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Abstract: Understanding and identifying emotional cues in human speech is a crucial aspect of
human–computer communication. The application of computer technology in dissecting and de-
ciphering emotions, along with the extraction of relevant emotional characteristics from speech,
forms a significant part of this process. The objective of this study was to architect an innovative
framework for speech emotion recognition predicated on spectrograms and semantic feature tran-
scribers, aiming to bolster performance precision by acknowledging the conspicuous inadequacies in
extant methodologies and rectifying them. To procure invaluable attributes for speech detection, this
investigation leveraged two divergent strategies. Primarily, a wholly convolutional neural network
model was engaged to transcribe speech spectrograms. Subsequently, a cutting-edge Mel-frequency
cepstral coefficient feature abstraction approach was adopted and integrated with Speech2Vec for
semantic feature encoding. These dual forms of attributes underwent individual processing before
they were channeled into a long short-term memory network and a comprehensive connected layer
for supplementary representation. By doing so, we aimed to bolster the sophistication and efficacy
of our speech emotion detection model, thereby enhancing its potential to accurately recognize and
interpret emotion from human speech. The proposed mechanism underwent a rigorous evalua-
tion process employing two distinct databases: RAVDESS and EMO-DB. The outcome displayed
a predominant performance when juxtaposed with established models, registering an impressive
accuracy of 94.8% on the RAVDESS dataset and a commendable 94.0% on the EMO-DB dataset.
This superior performance underscores the efficacy of our innovative system in the realm of speech
emotion recognition, as it outperforms current frameworks in accuracy metrics.

Keywords: speech emotion recognition; CNN; LSTM; feature extraction; MFCC; spectrogram

1. Introduction

In the past decade, the rapid advancement of artificial intelligence (AI) has resulted
in an increased interest in developing more advanced methods of human–machine com-
munication. One area of research that has gained significant attention is speech emotion
recognition (SER), which involves the development of algorithms and models that can
detect and differentiate various emotions conveyed through speech. Human communi-
cation relies heavily on the use of emotions to communicate a speaker’s message and
its purpose. Recognizing emotions in speech can help improve the accuracy of speech
recognition and understanding of the spoken language, as well as enable new applications
such as emotion-aware human–computer interaction.

The proficiency in precisely discerning and distinguishing emotional nuances in
speech holds significant applicability across a diverse array of domains such as pedagogical
environments, the entertainment sector, and healthcare. Despite the potential benefits
of SER, it remains a challenging task because emotions can be subjective and difficult to
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detect accurately. Hence, scholars engaged in this discipline are relentlessly probing novel
methodologies and strategies to enhance the precision of SER algorithms.

Conventional SER techniques typically encompass a sequence of unique phases com-
mencing with the input and preprocessing of audio data, succeeded by the extraction of
features, and culminating in emotion categorization. This process aims to distill complex
emotional cues from speech, and encapsulates the core elements of SER systems. These
phases are essential in building an effective SER system. In the input and preprocessing
stage, audio data are first collected, and any noise or other unwanted signals are removed.
The data are then converted into a suitable format for further processing. In the subsequent
step, feature extraction approaches are used to produce a collection of characteristics that
best reflect the emotional content of the voice signal.

Classic speech emotion recognition methods use various machine learning algorithms
to classify emotions from speech signals. Support vector machines (SVMs) [1–3], hidden
Markov models (HMMs) [4,5], and others [6–8] are included in these methods. Traditional
SER approaches rely on handcrafted features and statistical models to extract information
from speech signals and classify emotions. These methods have demonstrated limited
performance and lack robustness to speech signal variations.

Deep learning-based methods have emerged as a promising approach to address
these limitations and achieve state-of-the-art performance in SER tasks. Several deep
learning-based SER models [9–12] have been developed over the past decade. For
instance, a deep belief network-based SER model was proposed in which feature extrac-
tion and classification were performed in a single step. A hybrid deep learning-based
SER model that combines convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) was also proposed to capture both the spectral and the temporal
characteristics of speech signals.

However, several challenges, such as model accuracy, data scarcity, and generalization
to unseen data, remain to be addressed in deep learning-based SER models. Numerous
studies have attempted to develop optimized SER models by utilizing one or two sources
of features. However, there is currently no established set of features that has been experi-
mentally proven to be appropriate for building an effective SER model. Despite numerous
exploratory endeavors, a uniform agreement pertaining to the selection of features that
would yield optimal performance in SER models is yet to be established.

The decision on the most appropriate features for SER is still a subject of ongoing
debate and investigation in this domain, underscoring the complexity and multifaceted
nature of speech emotion recognition. Therefore, further research is required to determine
the ideal combination of features for building an efficient SER model. Mel-frequency
cepstral coefficient (MFCC)-based models have been used in various speech recognition
applications, including keyword spotting, speaker identification, and speech-to-text tran-
scription. One of the strengths of MFCC-based models is their computational efficiency
and suitability in real-time applications. However, these models may not capture the full
semantic meaning of speech because they only capture acoustic characteristics.

Thus, in this study, we attempted to use the advantages of Speech2Vec, which can
capture both the acoustic and the semantic characteristics of speech, as well as MFCCs.
In addition, frequency and time information was obtained via spectrograms to detect
the emotional characteristics of speech and changes in emotion over time. Overall, we
endeavored to construct a novel model for SER based on spectrograms and semantic feature
encoders that enhance performance accuracy by considering the notable deficiencies in
existing approaches and remedying them.

To obtain useful features for speech recognition, this study utilized two distinct meth-
ods. First, a fully CNN model was utilized to encode speech spectrograms. Second, a
novel MFCC feature extraction technique was utilized and combined with Speech2Vec
to encode semantic features. These two types of features were processed separately and
subsequently fed into a long short-term memory (LSTM) and a fully connected layer for
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additional representation. This study presents several significant contributions that should
be highlighted.

• First, it introduced a new methodology for SER that achieved superior accuracy
compared to existing baseline models. This novel approach provides a promising
direction for future SER research.

• Second, innovative techniques were utilized to extract semantic features from audio
signals. This feature extraction process involved combining MFCCs with Speech2Vec
to create a more meaningful representation of speech data. These semantic features
contribute significantly to the accuracy of the SER model.

• Third, the study improved the model complexity by using a deep learning architecture
that included an LSTM and a fully connected layer. This method enabled the produc-
tion of an embedding of a predetermined length for an input piece, which is necessary
for activities involving speech recognition. This fixed-length embedding simplifies the
processing of speech signals and improves the accuracy of SER.

• Overall, the contributions of this study have advanced our understanding of SER
and provided valuable insights into developing more effective speech recognition
models. These findings have important implications for a range of applications,
including emotion recognition in human–robot interaction, speech therapy, and mental
health diagnosis.

The ensuing segments of this manuscript unfold in the following manner: Section 2
furnishes an exhaustive review of contemporary research on SER modeling, focusing
on the employment of MFCCs, semantic features, and other profound learning mod-
els. Sections 3 and 4 proffer an in-depth delineation of the proposed SER model, along
with the empirical findings that corroborate its effectiveness, and juxtapositions with
established benchmarks. These sections aim to provide readers with a thorough under-
standing of the model’s design and capabilities, as well as its relative performance in the
field of SER. Section 5 provides a concluding summary and discusses potential future
research directions. The article concludes with a reference list that includes several
contemporary publications on SER.

2. Literature Review

Understanding emotions in speech is a complex task that requires significant effort
from researchers to develop highly effective models using algorithms. This is because
emotions may be communicated via speech in various ways, including changes in tone,
pitch, loudness, rhythm, and other speech-related characteristics. Currently, there are
multiple studies [13–16] that focused on identifying and analyzing speech features
to detect the emotions of individuals. These studies aimed to effectively classify the
detected features and accurately determine the emotional state of the speaker. The
accurate and effective extraction of relevant characteristics, as well as the high correlation
among these features, are critical elements that significantly affect the effectiveness of
the emotion detection system. Contemporary SER approaches have been positively
affected by the introduction of several innovative feature extraction methods [17–20]. In
one study [17], a deep neural network model for SER that could simultaneously learn
both MelSpec and GeMAPS audio features was proposed. The three components of
the model are the learning of MelSpec in picture format, learning of GeMAPS in vector
format, and combining the two to predict emotions. Moreover, the study conducted
by Lalitha et al. [21] explored the effectiveness of different feature extraction modules
according to cepstral coefficients for detecting emotions in speech. Cepstral coefficients,
which reflect the spectral envelope of a speech signal, are common characteristics of
speech processing. This study investigated the use of different cepstral coefficient-
based features, such as MFCCs, linear predictive cepstral coefficients (LPCCs), and
perceptual linear predictive cepstral coefficients (PLPCCs), for emotion recognition in
speech. The authors of [22] suggested a new approach to address the issue of long-



Sensors 2023, 23, 6640 4 of 19

term dependence vanishing in RNNs. Specifically, they introduced a novel method
using linear predictive Meir frequency cepstrum coefficients and bidirectional LSTM to
recognize dance emotions. Several studies [23–25] have demonstrated that combining
MFCCs with other feature sets can enhance emotion recognition accuracy.

On the other hand, semantic feature encoders are deep learning models that encode
speech signals into high-dimensional semantic vectors that capture the meaning of the
speech. There are several recent semantic feature encoder-based SER models [26–29].
Kakuba et al. [29] formulated a deep learning-based methodology that can concurrently
acquire spatial, temporal, and semantic representations in a unified manner within a local
feature learning block. This technique merges the aforementioned representations into
a latent vector, which subsequently serves as the input for the global feature learning
block. Moreover, Yoon et al. [30] suggested a deep dual recurrent encoder that incorpo-
rates both text and audio data by employing two separate RNNs to encode the text and
audio sequences and subsequently merging the information from both sources to enhance
the performance of emotion classification in emotional dialogues. The method [31] first
feeds the aligned multimodal features into a sequential model to enhance the accuracy of
multimodal feature representations for emotion identification by learning the alignment
between voice frames and text words.

Overall, combining multiple features can enhance the robustness and generalization
of SER models because it reduces the impact of individual feature biases and improves the
ability of the model to handle different types of emotions and speech contexts.

3. Proposed System

This section elucidates the intricacies of the proposed framework, specifically archi-
tected for the recognition of emotions in speech. The schema encompasses two principal
constituents, each indispensable in delivering an accurate prognosis of the speaker’s emo-
tional disposition. The comprehensive process of modeling is depicted in Figure 1, which
demonstrates the chronology of steps involved in the model’s execution. The disparate
components of the model operate synergistically to accomplish the objective of speech emo-
tion recognition. The model is adept at evaluating and interpreting a plethora of acoustic
facets intrinsic to speech signals, inclusive of aspects such as duration, intensity, and pitch,
to deduce the latent emotional state of the speaker. On the whole, the proposed model
embodies a holistic and robust methodology to speech emotion recognition, possessing
the capacity for application in a vast spectrum of real-world situations. This degree of
versatility enhances the model’s utility and positions it as a powerful tool in the evolving
field of speech emotion recognition.

3.1. Semantic Feature Encoder
3.1.1. MFCC Feature Extraction

The utilization of mathematical computations to depict the auditory mechanism of the
human ear is a characteristic of the MFCC method, which can attain remarkable recognition
rates. Consequently, this study adopted the MFCC (Figure 2) as a prominent feature for the
recognition of speech emotions [32]. Despite the utility of the traditional MFCC parameter
in cepstral analysis, it only encompasses the invariant features of speech parameters.
Hence, this study aims to augment the analysis by computing a differential spectrum that
incorporates dynamic features. First, the AF approach is utilized to ascertain the optimal
order p of the fractional Fourier transform (FrFT), which is subsequently operationalized
in the extraction of MFCC features.
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Figure 1. Modeling process of the proposed system.

The overarching procedure can be delineated as follows:

1. Regarding the preprocessing of speech signals, the initial step involved pre-emphasizing
the primary speech signal via filtration using H(z) =

(
1− 0.97z−1). The signal was

then divided into frames of 20 ms duration and 10 ms phase shift. The application
of a 20 ms frame length and a 10 ms shift adeptly caters to the complex demands of
speech signal processing. This configuration not only ensures ample data capture for
reliable spectral analysis but also enables frequent updates to track the rapid changes
inherent in speech signals. Finally, Hamming windows were applied to the frames to
improve the analysis.

2. To ascertain the ideal order “p” for each frame of the preprocessed speech signal, the
ambiguity function (AF) was employed and obtained using Equation (1).

Az(τ, v) =
∫ ∞

−∞
z(t +

τ

2
)z∗(t− τ

2
) exp(−j2πvt)dt. (1)

3. Applying the optimal order “p” (p = 1.03), the discrete fractional Fourier transform
(DFrFT) was executed on each frame of the speech signal, followed by squaring the
resultant output to obtain the energy spectrum.

4. The energy spectrum was processed using a Mel filter bank that operates in a uni-
formly spaced frequency range, thereby transforming the linear frequency scale into a
Mel frequency scale. Subsequently, logarithmic compression was applied to the out-
put. The Mel scale and frequency have a specific interrelation, which can be denoted
as follows:

Mel(f) = 2595 lg
(

1 +
f

700

)
. (2)

5. To derive a set of 39 acoustic features, the logarithmic energy of the filter bank was first
subjected to discrete cosine transform (DCT) to yield 13 static MFCCs. Additionally,
the first- and second-order differentials of the MFCCs were computed to obtain the
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first- and second-order dynamic features. The equation used to compute the dynamic
features is as follows:

dt =
∑K

k=1 k(Ct+k −Ct−k)

2 ∑K
k=1 k2 . (3)

Using K = 2, the first-order dynamic features (dt) can be computed on the basis of the
cepstrum coefficient (Ct). Similarly, by substituting Ct with dt, the equation can be used to
calculate the second-order dynamic feature.
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3.1.2. Speech2Vec

The structure of the neural network, specifically named Speech2Vec, was deliberately
employed to master predefined-length vector representations of audio segments gleaned
from a speech corpus. These vectors are strategically positioned in proximity to other
vectors within the embedding space, provided the spoken words they correspond to bear
semantic similarity. This arrangement fosters an intricate relationship among vectors, effec-
tively mapping semantically related words closer together, thereby creating an organized
and intuitive representation of speech. The semantic information that these vectors carry
is connected to the spoken words in the audio. The process of learning these vector rep-
resentations involves training the Speech2Vec model using a large corpus of speech data.
During training, the model learns to map each audio segment to a high-dimensional vector
representation that captures the semantic features of the words uttered in the segment. The
model achieves this by using a series of layers that extracts relevant features from the audio
signal and subsequently transforms them into a predefined-length vector characterization.
The underlying architecture of Speech2Vec is built on the RNN encoder-decoder model. The



Sensors 2023, 23, 6640 7 of 19

model incorporates the skip-gram methodology, which is a popular approach for training
word embeddings, and which is specifically designed to learn the vector representations of
words directly from speech data. By learning embeddings from speech, Speech2Vec can
leverage the additional semantic information contained within the audio signal that is not
present in text data.

The aim Is to secure a uniform embedding of an audio fragment corresponding to a
specific word, represented by a sequence of acoustic characteristics, such as MFCC and
x = (x1, x2, x3 . . . , xT), where xt denotes the acoustic feature at time t, and T is the length
of the sequence. The objective is to produce a word embedding that reflects the semantic
meaning of the initial audio segment to a certain extent.

The fundamental architecture of Speech2Vec is based on an RNN encoder–decoder
framework consisting of two components: an encoder RNN and a decoder RNN, as
described in previous studies [18,19]. The encoder reads each symbol xt of an input
sequence x = (x1, x2, x3 . . . , xT) in sequence and updates the hidden state ht of the
RNN accordingly. Once the final symbol hT is processed, the corresponding hidden state
hT is treated as the learned representation of the entire input sequence. The decoder
then generates an output sequence y =

(
y1, y2, y3 . . . , yT′

)
sequentially, with T and T’

potentially differing, by initializing its hidden state using hT.
The concept underlying the training methodology of Speech2Vec Is based on

the use of skip-grams (Figure 3). For each audio segment x(n) in a given speech cor-
pus, which corresponds to a word, the model is trained to predict audio segments{

x(n−s), . . . , x(n−1), x(n+1), . . . , x(n+s)
}

that correspond to nearby words within a speci-

fied range “s”. During the training process, the encoder receives x(n) as the input and produces
a fixed-dimensional vector representation v(n) by encoding it. The decoder then maps v(n)

to various output sequences y(i), where i ∈ {n − s, . . ., n − 1, n + 1, . . ., n + s}. The model is
trained by minimizing the general mean squared error between the output sequences
and their corresponding nearby audio segments, which is calculated as ∑

i
‖x(i) − y(i)‖2.

The idea behind this approach is that the encoded vector representation v(n) should
contain sufficient semantic information about the current audio segment x(n) to suc-
cessfully decode nearby audio segments. Once the training process is complete, v(n) is
used as the word embedding for x(n) .
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3.2. Spectrogram Feature Encoder

A fully convolutional neural network (FCNN) was used in this component of the
system to fulfill the goal of preventing the loss of essential features, which is the aim of this
particular segment. The FCNN eliminates the need for a segmentation process to handle
speech data of various lengths. In addition, various models [33–35] based on deep learning
have been constructed to generate efficient utterance characteristics and attain higher levels
of accuracy. In one study [34], raw speech spectrograms were partitioned into specific-sized
chunks to conform to CNN specifications. Consequently, the feeling description of the
full relevant speech was distributed throughout all chunks of the segmented utterance.
Therefore, it is not logical to suppose that the segmented speech pieces do not reflect the
overall emotion being communicated. We believe that breaking the speech spectrogram
into pieces results in a change in the coherence of the speaker’s speech, which in turn
signals a shift in emotion. Thus, the proposed model integrates FCNN as a component to
minimize information loss and handle varying lengths of speech spectrogram. Moreover, a
data input of any size can be processed by FCNN, which subsequently generates an output
that is appropriately understood and learned. The spectrogram feature encoder of the
proposed model is a variant of FCNN (shown in Figure 4) taken from AlexNet [35] but
without any completely linked layers.
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The FCNN consists of five convolutional layers and utilizes local response normal-
ization after the first and second layers, as well as the ReLU activation function after each
convolutional layer. ReLU avoids saturation because it does not require input data normal-
ization. Learning occurs within a neuron if ReLU receives positive feedback from specific
training datasets. However, we strive for generalization using the local normalization
approach expressed in Equation (4), with hyperparameters of local response normalization
N; all kernels of the corresponding layer use constant values of β = 0.75, m = 5, l = 2, and
α = 0.0001.
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bu
g,h =

au
g,h(

l + α∑
min(N−1, u+m

2 )

v=max(0, u−m
2 )

(
av

g,h

)2
)β

. (4)

The convolutional layer settings are expressed as “kernel size”× “stride size”× “chan-
nels”. After local response normalization and pooling, the second and third convolutional
layers receive input with parameters of 5 × 1 × 256 and 3 × 1 × 384, respectively. The first
convolutional layer, on the other hand, has settings of 11 × 4 × 96. The fourth layer has the
same parameters as the third layer, whereas the fifth layer has parameters of 3 × 1 × 256.
Pooling layers in CNNs aggregate the results of adjacent neuronal groups in the same kernel
map. The FCNN encoder produces a three-dimensional array of sizes O × P × Q, where
each dimension represents a different aspect of the data. In the context of the spectrogram,
the “O” and “P” dimensions represent the frequency and time domains, respectively, while
the “Q” dimension represents the size of the channel. The output is assumed to be a set
with “l” components, where l = P× O, with P and O denoting the lengths of the dimensions
representing the frequency and time domains, respectively. Equation (5) expresses each
component “L” as a Q-dimensional vector that encodes a specific segment of the input
speech spectrogram.

S = {s1, · · · sl}, su ∈ RQ. (5)

Ultimately, the output of the speech feature encoding, obtained from the spectrogram
feature encoder module of the suggested model, is combined with the output derived from
the semantic feature encoder module.

4. Experiment
4.1. Datasets

Developing SER models requires large amounts of labeled training data, which can
be time-consuming and expensive to obtain. Therefore, the effectiveness of the proposed
model was demonstrated by evaluating it on the RAVDESS [36] and EMO-DB [37] datasets,
which are publicly available and widely used in the research community for studying
speech emotion recognition. These datasets were used to compare the proposed model
with existing models and demonstrate its superior performance.

4.1.1. RAVDESS

The Ryerson Audiovisual Database of Emotional Speech and Song (RAVDESS) is a
dataset that contains emotional speech and song recordings publicly available for research
purposes. The RAVDESS dataset includes a variety of emotional expressions, such as
neutral, calm, happy, sad, angry, fearful, surprised, and disgusted, which are spoken in
both English and French. The speech recordings are monologues, and each actor speaks
the same set of 13 sentences, including statements and questions with different emotional
expressions. The dataset is highly reliable and valid, with good inter-rater agreement and
high accuracy in predicting emotional expressions. One of the advantages of this dataset is
its diversity of emotions and actors, which enables the development of more robust and
generalizable emotion recognition models. Additionally, the dataset includes both speech
and song recordings, which enables the study of emotion recognition in different types of
audio signals. The data gathering involves a group of 24 skilled individuals, comprising an
equal number of males and females, ensuring a balanced representation of genders. The
speech dataset includes a total of 1440 files, obtained by multiplying 60 trials per actor with
24 actors. These audio files are encoded in the WAV raw audio file format, with a 16 bit
bitrate and a sampling rate of 48 kHz. Each emotion in the RAVDESS dataset (Figure 5)
is represented by an equal distribution of 192 samples, except for the “neutral” emotion,
which has a count of 96 samples.
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Figure 5. RAVDESS dataset emotion distribution.

Overall, the RAVDESS dataset is a valuable resource for researchers in the field of emo-
tion recognition and has contributed to the development of automatic emotion recognition
systems using machine learning algorithms. The emotions are relatively evenly distributed
in the speech subset of the RAVDESS dataset.

4.1.2. EMO-DB

The Berlin Emotional Speech Database (EMO-DB) is a dataset that contains emotional
speech recordings widely used in research on automatic emotion recognition. The EMO-
DB, a database of emotions from Berlin, consists of 535 utterances (Figure 6) captured
by 10 actors, including five males and five females. Each actor performed readings of
predetermined sentences while expressing various emotions such as anger, fear, boredom,
disgust, happiness, neutrality, and sadness. The sentences were selected to be semantically
neutral, and the emotional expressions were elicited using different methods, including
role-playing, imagery, and recall of emotional experiences. The utterances in the EMO-DB
typically last for approximately 2 to 3 s and have a sampling rate of 16 kHz. The dataset also
includes detailed annotations of the recordings, including the onset and offset times of each
emotion, as well as information about the speaker and the recording conditions. One of
the advantages of the EMO-DB dataset is its controlled recording conditions, which ensure
high-quality recordings and minimize the variability in the acoustic characteristics of the
speech signal. Additionally, the dataset contains a wide range of emotions and involves
different speakers, which enables the development of more robust and generalizable
emotion recognition models.

In order to secure an unbiased assessment of our model employing the RAVDESS
and EMO-DB datasets, we embraced a comprehensive end-to-end training strategy by
restructuring the original data, as expounded in [38]. Specifically, we partitioned the data
into training and test subsets, apportioning 80% and 20% of the samples, respectively, to
the training and testing divisions. This approach ensures that the model is trained on
a substantial portion of the data while also reserving a significant subset for evaluation,
thereby facilitating a rigorous and comprehensive assessment of its performance. This
produced 1152 training samples and 288 testing samples for the RAVDESS dataset. Similarly,
for the EMO-DB dataset, we allotted 428 training samples and 107 testing samples.
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Contrary to the methodology delineated in [39], we did not incorporate the 10-fold
cross-validation technique in our investigation. This decision was made due to the practical
difficulties involved in implementing cross-validation on deep learning models, which
would have required a substantial amount of time and computational resources.

4.2. Evaluation Metrics

In the field of speech emotion recognition, models are typically evaluated using three
common metrics: precision, recall, and accuracy. These metrics are widely used and
accepted by the SER community.

4.2.1. Precision

Precision is a key evaluation metric used to assess the accuracy of correctly detected
actual utterances in a given model. It measures the proportion of correctly predicted
positive instances (i.e., true positives) out of all instances predicted as positive, taking into
account both true positives (TP) and false positives (FP). The precision metric is calculated
using Equation (6).

Precision =
TP

(TP + FP)
, (6)

where TP represents the true positives, which are the instances correctly identified as
positive by the model, and FP represents the false positives, which are the instances
incorrectly classified as positive by the model. Precision provides insights into the model’s
ability to avoid false positives, indicating how reliable and accurate the positive predictions
are. A higher precision score indicates a lower rate of false positives, suggesting that the
model is more precise and selective in identifying actual positive instances.

4.2.2. Recall

Recall is an important evaluation metric that measures the ability of a proposed model
to accurately detect positive instances. It provides insight into the number of positive
instances that are correctly identified by the model. Recall is calculated using Equation (7).

Recall =
TP

(TP + FN)
, (7)
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where TP represents the true positives, which are the positive instances correctly identified
by the model, and FN represents the false negatives, which are the positive instances
incorrectly classified as negative by the model. By calculating recall, we can assess the
model’s ability to capture all positive instances in the dataset. A higher recall score indicates
a greater ability of the model to accurately detect positive instances, suggesting a more
comprehensive coverage of the positive class by the model’s predictions.

4.2.3. Accuracy

The accuracy with which a sound class may be determined from a whole speech signal
is a crucial assessment measure. It reveals how often and how quickly certain categories of
speech sounds are recognized and labeled across the whole signal. This includes phonemes,
words, and even emotions. A higher accuracy score suggests that the speech recognition or
classification system is able to capture and discriminate among different classes of sounds
with greater precision and reliability. For applications such as voice recognition, speaker
identification, and emotion detection, knowing how well a model or algorithm predicts the
proper sound classes in a spoken signal is crucial. Accuracy is calculated using Equation (8).

Accuracy =
TP + TN

(TP + TN + FP + FN)
. (8)

4.3. Implementation Environment

The methodology advocated in this investigation was materialized using distinctive
hardware and software configurations, the particulars of which are delineated in Table 1.
This tabulation offers an exhaustive synopsis of the components that were marshalled to
execute the proposed strategy. This clear inventory of resources used provides transparency
into the computational backbone of our methodology, ensuring replicability and further
research. Using the specified hardware and software, we successfully conducted the study
and obtained the desired outcomes.

Table 1. Implementation specifications.

Model Implementation

RAM 128 GB

GPU GeForce RTX 3090 Ti, 24 GB GDDR6X, 384-bit

CPU AMD EPYC 7543 32-Core Processor

Memory SSD 1024 GB

OS Linux Ubuntu

Programming environment Python, Pytorch

Our system was trained and tested for 100 epochs and 32 batch sizes using RTX 3090
Ti 24 GB and AMD EPYC 7543 32-Core Processor with Linux Ubuntu and 128 GB RAM.
The Adam optimizer, with a learning rate of 0.001 and a learning rate decay with a factor of
10 every 20 epochs, was used for hyperparameter tuning.

4.4. Results

In order to articulate the extent of the proposed methodology’s superiority over
the competitor models, we juxtaposed it against some benchmarks. The outcomes of
our prognostications are depicted in Table 2. The chosen models, along with the one
propounded in this study, are all competent schemas for SER assignments. Nevertheless,
our system excelled beyond the selected models in executing SER tasks, particularly when
amalgamated with semantic data. This achievement underscores the advanced capabilities
of our model, demonstrating its potential to outstrip existing methods in the realm of
speech emotion recognition.
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1. The authors of [40] proposed a unique SER model in response to the shortcomings
of prior SER approaches, such as accuracy deficiencies in intricate situations and
ineffective learning of features from compound acoustic signals. This model adopts a
data augmentation strategy before feature extraction, and the resulting 273 features
are then supplied to a transformer model, thereby significantly improving emotion
detection capabilities.

2. The authors of [41] proposed a methodology for SER that leverages MFCC and a one-
dimensional convolutional neural network with the aim of diminishing computational
complexity. The approach involves the use of various acoustic properties to present
collaborative low-order and high-order features and the development of a lightweight
one-dimensional deep convolutional neural network to streamline the deep learning
frameworks for SER.

3. In [42], a new hybrid architecture was introduced to enhance the accuracy of speech
emotion recognition. The proposed method involves extracting acoustic features such
as RMS, MFCC, and zero-crossing rate, as well as obtaining deep features from spec-
trogram images using a pretrained ResNet101 network. These features are combined
to create a hybrid feature vector, which is then refined using the ReliefF algorithm
for efficient feature selection. Finally, the support vector machine is employed for
accurate classification.

4. The authors of [43] suggested a proposal that involves utilizing a bagged ensemble
consisting of support vector machines with a Gaussian kernel, which incorporates a
combination of spectral features that are processed, reduced, and proven to deliver
superior performance compared to individual estimators, thereby offering a suitable
solution for the given problem.

Table 2 compares the accuracy percentages of different SER models when applied to
the RAVDESS and EMO-DB datasets. The proposed model showcased superior perfor-
mance compared to the others, achieving the highest accuracy on both datasets: 94.8%
on the RAVDESS dataset and 94.0% on the EMO-DB dataset. On the other hand, the M-
DCNN [42] model demonstrated relatively high performance with 94.18% accuracy on the
RAVDESS dataset and 93.31% accuracy on the EMO-DB dataset. The primary advantage of
our proposed system lies in its ability to comprehend the full semantic meaning of speech.
Unlike the M-DCNN, which solely focuses on acoustic characteristics, our approach lever-
ages the power of Speech2Vec to capture both acoustic and semantic characteristics of
speech, resulting in a more comprehensive understanding of speech signals. The models
by Bilal et al. [42] and Bhavan et al. [43] had a lower performance on the RAVDESS dataset
with 79.41% and 75.69% accuracy, respectively, but they managed to reach 90.21% and
92.45% accuracy on the EMO-DB dataset.

Table 2. Comparison of model performances.

Models
Accuracy (%)

RAVDESS EMO-DB

Tran [40] - 93.0
M-DCNN [41] 94.18 93.31
Bilal et al. [42] 79.41 90.21

Bhavan et al. [43] 75.69 92.45
The proposed 94.8 94.0

Moreover, Figures 7 and 8 provide a detailed breakdown of the precision, recall, and F1-
score for different emotions as identified by the model when applied to the RAVDESS and
EMO-DB datasets. Each metric represents a different aspect of the model’s performance.
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Figure 7. The performance of the proposed model on the RAVDESS dataset.
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The assessment was further carried out utilizing a confusion matrix, as depicted
in Figure 9. This analytical tool provided visual representation and further elucidation
of the model’s performance. It showcased that the model achieved an accuracy that
transcended the threshold of 91% on the RAVDESS and 88% on the EMO-DB datasets for
every distinct emotional category. This result points to a fairly elevated degree of precision
in the classification tasks, denoting the model’s robust and reliable capacity for emotion
categorization.
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4.5. Discussion and Limitations

This methodological integration provided a more holistic approach toward under-
standing and interpreting speech emotions, demonstrating considerable promise and
superior accuracy compared to existing models. However, a comprehensive discussion
of the research necessitates acknowledgement of potential limitations and the scope
of generalizability.

One limitation pertains to the incorporation of MFCCs and Speech2Vec for semantic
feature extraction. MFCCs, while computationally efficient, primarily focus on acoustic
characteristics, potentially missing some of the subtler emotional nuances found in prosody
or speech intonation. On the other hand, Speech2Vec’s performance hinges on the quality
and diversity of the training data. The model’s capacity to accurately capture the semantic
properties of speech could be compromised in situations where the training data are not
representative of the application context, or in scenarios involving multiple languages or
distinct dialects. Thus, the robustness of the semantic feature extraction remains a subject
for future investigation.

Regarding the LSTM-based deep learning architecture, while it excels in producing
fixed-length embeddings and handling temporal dependencies, these advantages come
at the cost of computational intensity. This might limit its applicability in real-time appli-
cations or in contexts with constrained computational resources. Additionally, like other
deep learning models, the LSTM’s inherent “black box” nature presents an interpretability
challenge. Understanding the model’s inner workings and decision-making processes can
be complex, which might impede full comprehension of its performance and the potential
for further refinement.

In terms of generalizability, it is crucial to exercise caution when extrapolating our
results. The superior performance demonstrated by our model might be tied to the specific
characteristics of our dataset, including the language, the quality and diversity of emotional
states, and the number of speakers. To fully determine the robustness and universality of
our model, it is imperative to test it on various independent datasets, across languages, and
in different contextual scenarios.

Moreover, established benchmark datasets can exhibit various biases such as speech
recognition [44], geographical and demographic [45], and temporal [46]. These biases can
inadvertently influence the performance and generalizability of emotion classification or
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quantification models. These biases could limit the model’s ability to accurately and fairly
recognize or quantify emotions “in the wild”, i.e., in diverse, real-world scenarios beyond
the conditions represented in the training data. In our work, while we did not explicitly
control for these biases in the dataset, we acknowledge their potential existence and the
limitations they might impose on the generalizability of our results. Going forward, we
aim to address these limitations by incorporating more diverse data in terms of geography,
demographics, and time, thereby improving the robustness and applicability of our model
in real-world, diverse settings.

Lastly, the incorporation of spectrograms for detecting emotional changes over
time adds another layer of complexity to the model. While it contributes to a more
comprehensive understanding of emotional fluctuations, the feature extraction process
and interpretation of spectrograms can be challenging. Additionally, the temporal
resolution of spectrograms may have an impact on the model’s performance, warranting
further investigation.

Despite these limitations, our study marks a significant stride toward a more robust
and semantically aware SER model. Future work should continue to address these issues,
seeking more effective solutions for semantic feature extraction, improving model inter-
pretability, and validating our findings across diverse real-world conditions. Through
continual refinement, we aspire to develop a SER model that is not only academically
innovative but also practically beneficial for a broad range of applications.

5. Conclusions and Future Scope

To create an effective SER model, it is necessary to tackle the difficult tasks of creating
a suitable algorithm to obtain important speech characteristics that enhance the model
performance and overcoming the challenges associated with obtaining and interpreting
speech features to identify emotions, which are the primary obstacles to the development
of an SER model. The difficulties in addressing these tasks have been alleviated to some
extent by the progress made in contemporary deep-learning algorithms. Thus, this study
demonstrated the efficacy of a novel approach to speech emotion recognition that leverages
innovative techniques for feature extraction and a deep learning architecture for classifica-
tion. The results indicate that the combination of fully CNN and MFCC with Speech2Vec
features provides a more robust representation of speech data, leading to superior accuracy
compared with existing baseline models. Furthermore, the use of an LSTM and a fully con-
nected layer enabled the creation of a fixed-length embedding, simplifying the processing
of speech signals and improving the accuracy of SER. These contributions are significant
and have important implications for the future development of more effective speech recog-
nition models. This study also provides several promising directions for future research.
For instance, it proposes the integration of utterance-level features with the proposed
system to improve its accuracy. Additionally, the integration of SER into a recommender
system [47,48] is another promising avenue for further exploration because it can enhance
the personalization and contextualization of recommendations. This integration can be
achieved by leveraging SER to analyze the emotions and moods of users, which can then be
used to tailor recommendations to their current emotional states. Furthermore, exploring
the use of visual modalities in conjunction with audio data can also be an exciting area for
future research, as visual cues, such as facial expressions and body language, can convey
valuable emotional information. Overall, these research areas offer significant potential for
advancing the field of SER and enhancing its practical applications.
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