2,
produces one output row for every 2 input rows received from enc_1 due to it having a
stride of 2. Because of this gap, the next layer, enc_3, can take twice as long to compute the
row it receives from enc_2 without slowing the entire system down.

To test this hypothesis, we devised Config4 with the first 3 layers being Incha-quad, and
all following layers being Incha-double, which are twice as slow. From Figure 9, it can be
seen that while Config4 only has a negligible decrease in throughput compared to Config3,
its resource utilization is improved significantly. This is because the first 3 layers of Config4
still compute at the same speed as Config3, but the rest of the model can still compute twice
as slowly without introducing a noticeable performance decrease. This is taken further
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with Config5, where like Config4, the first 3 layers are Incha-quad, and the next 3 layers
are Incha-double. However, all the following layers are set to Incha-single to be twice as
slow as the second triplet of layers. Figure 9 shows that, like Config4, Config5 once again
improves resource utilization with only a slight throughput decrease. Finally, as discussed
in Section 4.3, the output layers are changed to the more suitable Outcha-single version for
the final configuration, Config6. This is confirmed in Figure 9, where Config6 consumes
the least amount of hardware resource while obtaining 91% the throughput of Config3, the
configuration with the highest amount of resource utilization. From these analyses, Config6
is the final configuration chosen for real-world hardware implementation, as it is also the
only configuration that fits the resource constraint of the Virtex-7 VC707 FPGA.

stride = 2
2 input rows ⇒ 1 output row Breaks in preceding layer

Succeeding layer can be twice as slow without bottlenecking

stride = 2

stride = 2
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Figure 10. Waveform of encoder layers with different convolution versions: the first three layers use
Incha-quad , the next three use Incha-double, and the last three use Incha-single.

5. FPGA Implementation, Verification and Results
5.1. FPGA Implementation

To verify our accelerator design, the Virtex-7 VC707 FPGA is used for practical im-
plementation. The QuantLaneNet core is implemented as an AXI4 IP using hand-written
Verilog HDL and the full system is implemented in Vivado using the DMA/Bridge Subsys-
tem for PCI Express IP. The FPGA is connected to an x86-based host PC via the onboard
PCIe connector. Details and images of the system are presented in Table 4 and Figure 11,
respectively.

Virtex-7 VC707
Intel Pentium 

G4600
8GB DDR4

CNN model PCIe DMA AXI4 bus

(a) (b) (c)

Figure 11. FPGA verification system: (a) Full system operation, including results captured on monitor,
(b) Details of the system, and (c) Floorplan of the FPGA chip.
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Table 4. FPGA verification system details

System Details

CPU Intel Pentium G4600 @ 3.60 GHz
Memory 8GB DDR4 @ 2400 MHz

Operating System Ubuntu 20.04.4 LTS
FPGA Virtex-7 VC707

The data width of the AXI4 IP is configured to be 64-bit to minimize bus latency and
match the data width of the DMA. As there are 8 bytes in 64 bits and 3 bytes in a pixel, there
is a mismatch in data widths. Only using 24 bits from the 64-bit is not the most optimized
solution. This is because during the data transfer of an image, the bus will not be sending a
64-bit transfer every clock cycle, i.e., there will be empty cycles with no input data during
the writing of an image, and the model will need to wait for the next transfer. This can be
better optimized by fully utilizing the 64-bit bus, the extra bytes can be stored internally
and read by the model in the next clock cycles. When the bus needs to write a new transfer
while the model is still processing the bytes from the previous transfer, the bus can be
stalled by keeping the AXI_AWREADY signal of the AXI4 bus low.

We implement this idea by adding a 64-bit FIFO at the input of the model. The entire
image (256× 512× 3 = 393,216 bytes) is sent via the bus in 8-byte (64-bit) transfers. These
transfers are pushed into the FIFO as 64-bit words. The model pops each 24-bit pixel from
the FIFO in a mismatch pattern, as shown in Figure 12. The green blocks are the 3 bytes
that are read into the model at that clock cycle. If the FIFO is full (due to the bus being
written to faster than the model can process), the AXI_AWREADY signal can be kept low
to stall the bus. The depth of the FIFO is kept at a moderate size of 512 so that the bus is
not bottlenecked while still not consuming too many BRAM blocks.

64-bit FIFO

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

Internal 
registers

STATE_1
(new pop)

STATE_2

STATE_3
(new pop)

STATE_4

STATE_5

STATE_6
(new pop)

STATE_7

STATE_8

×

Used

Waiting to be used

Write

Read into model

8 bits

Figure 12. Converting 64-bit writes to 24-bit pixels.

Using this scheme, an RGB image of size 256× 512 only needs 49,152 writes from the
processor (256× 512× 3÷ 8). Using the burst feature of the AXI4 specification, multiple
64-bit writes can take place in succession, and the empty cycles in between bursts can
be made up for by the data already stored in the internal FIFO. This almost completely
eliminates bus latency, since there are almost no empty cycles when receiving the pixels,
and the first layer can start processing as soon as the first pixel is received (discussed in
Section 4.2).

5.2. FPGA Verification

A software verification environment written in Python is constructed on our x86 PC as
illustrated by Figure 13. Raw RGB frames from driving videos stored on the hard disk are
extracted and sent to the FPGA to process. This is intended to simulate real-world inputs
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since in real-world scenarios, inputs from cameras are also read as individual RGB frames.
The frames are resized to 256× 512 by the CPU before being sent to the FPGA via the PCIe
bus. Once the FPGA has finished processing, the output (classification and vertical matrices)
is read back into the CPU. To qualitatively verify the results, the output matrices from the
FPGA are used to visually draw dots outlining the lane markings on the input frame. The final
dot-annotated frame is then presented on the computer monitor. We also evaluate the entire
TuSimple dataset using the returned matrices to obtain quantitative metrics.

FPGA

QuantLaneNet

Host PC

Disk
Video

PCIe DMA

Frame resized 
to 256 × 512

Output 
matrices

Monitor

Draw 
dots

Acc

FP

FN

Evaluate

Output x86 
Processor

Figure 13. Verification environment.

From the results, we found that the dot-annotated outputs from the FPGA are identical
to the outputs from the quantized software model, except for rare cases of slight differences.

For quantitative results, the accuracy evaluation of our hardware accelerator compared
to software implementation is presented in Table 5. The accuracy of the hardware imple-
mentation (93.43 %) is only reduced by 0.04% compared to the software implementation
(93.47 %). This slight reduction is due to the fact that the quantized model in software
still contains some floating-point coefficients, but these coefficients are stored as 16-bit
fixed-point in the hardware implementation to reduce design complexity. This trade-off in
accuracy is acceptable since the accuracy loss is negligible.

Table 5. Accuracy of hardware accelerator.

Acc FP FN

32-bit float (SW) 93.53% 10.25% 8.89%

8-bit quant (SW) 93.47% 10.38% 9.03%

8-bit quant (HW) 93.43% 10.53% 9.29%

5.3. FPGA Evaluation

As of the writing of this paper, there have not been any publications with the same
exact combination of elements as our work, i.e., CNN model for the task of lane detection
implemented on FPGA. Because of this, two studies with similar applications, albeit
different datasets, are chosen to provide relative comparisons with the proposed hardware
accelerator. The performance, as well as synthesized hardware resource, of our accelerator
is presented in Table 6. The results from the studies [26,28] are also shown for comparison.
The results of our hardware design are synthesized on the ZCU102 and XCKU115 FPGA
for comparisons and on the VC707 FPGA for actual implementation and verification as
shown in Figure 11. The framerate of our design is calculated from the average runtime of
100,000 runs. Each runtime starts when the software begins writing the frame to the FPGA
and stops when the software has finished reading the output matrices from the FPGA.
Power consumption is reported by the Vivado Power Estimator tool.
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Table 6. Hardware implementation evaluation and comparisons.

RoadNet-RT [28] ChipNet [26] Ours

Device ZCU102 XCKU115 ZCU102 XCKU115 VC707

Precision 8-bit quant 18-bit quant - 8-bit quant -

Input size 280 × 960 64 × 180 - 256 × 512 -

Frequency
(MHz) 250 350 440 300 250

Framerate
(FPS) 196.70 79.43 1126.40 768.00 640.00

Bitrate
(Mbps) 1268.95 21.96 3543.35 2415.92 2013.27

Power (W) - 12.594 12.522 11.194 10.309

Pow.
Efficiency

(Mbps/W)
- 1.74 282.97 215.82 195.29

LUTs 260,335 (94.99%) 38,082
(5.74%)

92,728
(33.83%)

98,792
(14.89%)

136,363
(44.92%)

Flip-flops 115,684 (21.10%) 33,530
(2.53%)

171,680
(31.32%)

171,256
(12.91%)

198,929
(32.76%)

BRAMs 1340 (73.46%) 1543.0
(71.44%)

494.5
(27.11%)

512.5
(23.73%)

547.0
(53.11%)

DSPs 1560 (61.90%) 3072
(55.65%)

1957
(77.66%)

1961
(35.53%)

1957
(69.86%)

The results show that our framerates (FPS) and bitrate (Mbps) are much higher than those
of [26,28]; meanwhile, our power consumption is less than that of these studies using the same
FPGA platforms. Therefore, our system bitrate-based power efficiency (Mbps/W) is much
more significant than that of these studies. In addition, as results shown in Table 1, our design
takes 0.540 GFLOPs, then throughput reaches 345.6 giga operation per second (GOPS) when
our design is implemented on the VC707 FPGA board with the framerate of 640 FPS. This
leads to the throughput-based power efficiency reaching 33.52 GOPS/W.

For the hardware resources, when compared to [28], our accelerator design requires a bit
more flip-flop and DSP blocks but much fewer LUT and BRAM blocks. When compared to [26],
our accelerator design requires more LUT and flip-flop blocks but fewer BRAM and DSP blocks.

6. Conclusions

In this work, we present a real-time convolutional neural network for the task of lane
detection. Our model minimizes post-processing on the output by utilizing an efficient lane
representation format. The model can achieve 93.53% accuracy on the TuSimple dataset
while running at 348.34 FPS on the NVIDIA Tesla T4 GPU for image size 256× 512. A
hardware accelerator is implemented on the Virtex-7 VC707 FPGA to optimize processing
speed and power consumption. By utilizing several optimization techniques, such as data
quantization and dual 8-bit multiplications on a single multiplier, the hardware accelerator
can achieve 640 FPS when running at 250 MHz while consuming only 10.309W. The system
throughput and energy efficiency reach 345.6 GOPS and 33.52 GOPS/W, respectively.
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