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Abstract: This paper presents a novel method based on a convolutional neural network to recover
thermal time constants from a temperature–time curve after thermal excitation. The thermal time
constants are then used to detect the pathological states of the skin. The thermal system is modeled as a
Foster Network consisting of R-C thermal elements. Each component is represented by a time constant
and an amplitude that can be retrieved using the deep learning system. The presented method was
verified on artificially generated training data and then tested on real, measured thermographic signals
from a patient suffering from psoriasis. The results show proper estimation both in time constants
and in temperature evaluation over time. The error of the recovered time constants is below 1% for
noiseless input data, and it does not exceed 5% for noisy signals.

Keywords: CNN; active thermography; biomedical application; thermal time constants; deep learn-
ing; noisy signals

1. Introduction

Time-constant spectrometry is a method of reducing the dimensionality of data and
signals describing time-varying dynamic processes. This technique can be used for various
engineering and medical applications. Initially, this method was successfully applied for
dynamic object identification, mainly in the fields of automation and control [1–8] and elec-
trical and electronic engineering [9–12]. Thermal time-constant spectrometry is a method
that effectively reduces the dimensions of the mathematical representation of a problem.
It approximates a large dataset in the time and frequency domains by using a series with
only a few components. This technique has already been employed in the modeling of
long energetic lines to predict their performance [12]. The distribution of time constants
finds application in communication system modeling, utilizing the immittance concept [4].
Additionally, time-constant spectrometry can simplify the modeling of a complex electrical
network in dynamic states, aiding in the analysis and prediction of its behavior [2]. Recently,
time-constant spectrometry has also been used for biomedical applications where the skin
temperature is monitored by infrared (IR) thermography [13,14]. In the heat transfer domain,
thermal systems can be modeled as the R-C Foster Network that are directly corresponding
to the time-constant distribution [9,10,13–17]. R-C networks are used for thermal object
characterization. Such a network is a chain of thermal resistance and capacitance connec-
tions. Each element of the ladder is the parallel connection of thermal resistances and
thermal capacitances, while all cells are connected in series. Such modeling is the result of a
multilayer structure where each of the branches corresponds to each of the layers.

It has to be underlined that the process of time-constant identification of a dynamic
system is a kind of inverse problem that is, in general, ill-conditioned. In particular, it
is a very severe problem in the heat transfer domain because the non-orthogonal set of
functions approximates the temperature changes in the dynamic processes.

There are a few existing methods being used for dynamic system identification based
on data processing in either the time or frequency domain. In electronics for thermal
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problems, network identification by deconvolution (NID) is widely used [9–11]. In electrical
engineering, continuous-time system identification (CONTSID) [2,3] or computer-aided
program for time-series analysis and identification of noisy systems (CAPTAIN) [17,18]
are known. Typically, these methods are based on the rational presentation of the transfer
function in frequency domain or a polynomial approximation of the impulse response
of a system in time domain. A very practical and widely used software tool for dynamic
system identification is offered in the Matlab environment. It uses built-in transfer function
estimation (TFEST) [13,14]. Recently, a new approach has been implemented using the
Vector Fitting algorithm for inverse heat transfer problem solution [12–19]. It is important
to mention that in the biomedical sciences, screening and diagnostic procedures must be
non-invasive and, in many cases, contactless. That is the reason that IR thermography is
now more and more useful [13,15].

Despite the problem of ill-conditioning, the signals measured by IR techniques have
low amplitude, are noisy, and are disturbed by various unstable environmental effects.

Therefore, the learning system is proposed to solve the inverse problem [20]. In fact,
this system simply realizes non-linear regression to approximate a set of multidimensional
functions [21,22]. For such a problem, artificial intelligence methods are suitable, including
deep learning approaches. In this research, the convolutional neural network (CNN) is pro-
posed. To our knowledge, this is a novel approach for approximating dynamic temperature
curves. It is known that in order to apply CNNs successfully, the training data must be large
and reliable. In general, it is rather difficult to provide such training knowledge. Therefore,
transfer learning is often included. It uses both data from different modalities and data
artificially generated using appropriate modeling [20]. There are different CNN models
that exist that are used both for classification and regression purposes [20,21]. Almost all
of them implement the concept of residual networks with long or short skip connections,
known as the ResNet architecture [20,21]. The approach is useful when the training and
validation data do not differ much. Otherwise, it can lead to gradient vanishing during the
learning optimization process [23–25]. This may regard heat transfer inverse problems as
very ill-conditioned. In practice, it means that a large variation in the input will produce a
small change in the output, and vice versa.

There are numerous studies exploring the application of AI in the field of thermovision
for biomedical purposes. Most of these studies use CNN networks for segmentation and
classification tasks. In reference [26], the authors present software capable of classifying
thermal images of neonates as healthy or unhealthy and visualizing the skin regions that
contribute to this classification. CNN is used to classify non-alcoholic fatty liver disease by
extracting texture features from thermal images [27]. CNN networks can also be used to
segment patients’ breasts in thermal images and classify pathologies [28]. Reference [29]
demonstrates the results of using CNN networks to classify thermograms of healthy and
arthritis-affected knees. All these applications demonstrate the potential of deep learning
algorithms in biomedical applications based on thermal imaging. CNN can also be used
for regression tasks, e.g., in dynamic thermovision applications.

The aim of this work is to verify whether it is possible to apply the CNNs to thermal
time-constant spectrometry. The proposed approach has been verified both on artificial
data and on measurements performed on patients with psoriasis. The distribution of time
constants, which illustrates the temporal response of the tissue to thermal stimulation, is
used to distinguish between its pathological and physiological states.

The rest of this document is organized as follows:

– Section 2: Materials and Methods—presents the proposed approach for the time-
constant spectrometry method based on CNN. It includes a description of the proposed
structure of the CNN network, the dataset, and the training and validation processes.

– Section 3: Results—is divided into subsections:

# Section 3.1—presents the results of network validation for artificially generated
data.
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# Section 3.2—presents the results for artificially generated data with different
levels of noise added.

# Section 3.3—presents the network verification for real measurements of the
patient suffering from psoriasis—for healthy and unhealthy parts of the skin.

– Section 4—discusses the results, concludes the paper, and lists some possible future
work.

2. Materials and Methods

Time-constant spectrometry requires solving the ill-conditioned inverse problem. In this
research, a regressive convolutional neural network is proposed for this purpose. The prob-
lem is to reconstruct the thermal time-constant distribution from the temperature changes
over time, measured using a high-speed thermal imaging camera. Temperature curves can
be approximated by the sum of a few exponential components, each representing a thermal
time constant [30]. Tests show that a four-time-constant approximation gives satisfactory
results with a low value of error between the original and predicted data. This number of
time constants was chosen for the training procedure.

Several convolutional neural networks with and without residual layers were tested.
In addition, different numbers of feature layers, filters used, and kernel sizes were imple-
mented, and their effectiveness was verified. The software was developed in the Python
environment using the TensorFlow and Keras libraries [31]. After several attempts, the
network shown in Figure 1 was selected.
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Figure 1. CNN network structure.

The network consists of nine layers. The first and last layers are dense. They transform
input and output into lower- and higher-dimensional representations, respectively. The
convolutional layers in between use 32 filters with a kernel size of 3 × 3 and apply the
sigmoid activation function.

The convolutional layers perform the 2D convolution operations on the input data,
extracting features using the 32 filters. The ‘padding’ parameter is set to ‘same’ to preserve
the spatial dimensions of the output feature maps. The last convolutional layer has a single
filter and produces a single-channel output.

This output is then connected to a Flatten layer, which reshapes it into a 1D vector
with 1024 elements. The flattened data are passed through a dense layer with 8 neurons,
applying a linear transformation followed by the sigmoid activation function. This layer
is responsible for generating the final output of the network, consisting of 4 thermal time
constants and their amplitudes.

Transfer learning was applied in this research. This means that the input data used for
training the CNN network consists of curves that are generated artificially as the sum of
four exponential components with known values of the amplitudes of the thermal time
constants (Equation (1)). The thermal time constants and their amplitudes are randomly
generated within the [0, 1] range, as shown in Table 1. In the presented research, each curve
is composed of four exponential components.
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T(t) =
4

∑
i=1

Ti(1− e−
t
τi ) (1)

Table 1. CNN parameters.

Parameter Values/Method

Exponential parts 4
τi range (0–1) s
Ti range (0–1) ◦C

Train dataset/epoch 10,000
Validation data 1000

Optimizer Stochastic Gradient Decent
Loss Function 0.2·mse(τ) + 0.8·mse(T)

Epoch no. 5000
Activation function sigmoid

The CNN model is designed to fit temperature rise measurements over time that are
recorded by the IR camera at a frequency of 50 Hz for approximately 6 min. Each measure-
ment consists of approximately 18,000 samples. Training the CNN network with thousands
of such large data vectors can be time-consuming and requires significant memory and
computing power. Furthermore, the crucial part of the temperature rise curve with the most
important information about the time constants is at the beginning. To recover the dynamic
behavior of the thermal system, the temperature curves over time are non-uniformly re-
sampled, with denser sampling at the beginning and sparser sampling in the quasi-steady
state region. To speed up the learning process, each temperature curve is represented by
1024 non-uniformly distributed samples only.

For training and validation, the ranges of the parameter values τi, Ti are normalized,
i.e., τi ∈ [0, 1] s, Ti ∈ [0, 1] ◦C. To ensure data consistency during the test, the temperature
evolution computationally generated in any time interval is scaled to [0, 1] s. A similar
operation is performed for the temperature curves of the measured signals. Finally, both
the thermal time constants and their amplitudes were scaled up using the same scaling co-
efficients. All these normalization operations essentially help in the CNN learning process.

The main parameters of the proposed network are listed in Table 1.
The learning process uses a set of 10,000 training and 1000 validation data points,

respectively. The input data consist of temperature curves over time calculated using the
randomly generated time constants and their amplitudes. The entire training procedure
takes 5000 epochs.

An example of the decay of the loss function values during training and validation is
presented in Figure 2.

The trained network was tested on 1000 smooth curves, 1000 noisy curves, and 2 tem-
perature measurements over time. The proposed method was also verified on a psoriasis
patient, where both healthy and diseased parts of his skin were analyzed.

The loss function defined in the developed CNN network uses a weighted sum of the
mean squared error of τi and Ti. The research results show that due to the greater impact of
time constants compared to thermal amplitudes on the evolution of temperature in time, the
network approximates τi better than Ti. Therefore, the effect of time constants on the loss
function is arbitrarily reduced by defining the weighted loss function, as shown in Table 1.

The proposed CNN architecture is a compromise between its computational complexity
and its performance. The loss function in Figure 2 confirms that the network still has the
potential to learn, and we do not observe any signs of overlearning. It appears that there is
room for larger datasets to further reduce the overall error of the network. The concept of
the ResNet network with long connections accelerates learning and protects against gradient
vanishing. Additionally, more advanced augmentation techniques can be applied.
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3. Results
3.1. Network Validation for Artificially Generated Data

The training and validation data consist of the sum of exponential functions with
four components. Time constants and amplitudes are randomly generated to produce
these curves. The mean squared errors for 1000 samples show the deviation of the original
and predicted parameters (τi and Ti). Additionally, the temperature curves over time
are calculated for scaled data ranging from 0 to 1 to verify the effectiveness of the data
processing. The results are presented in Table 2.

Table 2. Mean squared errors estimated by original and predicted data.

Component No. τi Ti T(t)

1 0.00128 0.03642

0.01353

2 0.01022 0.05394

3 0.01336 0.0555

4 0.01327 0.05225

mean 0.00953 0.04952

The mean value of MSE for the time constants does not exceed 1% (Table 2). Figure 3
presents the example result of the original and predicted unscaled values of τi and Ti.
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The temperature changes in time after upscaling to a 6 min of acquisition interval are
presented in Figure 4.
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3.2. Network Validation for Noisy Data

When using active thermography in medical applications, one must determine the
temperature rise over time in a specific region of interest, typically a small spot. This task
is challenging due to patient motion caused not only by controlled movements but also
by physiological activities such as breathing and heartbeat. Therefore, motion correction
techniques need to be applied [13,14]. This is a demanding task due to the low thermal
contrast of IR images and the small size of the region of interest that needs to be recovered
in each frame. Additionally, if the region of interest is located on the leg or arm, the rotation
of these body parts can deform the spot and introduce errors in the temperature readings.
Consequently, this can result in noise in the temperature curve over time.

The proposed method for extracting thermal time constants and their amplitudes was
also tested on noisy data. A Gaussian noise with a zero mean and various variance values
was added to the generated data. Mean squared errors were estimated for each test, which
was performed on 1000 samples. The results are presented in Table 3.

Table 3. Mean squared errors estimated between original and predicted data for thermal time constants,
amplitudes and temperature rise over time at different levels of added noise.

Noise Variance i τi Ti T(t)

0.0001

1 0.00179 0.03289

0.01180
2 0.01010 0.05359
3 0.01468 0.05708
4 0.01615 0.04853

mean 0.01068 0.04802

0.0005

1 0.00391 0.04794

0.01261
2 0.01459 0.06010
3 0.02036 0.05894
4 0.02189 0.05778

mean 0.01518 0.05619

0.001

1 0.00707 0.06066

0.02051
2 0.01524 0.06194
3 0.02753 0.05982
4 0.03403 0.06350

mean 0.02096 0.06148

0.0015

1 0.00930 0.06405

0.01909
2 0.01818 0.06456
3 0.03471 0.06316
4 0.03842 0.06611

mean 0.02515 0.06447

0.0025

1 0.00948 0.07460

0.03609
2 0.02351 0.06238
3 0.04262 0.06651
4 0.06015 0.07994

mean 0.03394 0.07085

0.005

1 0.01724 0.09785

0.04929
2 0.02643 0.06824
3 0.05885 0.07596
4 0.08743 0.07964

mean 0.04748 0.08782
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Obviously, the errors increase with higher values of the noise variance, but they do not
exceed the levels of 5% and 9% even for the highest tested noise, both for time constants
and their amplitudes, respectively (Table 3). This confirms that the proposed method is
effective and can be used for real measurements that are often disturbed by noise.

The exemplary results of time constants and the amplitude distributions recovered for
the noisy signals with the highest and lowest variance are presented in Figure 5, while the
function of temperature in time is shown in Figure 6. The dense sampling at the beginning
results in more frequent noise in this part of the curve. This simulates a more challenging
problem to solve, leading to higher errors in such cases.
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3.3. Results for a Real Data

The presented method could also be used for real measurement data, especially to
determine the thermal time constants for living tissues. This would help to distinguish
differences in skin reactions between healthy and unhealthy skin. Exemplary tests were
made for the measurements carried out on a patient with psoriasis (see Figure 7).
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The thermographic examination was performed dynamically using so-called thermal
stress. The skin on the patient’s leg was cooled down by metal blocks with a high thermal
capacity by applying them to the patient’s skin for 5 s. Then the temperature rise over time
was recorded for two regions of interest: one corresponding to healthy skin and the other
to the psoriasis area. The size of the marked ROIs is 5 × 5 pixels. The temperature drop
after cooling was approximately 5–6 ◦C. The measurement was performed for about 6 min
to reach a quasi-steady state.

A CEDIP Titanium camera with a cooled detector of 640 × 512 pixels was used to carry
out the research. The use of this type of camera was necessary due to the continuity of
the signal recording, unlike cheaper and smaller microbolometer cameras. The sequence
of thermograms was recorded at a frequency of 50 Hz. The speed of recording was condi-
tioned by the rapid reaction of the skin immediately after the source of thermal stimulation
was removed.

The research was carried out in accordance with the guidelines for conducting thermo-
vision research in medicine developed by Prof. Ring from the University of Glamorgan [32].
Both the camera, the room, and the patient had to be properly prepared. The tests were
performed in an air-conditioned room with a constant temperature of 20 ◦C. Before starting
the measurements, the camera was switched on for about 15 min to achieve thermal stabi-
lization. The tests were performed in the morning, before any hospital procedures. Before
the examination, the patient had the examined part of the skin exposed for about 15 min.

To compensate for patient movement, a motion correction technique based on cross-
correlation was employed [13]. To enhance the quality of motion compensation, a piece of
aluminum foil with a low-emissivity value was attached to the skin as a reference region,
which is clearly visible in the thermovision images. A detailed description of the experiment
can be found in [13]. Despite the movement correction, the temperature curve is still noisy.
Figure 7 displays the visual and thermal images of the patient with psoriasis. The regions
of interest for the unhealthy (top) and healthy (bottom) parts of the skin are cooled down
and marked on the thermal image. The distance and size of the region of interest (ROI) can
influence the temperature value [33]. However, in the presented approach, this factor is not
as significant since two ROIs are used for comparison and they are positioned close to each
other, ensuring that the camera distance is the same for both measurements. Furthermore,
the absolute temperature itself is not crucial; rather, the dynamic reaction of the skin and
the difference in obtained time constants for both cases are more important. The primary
concern lies in reducing the noise in the obtained signal, which is mainly caused by the
movement of the patient, resulting in changes in the ROI’s location. Noise minimization
is mainly achieved through movement correction of the marked ROIs. The healthy and
unhealthy parts of the patient’s skin for the ROIs were selected to be close to each other in
order to cool down and register both regions at the same time.
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The results—the values of predicted time constants and their amplitudes—are pre-
sented in Figure 8, while the measurements for healthy and unhealthy (affected by psoriasis)
parts of the skin and their approximations are shown in Figure 9.
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Finally, the recovered distribution of time constants and their amplitudes are presented
in Table 4. As expected, the inflammation area of the skin is responding slowly. The addi-
tional thermal inertia is observed there due to the change in vascularization.

Table 4. Recovery time constants and amplitudes for healthy and unhealthy cases.

Case τi Ti

Healthy

1.9486818 1.354312
18.936752 1.1490566
113.21907 0.9453574
230.25365 0.8074841

Unhealthy

1.7264072 1.231425
21.461962 0.9482369
125.83128 0.902929
246.69447 0.9088539

The distribution of recovered time constants seems to be accurate. In skin tissue mea-
surements, the range of time constants should differ, as it does in this case. The lowest time
constants fall within the range of seconds, while the longest time-constant values reach the
level of hundreds of seconds. Such a range distribution is natural and aligns with the fast
initial response of the curve and the eventual steady state at the end [30].

The correctness of the obtained values was confirmed by the results already published
in the literature. In [30], burned skin was modeled as a two-time-constant approximation.
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The levels of time constants obtained were in the range of tens of seconds for the first and
hundreds of seconds for the second.

Time constants are different for healthy and unhealthy parts of the skin. The proposed
method could be utilized to differentiate between pathological and physiological tissue
states, which would aid in the diagnosis and treatment of skin illnesses like psoriasis.

4. Discussion and Conclusions

The article presents a novel CNN-based method for recovering thermal time constants
from a temperature–time curve after thermal excitation. The training procedure involved the
generation of temperature–time curves and the validation of the results with and without
noise. The trained network was then tested using real measurements from a patient suffering
from psoriasis.

The presented approach shows a good approximation of the input functions both for the
validation data generated artificially with and without noise as well as for data obtained from
thermographic temperature measurements over time. The accuracy of the time constants
is further supported by the low values of the mean squared error temperature rise in time,
which are 0.00316479 for healthy skin and 0.00337056 for unhealthy skin. According to the
proposed scaling and normalization of all data to the range [0, 1], as mentioned above, the
obtained relative error of the presented method is less than 10%. This indicates that the
predicted values are close to the actual measurements, confirming the accuracy of the results.

The CNN training dataset uses scaled inputs, which makes the approximation problem
more general. The input data may vary in size and duration, but they are always normalized
to the same range. In order to reduce the size of the input data and shorten the learning
phase, non-uniform sampling was used. Finally, rescaling the output results with time and
temperature allows for the proper distribution of thermal time constants. The proposed CNN
uses the weighted loss function for time constants and their amplitudes. Since the influence
of the amplitudes of the time constants on the final results is weaker, their contribution to
the training was increased.

The results appear to be promising. The regression CNN network shows potential in
thermal time-constant spectroscopy, particularly for biomedical thermographic signals that
are often noisy and disturbed. The approximation error is sufficiently small to accurately
reproduce the original time constants that can be used to distinguish between physiolog-
ical and pathological tissue states. In addition, compared to other optimization methods,
the presented approach consistently gives satisfactory results and avoids the problem of
obtaining negative values for τi, which can occur when using non-constrained optimization
methods such as fminsearch [34]. Despite the ill-conditioned nature of the dynamic thermal
system, the CNN works well and provides satisfactory results for input signal parameters
varying over wide ranges.

Several improvements could be made, such as testing more complex CNN networks or
pre-defined ones such as ResNet, AlexNet, etc. Including noisy data used in the training
procedure can also be beneficial. The main challenge lies in determining the number of
time constants that appear in the thermal process. The presented approach assumes an
approximation of four time constants, but this may not always be sufficient. It is important
to collect more measurements to confirm the correctness of the proposed approach and
compare it with other methods using the same dataset.

The problem of time-constant spectrometry, especially for thermal processes, is very
difficult. This is due to the fact that the exponential functions used to represent the tem-
perature evolution in time are not orthogonal function series. The aim of this paper was
to confirm that the CNN approximation can be useful to deal with this problem. The ver-
ification of the correctness of using this approach can be performed using other methods
that are related to less ill-conditioned optimization problems, such as electromagnetic and
electrical network identifications, as in [12]. In addition, novel approaches to CNN network
correctness verification can also be applied [35–38].
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