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Abstract: Nowadays, the challenges related to technological and environmental development are
becoming increasingly complex. Among the environmentally significant issues, wildfires pose a
serious threat to the global ecosystem. The damages inflicted upon forests are manifold, leading
not only to the destruction of terrestrial ecosystems but also to climate changes. Consequently,
reducing their impact on both people and nature requires the adoption of effective approaches for
prevention, early warning, and well-coordinated interventions. This document presents an analysis
of the evolution of various technologies used in the detection, monitoring, and prevention of forest
fires from past years to the present. It highlights the strengths, limitations, and future developments
in this field. Forest fires have emerged as a critical environmental concern due to their devastating
effects on ecosystems and the potential repercussions on the climate. Understanding the evolution of
technology in addressing this issue is essential to formulate more effective strategies for mitigating
and preventing wildfires.

Keywords: fire detection; terrestrial; aerial; satellite; artificial intelligence; deep learning; UAV;
sensors

1. Introduction

The destruction of the world’s forests is accelerating precipitously, both due to inten-
sive cultivation and fires. Compared to the beginning of the century, the forest area has
halved. Other factors include rising temperatures and drought, in turn fueled by climate
change. In 2021 alone, 9 million hectares were lost, an area the size of Portugal (Europe).
Of these, 7.8 million were lost by Russia, Canada and the United States. In Italy (Europe-
Mediterranean area), 723,924 hectares went up in smoke in the previous 14 years, while in
2021 alone as many as 159,437 forested hectares were devastated by flames, a borderline
condition for a world that year after year is increasingly intensively exploited [1].

Forest fires represent a grave and multifaceted threat to forests and land ecosystems,
necessitating immediate attention and proactive measures. These fires have substantial
ecological, economic, and social ramifications, resulting in extensive damage to forested
areas and beyond.

The causes of forest fires encompass both natural and human-induced factors. Nat-
ural causes include lightning strikes, volcanic activity, and spontaneous combustion.
Human-induced causes involve uncontrolled agricultural practices, land-use changes,
arson, and negligence. Additionally, climate change contributes to the escalation of fire
conditions, intensifying the occurrence and severity of wildfires [2].

Ecologically, forest fires have profound consequences. They result in the loss of biodi-
versity by destroying habitats and endangering plant and animal species. Soil degradation
is another significant impact, leading to erosion, nutrient loss, and reduced fertility. Fur-
thermore, forest fires disrupt crucial ecological processes, such as nutrient cycling, and alter
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patterns of succession and regeneration. These fires also increase the vulnerability of
ecosystems to invasive species [3].

The impacts of forest fires extend to land ecosystems. Deforestation and habitat loss
are irreparable damages caused by fires, with severe implications for ecosystem integrity.
Forest fires release substantial amounts of carbon emissions, exacerbating climate change
and global warming [4]. Water resources and hydrological cycles are also affected, leading
to water quality issues, reduced availability, and disruptions to watershed functions. So-
cioeconomically, forest fires result in the loss of livelihoods, displacement of communities,
and significant economic burdens on affected regions.

To address this threat effectively, comprehensive fire management strategies are es-
sential. Early detection and rapid response systems play a crucial role in monitoring and
surveillance, enabling timely action. Fire prevention measures [5], including controlled
burns, fuel management, and public awareness campaigns, are crucial for reducing fire
risks. Fire suppression techniques involve the deployment of firefighting resources and
infrastructure to contain and extinguish fires. Active community involvement and capacity
building enhance fire-safe practices and community resilience. International cooperation
and knowledge sharing facilitate collaborative approaches to fire management, leveraging
shared expertise and resources.

The theoretical background of wildfire detection and monitoring involves multiple
scientific disciplines and principles. Key elements include fire behavior and spread, remote
sensing, data analysis, and modeling.

Understanding fire behavior and spread is crucial for effective detection and monitor-
ing. This involves studying the physical properties of fire, such as heat transfer, combustion
processes, and fire dynamics. By comprehending how fires ignite, spread, and interact
with the environment, scientists and practitioners can develop more accurate detection and
monitoring strategies.

Remote sensing plays a significant role in wildfire detection and monitoring. It
involves the use of satellite imagery, aerial photography, and other sensor technologies
to capture data about fire occurrences, smoke plumes, and burned areas. Remote sensing
enables the identification and tracking of wildfires over large geographic areas, providing
valuable information for decision-making and resource allocation.

Data analysis is a vital component of wildfire detection and monitoring. It involves
processing and interpreting data collected from various sources, such as satellite imagery,
weather stations, and ground-based sensors [6]. Data analysis techniques, including image
processing, statistical analysis, and machine learning, help identify fire signatures, detect
anomalies, and provide timely information for fire management.

Modeling is another crucial aspect of wildfire detection and monitoring. Mathematical
and computational models [7] are used to simulate fire behavior, predict fire spread,
and assess the potential impacts of wildfires. These models incorporate factors such as
weather conditions, fuel characteristics, and terrain to generate predictions and inform
decision-making.

The theoretical background of wildfire detection and monitoring encompasses an
understanding of fire behavior, the utilization of remote sensing technologies, data analysis
techniques, and the development of models to predict and monitor wildfires. By integrating
these theoretical foundations, researchers and practitioners can enhance the effectiveness
of wildfire detection and monitoring systems, leading to more efficient fire management
and mitigation efforts.

By integrating advanced ICT systems seamlessly into an environment, to the extent
that these highly technological systems become an intrinsic part of it, we can enhance the
environment with additional features. These features primarily include self-monitoring
and self-protection capabilities, granting the environment a basic level of intelligence. This
intelligence allows the environment to operate not only reactively but also proactively,
prioritizing its self-protection. Consequently, the environment evolves into an intelligent
environment or, more precisely, an intelligent self-monitoring, self-protecting, and self-
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aware environment. It responds to changes promptly and alerts the responsible humans
in real time, enabling them to take appropriate actions to prevent further degradation.
In [8], Stipanicev, D. et al. provide an overview of the architecture of such an intelligent
environment, which is based on an advanced sensor network known as the observer
network. Furthermore, it delves into the system architecture of a forest fire monitoring
system as an illustrative example. The discussed approach is based on ideas of formal
observer introduced in 1987 by Bennet et al. in [9]. They introduced an approach to a study
of perception that attempted to be both rigorous and general. The mathematical model has
been applied in several scenarios as a part of forest fire detection systems and intelligent
forest fire monitoring systems.

However, several challenges must be addressed. Climate change implications and
the resultant escalation of fire risks necessitate adaptive strategies. Balancing conservation
goals with socioeconomic needs requires careful consideration and integrated approaches.
Incorporating traditional ecological knowledge and indigenous fire management practices
can provide valuable insights and contribute to more effective strategies. Advancements
in technology, such as early warning systems and innovative fire suppression techniques,
offer promising avenues for improvement. Strengthening international cooperation and
information exchange is vital to address the global nature of this threat.

Moreover, the significant threat of forest fires to forests and land ecosystems demands
immediate action. By implementing proactive measures, including sustainable forest
management practices, effective fire prevention strategies, and robust policies, we can
mitigate the devastating impacts of forest fires. The urgency for global collaboration
and concerted efforts cannot be overstated to safeguard our precious forests and land
ecosystems from this pervasive threat.

Therefore, prevention plays a crucial role in minimizing the occurrence and severity
of wildfires, offering a proactive and sustainable approach. It not only saves lives, re-
sources, and ecosystems but also safeguards the well-being and livelihoods of fire-prone
communities. Fuel management for the prevention of wildfires in Southern Europe is
often economically unsustainable. Ascoli et al. [5] examines fuel management initiatives in
Southern EU countries and proposes sustainable solutions. Innovative initiatives involve
both public and private resources to enhance the value of fuel management products and
services. Sousa et al. [10] conducted a study on wildfire propagation in Portugal, analyzing
various factors such as vegetation, climate, topography, and human influence. They utilized
spatial cluster analysis to identify homogeneous regions and employed regression models
to understand the contribution of different elements in extensive fire spread. The study
revealed spatial variability in the impact of structural factors on fire propagation. A study
by Granville et al. [11] analyzed fire growth distributions in Ontario’s Crown forest areas
from 1976 to 2019. Industrial forestry operations in Ontario, Canada are limited to reduce
the risk of wildfires through the Modified Industrial Operations Protocol (MIOP). They
found iterative improvements in fire growth response over time, indicating the effective-
ness of MIOP in reducing negative impacts. MIOP allows for operational flexibility while
promoting safe practices in industrial forestry operations, with the aim of minimizing the
negative impact of fires caused by industrial activities. Athanasiou et al. [12] describe the
initial phase of a two-year pilot project on prescribed burning (PB) in Greece. The objective
is to reintroduce controlled fire as a reliable and effective tool for wildfire prevention.
The project involves planned field experiments to gather knowledge on fire behavior, and
its impact on soil, trees, and plant biodiversity. These experimental fires also provide
training opportunities for firefighters, land managers, and researchers. Other interesting
topics such as examining fire use, fire permits, and safe burning practices are covered in
the study by McGee et al. [13], in particular among rural residents in the Edson forest area
of Alberta, Canada. The related survey revealed that while most respondents used fire on
their properties and were aware of the local fire risk, there was limited recognition of the
contribution of agricultural fire use to wildfires.
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Additional works have dealt with similar issues located in different parts of the world,
such as Australia, New Zealand, and Africa [14]. In [15], the authors show a mathematical
treatment of backing fire, while in [16] an operational methodology for directing and
influencing the natural direction of a fire is discussed.

Forest fire monitoring, detection, and prevention utilize a range of methodologies,
systems, and sensors to enhance early detection, response, and management of wildfires.
Remote sensing techniques, such as satellites and aerial platforms, provide real-time data
on fire hotspots, smoke plumes, and burned areas. Geographic Information Systems
(GIS) integrate spatial data for risk mapping and resource allocation. Weather monitoring
systems and prediction models aid in fire weather forecasts and early warning systems.
Fire detection systems, including ground-based and satellite-based sensors, identify heat
signatures, smoke, and flames for prompt response. Sensor networks continuously monitor
environmental conditions, while machine learning and artificial intelligence analyze data
for fire detection algorithms. Controlled burning and fuel management practices mitigate
fire risk. Community engagement and public awareness programs promote fire-safe
practices and early reporting of fire hazards. By implementing these approaches, forest fire
monitoring, detection, and prevention efforts can be more effective, reducing the impact of
wildfires on ecosystems and communities.

This paper aims to go into detail about the methodologies and major systems currently
employed supported by a wide range of sensor technology. Image analysis is a widespread
procedure that can employ either static acquisition systems installed on control towers or
images from satellites, as is described in [17] by R. Shanmuga et al. More recent methodolo-
gies involve the use of drones that allow for faster analysis than satellites, and have lower
costs than other technologies being fielded. For example, Zhentian Jiao et al. [18] propose
the use of YOLO neural network that is applied to data read from a drone-mounted depth
camera, which provides in real time images related to a possible forest fire detention.

Scientific research is making numerous strides to try to counter these trends at a
minimum, proposing various alternatives that, from the early 2000s to the present, present
various changes and innovations. In fact, today, attempts are being made, for example,
with the use of advanced tools on image analysis, through the use of artificial intelligence
techniques, applied to the basis of each frame in a video that allow the extraction of each
and every detail that can be traced back to a fire principle. Dongqing Shen et al. explore the
application of the YOLO neural network in this context [19]. Although the references for
these papers are not included in the current bibliography, they provide valuable insights
into the topic.

In addition, Barmpoutis et al. [20] describe how the use of wireless sensors of this type
can be used in conjunction with cameras to ascertain an actual fire presence and identify its
location. Newer communication networks allow intra-node and node-to-gateway commu-
nication, thickening the coverage and reaching even those areas that are difficult to reach
by radio signal.

The analysis explores the strengths and advantages offered by different technologies
employed in fire detection and prevention, such as advanced image analysis, the utiliza-
tion of artificial intelligence techniques, and the integration of sensor networks. These
technological advancements enable the timely detection of fire outbreaks, enhancing early
warning systems and allowing for proactive measures to be taken. However, it is important
to acknowledge the limitations of these technologies, such as the need for continuous
monitoring, potential false alarms, and the challenges associated with their implementation
in diverse geographical contexts.

Furthermore, the document examines the potential future developments in the field of
fire detection and prevention. It explores emerging technologies and approaches that could
further enhance the effectiveness of fire management strategies. The objective is to provide
a comprehensive overview of the current state of technology and inspire further research
and innovation in the field, as shown in Figure 1. By identifying the strengths, limitations,
and future prospects of existing technologies, this analysis contributes to the ongoing efforts
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to develop more efficient and sustainable approaches for mitigating the impact of forest
fires on both the environment and human well-being. The remainder of the document is
structured as follows: Section 2 will discuss wireless sensor networks for fire detection.
Section 3 will cover the use of different video techniques for fire detection. Section 4
addresses the role of machine learning and artificial intelligence in fire detection, analysis,
and prevention. Finally, Section 5 outlines the conclusions and future developments.

Figure 1. An overview of the main techniques for fire monitoring and detection.

2. Wireless Sensor Networks for Fire Detection

Nowadays, there is a growing focus on developing an affordable and real-time method
for early fire detection using wireless sensor networks (WSN). A WSN consists of multiple
nodes, each with several features. The diversity of WSNs lies in their network topology,
communication approaches, sensor types, and data processing techniques. By incorpo-
rating different type of sensors, wireless nodes have the capability to detect a range of
physical parameters including temperature, pressure, and humidity, as well as chemical
parameters such as carbon monoxide, carbon dioxide, and nitrogen dioxide. The adoption
of this approach enables quicker fire detection compared to conventional methods such
as satellite imagery, which involve lengthier acquisition and processing durations. Sensor
networks offer an additional benefit over satellite images, as the latter can face limitations
in accuracy under specific conditions (e.g., cloudy weather), along with extended scanning
intervals and lower resolutions in certain satellites. Enhanced detection capability enables
timely intervention before the fire escalates beyond control. Through the integration of
Wireless Sensor Networks (WSN), Machine Learning (ML), and Artificial Intelligence (AI)
methodologies, it becomes feasible to anticipate potential fire patterns, such as leveraging
sensor data such as wind direction, enabling predictive analysis. Ensuring the energy
autonomy of devices poses a significant challenge for such networks, especially when
strategically situating wireless nodes in forested regions. In addition to contending with
limited energy resources, sensor networks are vulnerable to adverse environmental condi-
tions, demanding meticulous deliberation and effective mitigation strategies. Yu et al. [21]
propose a network of nodes densely distributed within the forest that collect measured
data, such as temperature and relative humidity. They send them to cluster nodes that
process data by building a neural network. The network takes the measured data as input
and produces a “weather index”, which measures the probability of a fire caused by the
weather. In some emergency situations, nodes can detect smoke or abnormal temperature
and then send a certain type of alarm to the node manager. The measured data are relative
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humidity, temperature, smoke, and wind speed. This determines the rate of forest fire
hazard. They propose a network composed of a large number of small and economic nodes,
with the advantage of obtaining information in fast times and precise forecasts. Figure 2a
illustrates a design example of a Wireless Sensor Network (WSN) composed of nodes
equipped with integrated microsensors as adopted by the authors in [22]. These nodes
are distributed throughout the monitoring area. The purpose of this network is to collect
real-time dynamic information such as temperature, humidity, and atmospheric pressure.
The collected data are transmitted to routers within the network, which then create a local
database and send the information over the Internet. Within the WSN, there are two types
of nodes: coordination (COORD) and relegated function (RFD). The ZigBee protocol is
employed for wireless communication, allowing data transmission while also enabling a
dormant state to significantly reduce energy consumption.

It is crucial to note that accurate geolocation plays a vital role in this setup. The au-
thors stress the significance of precise positioning, as it ensures reliable measurements
and facilitates informed decision-making. They propose localization algorithms such as
Received Signal Strength Indicator (RSSI), Time-of-arrival (ToA), Angle of arrival (AoA),
and Time-difference-of-arrival (TDoA) to achieve accurate geolocation. Aslan et al. [23]
present compelling ideas concerning the architecture of wireless sensor networks (WSNs),
including sensor deployment schemes, clustering, and communication protocols. The au-
thors’ primary objective is to detect potential fire threats at the earliest possible stage while
considering the energy consumption of sensor nodes and the impact of environmental
conditions on network reliability. In their article, they develop a noteworthy simulator to
validate and evaluate the proposed network architecture. Through simulations, the authors
successfully demonstrate the achievement of several objectives, namely, energy efficiency,
early detection and accurate localization of fire threats, forecast capability, and adaptability
to harsh environments. Furthermore, the authors offer valuable insights into the organiza-
tion of sensor nodes, emphasizing its influence on system design and performance. They
suggest that careful consideration should be given to factors such as the average distance
between sensor nodes and the distribution model to enable efficient communication among
them. For instance, the choice of layout, such as a square (refer to Figure 3a) versus a hexag-
onal layout, impacts the number of sensor nodes per cluster. The square layout, with fewer
nodes per cluster, effectively manages congestion and enhances system robustness.

(a) (b)

(c) (d)

Figure 2. Different topologies of wireless sensor network architectures. (a) Topology based on dense
distribution of environmental sensors; (b) Topology based on dense distribution of wireless sensors
in addition to wireless cameras; (c) Classifier based on the combination of different inputs; (d) Data
classifier based on sensor values and alert management.

Lloret et al. [24] propose an alternative network design similar to the one depicted in
the Figure 2b, that introduces a novel network topology capable of determining the required
number of devices for covering a specific area. An example of this topology is outlined in
Figure 3b, where the number of sensors is much greater than Access Points (APs). This
design offers the benefit of system scalability. One notable innovation they present is the
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utilization of wireless IP cameras in conjunction with multi-sensor systems, interconnected
through the IEEE 802.11 g standard. By employing this approach, they are able to detect
the presence of fire. Initially, various sensors trigger an alarm, and subsequently, the IP
cameras are activated in the relevant area to verify the occurrence of an actual fire. This
method helps to eliminate false alarms.

Bayo et al. [25] propose a system designed to perform different measurements at
different tree heights, depending on the forest relief. Thanks to this method, they can also
detect underground fires and understand how the fire affects the ground cover, the stems,
and the tops of the trees. With low energy consumption, the prototype node enables the
measurement of internal and external temperature, relative humidity, barometric pressure,
and light intensity. The utilization of algorithms, as demonstrated in [26], presents another
avenue for enhancing WSNs. The authors emphasize the significance of incorporating
intelligent decision-making (IDM) capabilities within the network architecture. By leverag-
ing IDM and predefined sensitivity levels, they successfully activate the required actions
and effectively reduce energy consumption. The WSN collects data for use as raw input
data, which is transmitted into the control system. A Fuzzy Logic algorithm is developed
using parameters such as temperature, smoke, light, humidity and distance. Krüll et al. [27]
introduce a comprehensive approach that integrates various detection systems, considering
factors such as fire risk, area size, and human presence. This approach is accompanied
by a suitable logistics infrastructure, simulation training, and advanced extinguishing
technology. In order to prevent false alarms, a remotely operated unmanned aerial vehicle
(UAV) equipped with gas sensors and a thermal imaging camera is employed to monitor
potential fires. To enhance monitoring effectiveness, various equipment is installed on
the airship, including a microwave radiometer (for detecting hot spots), gas and smoke
sensors, and a thermal imaging camera. Once fire suppression is carried out, the unmanned
airship acts as a firestop, minimizing the risk of fire re-ignition. Cui et al. [28] present
an IoT-based network, depicted in Figure 2d, which employs Deep Learning algorithms
such as Convolution Neural Network (CNN) for forest monitoring and anomaly detection,
yielding favorable outcomes. In the surveillance network, every IoT device establishes
communication through 4G internet connectivity. Various types of sensors serve as moni-
toring devices, measuring variables such as temperature, atmospheric pressure, humidity,
and the presence of pollutants such as CO and CO2. One specific approach, outlined in [29],
involves the utilization of animals equipped with sensors known as mobile biological
sensors (MBS). These sensors, including thermal and radiation sensors with GPS function-
ality, are attached to the animals. They transmit the MBS’s location, enabling a central
computer system to classify the animals’ behavior. The system, depicted in Figure 2c,
facilitates the detection of sudden group movements (panic) among the animals through an
animal behavior classification method (ABC). Additionally, it allows for the identification
of instantaneous temperature changes (thermal detection-TD).

Sahin et al. [30] proposes a study related to the use of a radio acoustic noise system
for creating heat maps of forest areas with potential fire risk. The main property of Radio-
Acoustic Sounding System (RASS) is linked to the great sensitivity to temperature variations
and the possibility of remotely managing the variations in air temperature better than any
other surveying instrument in research. In addition, it is capable of continuously tracking
intervals at simultaneous multiples with spatial and temporal resolution more precisely,
more efficiently, and more cost-effectivelythan any other solution proposed by a network
of static sensors. Volumetric Acoustic Scanner (VAS) is a tool that allows to detect an object
by acquiring sound waves. In the case of wildfires, Domingos X. Vegas et al. [31] analyze a
system that allows to detect the noise emitted by the fire, analyzed in a frequency range
between 200 and 500 Hz. In order to be able to detect and locate the fire, it uses multiple
microphones, which through the beamforming process are able to output the location of
the source through the sum of the various signals picked up by the series of microphones
used in testing. These signals, to ascertain the effective holding of a fire, are processed by a
neural network so as to have higher accuracy.
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(a) (b)

Figure 3. Layout for the distribution of sensor nodes. (a) Typical square layout with 4 sensor nodes
per cluster; (b) Sensor distribution for coverage area.

Among other remote sensing techniques, that of Light Detection and Ranging (LiDAR)
is a possible solution to be able to build a map for the analysis of the wooded area of
interest, with a focus on tree volume estimation, habitat characterization, and forest fire
estimation. In particular, LiDAR through a laser pulse can determine the distance to an
object or surface. Therefore, it can be used to create possible fire scenarios from a map of
the wooded area of interest. Marta Fernandez-Alvarez et al. [32] propose a methodology
based on UAV LiDAR to characterize forest fuels in a wildland–urban interface (WUI). This
kind of work in any case can be extended to forests as well.

A further alternative could be a network of sensors connected to the optical fiber.
The fiber optic sensor network (FOSN) is an improvement over traditional sensor networks
in that it can be used exactly like a traditional sensor network, but with the advantages asso-
ciated with fiber optics: little electromagnetic interference, and greater efficiency in terms of
signal propagation. Wide bandwidths and low transmission losses are equally crucial, as is
the coverage of a large geographical area and the great difficulty in intercepting data during
transmission versus radio propagation in metallic cables. The fiber interconnections allow
the insertion of the sensors inside the structures to be monitored, without power supply
local outside the terminal nodes, reducing the risk of sparks in flammable environments.
Montserrat Fernandez-Vallejo et al. [33] analyze the advantages and disadvantages of using
these networks of sensors, also providing some examples of use over large distances.

3. Video-Based Fire Detection: Enhancing Fire Detection Systems with Visual Analysis

The detection of fires in videos using both the visible and (IR) spectrum is a powerful
approach that enhances the capabilities of fire detection systems. By analyzing video
footage captured in both spectra, advanced computer vision algorithms can effectively
identify and alert authorities to the presence of fires in real-time. Video-based fire detection
using the visible and IR spectrum leverages the distinct characteristics of flames, smoke,
and heat emitted by fires. The visible spectrum captures the visual cues of flames and
smoke, while the IR spectrum detects the thermal signatures and temperature anomalies
associated with fire events.

3.1. Video Fire Detection in the Visible Spectrum

Extensive research has been conducted over the years on the detection of fire and smoke
from video footage within the visual spectral range. A significant contribution to this field was
made by Healey et al. [34], who were among the early pioneers to introduce an automated
system for real-time fire detection using color video input. Their approach utilized the spectral,
spatial, and temporal properties of fire to achieve accurate results. The algorithm developed
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by Healey et al. can be divided into four main components. Initially, the algorithm divides the
image into a grid structure for efficient analysis. It then identifies the rectangles within the
grid that have the potential to represent fires. Subsequently, the algorithm labels the connected
fire components and finally interprets the labeled components. Based on the interpretation,
a fire alarm is triggered if necessary. In [35], Borges et al. propose a method adaptable not
only to fire disaster detection, but also to the retrieval of fire-related information from news
content. Their approach involves analyzing frame-by-frame changes in specific features within
potential fire regions. The proposed method aims to identify and extract relevant fire-related
information from newscasts. By analyzing consecutive frames, the algorithm focuses on
observing and measuring changes in predetermined features within potential fire regions.
This analysis helps identify and track fire-related regions or events represented in news content.
Similar approaches were presented a few years later with important improvements. In 2003,
Chen et al. [36] introduced a fire detection method that employed video processing and
utilized the RGB color model. Their approach involved extracting fire-pixels and analyzing
various dynamic features associated with fire from visual images. Based on the saturation
of the red component (R), the system determined the presence of fire. Additionally, a fire
alarm was triggered depending on the number of fire-pixels and the satisfaction of a specified
threshold. Furthermore, Chen et al. [37] extended their research to detect smoke in a separate
work. They examined clutter within visual images to extract both fire and smoke pixels.
By leveraging the RGB color model, they identified specific fire features such as color, area
size, surface characteristics, boundary roughness, and asymmetry of the fire region. In a
related study, Borges et al. [38] also employed the RGB color model to extract fire features.
These features included color properties, area size, surface characteristics, and boundaries
roughness. Additionally, the asymmetry of the fire region was taken into account. By utilizing
these features, Borges et al. aimed to develop a probabilistic framework for fire detection. The
works by Chen et al. and Borges et al. demonstrate the utilization of the RGB color model
and video processing techniques for fire detection. By analyzing various visual features and
employing decision-making mechanisms, these methods offer potential solutions for early
fire detection and the identification of smoke. Such advancements contribute to enhancing
fire safety measures and prompt response strategies in critical situations. Marbach et al. [39]
conducted research on fire detection using a technique based on the temporal intensity
variation of the fire. They employed the “YUV” representation of the video, diverging from
previous studies that utilized the RGB model. The system they developed extracted various
fire features, such as luminance of fire pixels, the count of active pixels, and the number of
saturated pixels, from a designated fire region. This region was identified through a temporal
accumulation of time derivative images.

In addition, Töreyin et al. [40] presented an approach based on YUV color space, while
in [41], Rossi et al. employed both the RGB and YUV color spaces in their fire detection
approach. By utilizing both color spaces, they aimed to discriminate fire elements that
are located far from the identified fire region in large areas and they applied K-means
clustering technique specifically to “V” channel in order to identify the most interesting
areas corresponding to fire, as fire tends to exhibit distinct characteristics in this color
axis. Similarly, Rudz et al. [42] and Celik et al. [43] adopted the “YCbCr” color space in
their work, which presented a fire detection method applicable to a generic color mode.
Fire-pixels were categorized based on their chrominance, made possible by utilizing YCbCr.
Unlike RGB, YCbCr allows for the separation of luminance and chrominance, as depicted
in Figure 1 and Figure 3 shown in [43], thereby enabling effective classification of fire
pixels. Instead, Celik et al. [44] also proposed an algorithm that can be used in parallel
with other fire detection systems or as a stand-alone system, using a new color model in
CIE L*a*b* color space to identify fire pixels. Specifically, the “a” color channel represents
colors ranging from red to green, with positive and negative values indicating red and
green, respectively. Yuan et al. [45] employed the “Lab” color mode, focusing on the use
of the “a“ channel within this color model to extract chromatic fire features. The authors
found that leveraging “a” channel yielded highly effective results for fire segmentation,
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making it a suitable choice for their study. In [46], a segmentation problem is faced and
computer vision-based fire detection algorithms are presented, where both Lab and YCbCr
color spaces are adopted, along with K-means clustering algorithms. Other color spaces
have been used in fire detection: HSV/HSL color space (Hue, Saturation, Value also known
as Hue, Saturation, Brigthness HSB, and Hue, Saturation, Lightness, respectively) has been
presented in techniques for fire detection such as in [47–50], and in [51] used alongside
with RGB color model. In their work, Chmelar et al. [52] presented an approach using
both RGB and HSV color model, eventually illustrating why the HSV model was more
suitable for their method. CIE L*u*v* color space has been adopted by Pritam et al. [53]
in 2017, with various thresholds used to differentiate fire in any fire frame. HSI (Hue,
Saturation, Intensity) is instead adopted by Horng et al. [54], where fire flames features are
extracted by 70 flame images, and in [37] by Chen et al. with RGB color space. Starting
from RGB color model, Khatami et al. [55] in 2015 presented a new color space, specifically
designed for fire-involving application: Fire-based Color Space (FCS) has been obtained
with a computational search method based on K-medoids clustering. Their approach uses
a conversion from RGB color system to FCS color system through a 3 × 3 matrix.

Töreyin and Dedeoĝlu and their research group introduced an alternative approach
that relies on wavelet analysis of videos instead of utilizing color models, as documented
in several works [56–60]. In their initial work [56], they combined traditional motion
and color analysis with wavelet domain analysis. Specifically, they employed spatial and
temporal wavelet transforms to detect flame and fire flickers, which represent irregular
features within the fire region. Subsequently, all gathered information was utilized to
make informed decisions. The same methodology was applied in [57] for videos captured
by ordinary cameras and in [58] for infrared videos. In both [59,61], a weak classifier is
introduced that utilizes both temporal and spatial information of flames. Additionally,
these works incorporate the use of Hidden Markov Models (HMM) to represent flames
and other moving objects that share the same color as fire. Similarly, Teng et al. [62] also
employed HMMs for fire pixel detection, encompassing the detection of moving pixels,
fire-color inspection, and pixel clustering. Results for each step of Teng et al. [62] proposed
method show input video sequences, the results after being processed by moving pixels
detection, and the results of fire-color detection. Another feature is the clustering results,
whereas the last row is the final results after using HMM application. An innovative
method has been introduced in [63] for fire detection in videos, employing Least Mean
Square (LMS)-Based Active Learning. This approach is used alongside the conventional
techniques such as Hidden Markov Models (HMM), background subtraction, wavelet
domain analysis, and moving object detection. What sets it apart is the fusion of decisions
made at each stage of the algorithm using an adaptive algorithm that updates weights
through the least mean square method during the training stage. Ko et al. introduced an
additional classifier in conjunction with wavelet domain analysis, as described in [64]. Their
approach encompasses fire region detection, analysis of the luminance map within the fire
region to eliminate non-fire pixels, and the creation of a temporal fire model using wavelet
coefficients. This model is then applied to a two-class Support Vector Machines (SVM)
classifier. Ultimately, the SVM classifier serves the purpose of verifying the identified fire
pixels. Likewise, Habiboglu et al. [65] and Dimitropoulos et al. [66] utilize the SVM classifier
to train their algorithm, which is based on the fire spatio-temporal covariance matrix. On the
other hand, Dimitropoulos et al. employ the SVM classifier for the classification of the
fire region.

In 2018, Wu et al. [67] introduced a fire smoke detection system that relies on the
Robust AdaBoost (RAB) classifier. Their goal was to enhance training and classification
accuracy within the system. Background subtraction is a widely employed technique for
video fire detection. Xu et al. utilized this method in conjunction with the median filter
algorithm to perform moving target detection in grayscale images [60]. Verstock et al.
also employed background subtraction, specifically for infrared images [68]. Similarly,
Dimitropoulos et al. used background subtraction to define fire regions in their work [66].
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In 1996, Foo introduced a video fire detection system for aircraft that relied on statistical
features such as median, standard deviation, and first-order momentum obtained through
histogram analysis. Additionally, the system utilized image subtraction of two consecutive
frames to extract relevant features [69]. Following this pioneering work, other studies began
adopting a statistical approach for their proposed fire detection systems. Phillips et al. [70]
were the first to present a solution specifically designed for non-stationary cameras. Their
method involved using a Gaussian-smoothed color histogram to detect fire-color pixels.
Building upon this statistical framework, Yuan et al. [45] implemented a fire detection and
tracking algorithm based on median filtering. Similarly, for infrared images, a comparable
approach utilizing median filtering has been employed [68,71].

Neural networks have found extensive application in video fire detection. Xu et al.
were among the pioneers in utilizing neural networks, specifically Back Propagation artifi-
cial neural networks, as described in their work [60]. Bayesian networks have also been
employed in the context of video fire detection in studies conducted by Borges et al. [38]
and Ko et al. [72]. Muhammad et al. explored the use of computationally efficient Con-
volutional Neural Networks (CNNs) for video surveillance applications in both 2018 and
2019 [73,74]. They harnessed the power of CNNs to achieve efficient video fire detection.
Kim et al. adopted a combination of Region-based CNN (R-CNN) and Long-Short Term
Memory (LSTM) in their work [75]. This approach allowed them to determine the presence
or absence of fire within short time intervals. In their research, Kolesov et al. [76] propose an
innovative method for fire and smoke detection by utilizing Optimal Mass Transport (OMT)
optical flow. They approach the detection process as a supervised Bayesian classification
problem, incorporating spatio-temporal neighborhoods of pixels. The feature vectors used
in this classification consist of OMT velocities, along with the R, G, and B color channels.
Smoke detection is an equally crucial aspect alongside fire detection, warranting a brief
overview. In the study conducted by Yuan et al. [77], the primary objective was to reduce
false positives, and their approach revolved around an accumulative motion model that
utilized integral images. The process involved integrating the images, estimating motion
orientation and acceleration using velocity vectors, and finally utilizing motion accumula-
tion to estimate smoke orientation as shown in Figure 7 of [77]. Chen et al. also contributed
to the field of smoke detection with their works [37,78]. Their smoke detection system
employed two decision criteria for smoke-pixel determination based on chromaticity and
the diffusion characteristics of smoke. Smoke detection is also accomplished by modeling
the smoke using a Mixture of Gaussians (MoG) technique [79], which analyzes the energy
variation in the wavelet domain. By employing this approach, the system considers the
changes in image energy caused by external factors such as changes in luminance or the
presence of smoke. Table 1 summarizes the different features analyzed by the studies
examined for smoke detection.

3.2. Video Fire Detection in the Infrared Spectrum

IR (infra-red) cameras have the unique capability of capturing the thermal radiation
emitted by objects or groups of objects in the surrounding environment. This characteristic
makes them equally valuable and effective during both daytime and nighttime scenarios,
as they can detect and identify thermal sources of specific significance. This capability
enables the capture of data across a wide range of resolutions, accommodating various fire
detection scenarios. In their research, Chi Yuan et al. [71] propose employing IR cameras
mounted on Unmanned Aerial Vehicles (UAVs) as shown in Figure 4.
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Table 1. Comparison table of different adopted techniques for video-based fire and smoke detection.

Paper Color
Space

Real-
Time

Spectral
Analysis

Moving
Object

Classifier/
HMM Wavelet NN Statistical

Analysis Smoke

[34] RGB X X
[37] RGB/HSI X X X
[38] RGB X X
[39] YUV X
[40] YUV X X
[41] YUV X X X
[42] YCbCr X X X
[43] YCbCr/RGB X
[44] Lab X X X X
[45] Lab X
[46] Lab/YCbCr X X X
[47] HSV X X
[48] HSV X X X
[49] HSV/HSL X
[50] HSV X X HMM
[51] RGB/HSV X X X
[52] RGB/HSV X X
[53] Luv X X X X
[54] HSI X X X
[55] FCS X X
[56] X X
[57] RGB X X X

[59] X X
weak

classifier,
HMM

X

[60] greyscale X X X X X
[62] X X HMM X
[64] X SVM X
[65] X SVM X
[66] RGB SVM X
[67] X RAB X X
[69] X
[70] RGB X X X
[72] RGB X X X X

[73,74] X X X X
[75] X
[77] RGB X X X X X
[78] X X X

This approach allows for the differentiation of fire zones, characterized by a greater
concentration of bright pixels, from moving objects (which also exhibit a high proportion
of luminous pixels), such as animals. A similar framework can be incorporated into a
satellite-based image analysis system, enabling a comparison of results to confirm the
presence of a forest fire. Meenu Ajith et al. [80] propose an algorithm consisting of two
phases: extraction and segmentation of the focal area.

In the first phase, various attributes of each pixel within a given sequence of images
are analyzed, including brightness and motion fields. These attributes are extracted to
determine the luminosity and velocity range. In the second phase, known as segmentation,
a cluster of pixels with similar characteristics is outlined, allowing for the classification of
the object as either fire or non-fire. Utilizing IR cameras presents a favorable solution for
fire detection and localization. The technique’s advantages stem from its ability to identify
highly luminous pixels against a dark background, enabling the distinction between fires
and other objects, such as animals, through suitable algorithms. However, there are certain
drawbacks associated with this approach. One primary limitation is the inability to detect
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and classify clouds. Consequently, it becomes challenging to differentiate a cloud with a
dense concentration of smoke, indicating a fire, from a typical hydrometeor.

Figure 4. IR Camera data from UAV.

3.3. Satellite

For several years, the analysis of satellite images has been a widely used method,
providing a comprehensive overview of areas of interest for potential fire detection. It is
important to note that not all satellites are specifically designed for Earth observation and
environmental monitoring.

Satellites can be categorized based on their orbit. One category is GEO (geostationary
orbit), situated at an altitude of 35,786 km and characterized by zero inclination. This
orbit allows the satellite to remain relatively stationary with respect to the Earth’s surface,
providing a constant view of the same area. While GEO satellites offer high temporal
resolution, their spatial resolution is relatively low.

Another category is LEO (Low Earth Orbit), which orbits at an altitude of approxi-
mately 2000 km, and MEO (Medium Earth Orbit), which orbits at altitudes up to 11,000 km.
Compared to GEO satellites, LEO and MEO satellites provide higher temporal resolution
but lower spatial resolution [20]. Due to the significant orbital travel time, GEOs are not
particularly suitable for real-time fire monitoring. However, they can be utilized retrospec-
tively to estimate the extent of burned area, making them valuable for post-fire analysis
rather than fire detection and prevention studies. In the case of sun-synchronous satellites
(i.e., LEO and MEO), extensive research has been conducted on the analysis of the images
they capture. Among the multispectral image sensors used, the focus lies on AVHRR
(Advanced Very-High-Resolution Radiometer). AVHRR offers six channels, including three
thermal infrared channels, with a spatial resolution of 1 km. These images measure Earth’s
reflectance and are commonly used for global cloud cover monitoring. The study by Zhan-
qing et al. [81] examines the significance of cloud density in fire detection. By utilizing a
neural network and analyzing NOAA-14 satellite images, the research distinguishes smoke
resulting from fires from both clouds and the Earth’s surface based on reflectance properties.
This approach sheds light on the evaluation of cloud density for accurate fire detection.

The MODIS (Moderate Resolution Imaging Spectroradiometer) sensor operates across
36 spectral bands, covering wavelengths from 0.4 to 14.4 µm, with varying spatial resolu-
tions. It includes 2 bands at 250 m, 5 bands at 500 m and 29 bands at 1km resolution. This
advanced technology has been extensively utilized in various research studies. One such
study conducted by Wilfrid Schroeder et al. [82] exploits imagery captured by the Landsat-8
satellite, which carries the Operational Land Imager (OLI) and the Infrared Thermal Sensor
(TIRS). The OLI is a push-broom sensor equipped with nine spectral channels, providing
a spatial resolution of 30 m. The research conducted by Schroeder et al. leverages these
satellite images to examine and analyze specific aspects of interest. Figure 1 of [82] shows
the 4500 fire-affected pixels (marked in red). The peak in the radiance distribution coincides
with the nominal saturation radiance (24.3 W/(m2 sr µm)). Pixels exceeding the nominal
saturation are representative of analog high saturation.

The evaluation process relies on an active radiometric signal focusing on a region that
exhibits an unusual change in reflectance compared to the background. Additionally, it
takes into account the concentration of a window of pixels marked as red by the infrared
sensor. This approach enables precise localization of the fire area with a low margin of
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error. In another study, Csizar et al. [83] propose a fire detection method that combines
ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) and MODIS.
By adapting the fire mask proposed by MODIS with ASTER’s broader coverage, the method
achieves improved accuracy in detecting fire areas in Northern Eurasia. This approach
allows for the inclusion of a larger area, where there is a slightly greater concentration of
focus pixels exhibiting anomalous reflectance variations. Following MODIS, VIIRS (Visible
Infrared Imaging Radiometer) was deployed on meteorological satellites such as NOAA-
20. VIIRS offers 22 spectral bands, including 16 moderate-resolution bands (M bands,
750 m), 5 imaging resolution bands (I bands, 375 m), and 1 panchromatic day/night band
(750 m). However, relying solely on satellite image analysis techniques without integrating
ground-based instruments may not be sufficient for real-time fire detection. Despite the
relatively close proximity of sun-synchronous satellites to the Earth, which allows for faster
coverage of the planet’s orbit, there is still a significant time delay in timely fire detection.
In this context, the speed of detection becomes a crucial factor, despite the higher precision
compared to other ground-based instruments. Table 2 shows the characteristics of the
sensors in terms of spatial resolution, spectral band, advantages and disadvantages for
AVHRR, MODIS, and VIIRS.

Table 2. Resume about the various image sensors used in satellites.

Image Sensor AVHRR MODIS VIIRS

Spatial Resolution 1 km 1 km 750 m

Spectral Band 6 (bands at 1 km)
36 (2 bands at 250 m,
5 bands at 500 m and 29 at
1 km resolution)

22 (16 moderate-resolution bands
at 750 m, 5 image resolution
at 750 m and 1 pancromatic
day/night at 750 m)

Advantages infrared more various channels for more perfect
earth mapping

The pancromatic day/night band gives
an opportunity to take more accurate
forest fire data

Disadvantages
Few channels for multiple
image analyze in terms of resolution.
To complete earth mapping it takes 102 min

To complete earth mapping it takes 99 min To complete earth mapping it takes 50 min

4. The Role of Traditional Machine Learning and Deep Learning in Fire Detection and
Prevention
4.1. Detection of Wildfires Using a Machine Learning Approach

Detecting wildfires automatically poses a significant challenge due to the complexity
of developing a deterministic algorithm that can accurately determine the occurrence of a
wildfire based on a given set of features. However, Machine Learning (ML) proves highly
valuable in such scenarios by enabling the utilization of powerful models to extract informa-
tion and gain insights directly from the data. In the realm of ML-based automatic wildfire
detection, there are several techniques employed, with the most prevalent ones being com-
puter vision approaches that utilize both images and videos, as well as classification models
trained with environmental data. The subsequent sections will delve into a comprehensive
description of these two solutions, elucidating their workings and applications. Training a
machine learning model with environmental data such as humidity, temperature, wind
speed etc. both in case of a wildfire occurrence and during normal conditions may be a
simple and straightforward solution. An early work that proposed this approach is that of
Liyang Yu et al. [21] in which authors presented a wildfire prevention and detection system
based on clusters of sensors spread across wooded areas. This system implements a simple
feed-forward neural network used to assign a real-time forest fire danger rate for each
cluster of sensors, on the basis of real-time environmental data collected. This architecture
considers the sensors as the input layer of the neural network whereas an hidden layer,
whose purpose is to aggregate data to calculate weather indices, is implemented through
cluster header nodes, one for each cluster of the sensor network. The output layer of the net-
work is implemented with a manager node which, analyzing weather indices received from
cluster nodes, is able to detect anomalies in the data and send an alert whenever a wildfire is
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starting. Forest fire danger rates can provide valuable insights for implementing preventive
measures, as they enable the identification of high-risk areas prone to ignition. A similar
approach is presented by Ghorbanzadeh et al. [84], where they utilize a feed-forward neural
network to assign a forest fire susceptibility index to various forest regions in northern Iran.
This solution aids in assessing the vulnerability of different areas and supports proactive
measures against forest fires. In the aforementioned work, the authors have employed
environmental data to train their model. They carefully selected 16 variables, encompassing
both general factors such as annual temperature, annual rainfall, and altitude, as well as
more specific factors such as slope aspect of the region, plan curvature, and distance to
the nearest stream/road. This comprehensive selection of variables ensures that various
crucial aspects of the environment are taken into account during the model training process.
The neural network used to process these variables consists of a 16 neurons input layer,
a 28 neurons hidden layer whose optimal number of neurons was obtained through a
three-fold cross validation and a final output layer implementing a logistic function whose
value ranges from zero to one. According to this model, pixel areas with an output value
close to 1 indicate a higher probability of forest fires. By effectively training the neural
network, it becomes possible to generate accurate heat maps that highlight areas of greater
vulnerability. In another study conducted by Wenyuan Ma et al. [85], the Random Forest
algorithm is employed to identify the most significant environmental, social, and eco-
nomic features from an initial set of 21 variables across different regions of continental
China. The research demonstrates that the relative importance of these features varies
with different environmental conditions. The study provides valuable insights for wildfire
prevention, delivering significant value in understanding the key factors contributing to
wildfire occurrences. In conclusion, Zechuan Wu et al. [86] employed environmental data to
develop a methodology that utilizes a traditional feed-forward neural network to simulate
the advancement of the fire front. They conducted a comparison with the Wang Zhengfei
fire physical velocity model integrated with a Cellular Automaton (CA) framework [87],
and obtained more accurate results in terms of estimating fire spread. However, there are
certain limitations to using environmental data directly for training Machine Learning
(ML) models. Firstly, while feeding models with historical data obtained from external
archives can facilitate the construction of accurate prediction models, it may not enable
the active detection of a wildfire at its onset. On the other hand, employing a model for
real-time wildfire detection necessitates the acquisition of data in real-time from remote
sensors, imposing significant constraints and requirements on the system to ensure its
effectiveness. For effective wildfire detection, sensors must be extensively deployed in the
areas of interest, with a high concentration to detect the initiation of wildfires promptly.
Additionally, the ML models should efficiently process data from the sensors and provide
timely feedback to alert the authorities. Recognizing these challenges, some researchers
have begun exploring alternative solutions for wildfire detection. One of these solutions,
based on computer vision, will be discussed in the subsequent section.

Sun et al. [88] proposed a development of a forest fire susceptibility model using the
LightGBM (an ensemble learning method - short for light gradient-boosting machine) for
Nanjing Laoshan National Forest Park, resulting in an accurate fire susceptibility map.
Eight variables related to topography, climate, human activity, and vegetation were selected
for modeling based on correlation analysis. Logistic regression (LR) and random forest
(RF) models were also employed for comparison. Identification of significant factors,
such as TMP and NDVI, through importance ranking, providing valuable insights for fire
management. The results identified temperature as the primary factor for fire occurrence
in the area. Application of LightGBM extends its usage to fire susceptibility prediction,
demonstrating its effectiveness.

Zhou et al. [89] present a new approach using an event-response tree-based model to
effectively allocate different firefighting resources based on the fire suppression index (SI).
This index considers factors such as time, cost, and the impact of deploying resources in
suppressing fires. The model aims to improve the efficiency of dispatching resources and
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control fires in a timely manner. To validate their method, the researchers compared it to the
commonly used mixed-integer programming (MIP) model using historical fire data from
Nanjing Laoshan National Forest Park. The results demonstrate that the Event Response (E-
R) tree-based resource scheduling is equally effective in allocating resources compared to the
MIP model. It demonstrates effective resource scheduling and provides clear visibility into
the relationship between different resource-dispatching processes. However, the subjective
nature of the method, partly based on AHP, suggests the need for further investigation and
exploration of alternative methods for assigning weights to factors.

Yang et al. [90] proposed a one-class model for fire detection that focuses on high
precision and real-time detection. Their approach directly constructs training samples using
fire pixels, without complex feature transformation, and incorporates a batch decision-
making strategy to enhance detection speed. On the other hand, on the sub-field of wildfire
prevention, Abdollahi et al. [91] employed a Shapley additive explanations (SHAP) model
to interpret the results of a deep learning (DL) model for wildfire susceptibility prediction.
Their research incorporated various contributing factors and utilized SHAP plots to identify
the influential parameters, assess their relative importance, and provide insights into the
decision-making process. In addition, Cilli et al. [92] developed an explainable artificial in-
telligence (XAI) framework for assessing wildfire occurrence in a Mediterranean landscape
of Southern Europe. Their study demonstrated the framework’s efficiency and statistical
robustness in analyzing wildfire occurrence, highlighting climate as the primary driver.
Additionally, the model effectively identified areas where other drivers played significant
roles. The study aimed to contribute to the scientific literature on the application of AI
in understanding stochastic natural disasters such as wildfires. Bountzouklis et al. [93]
developed an explainable artificial intelligence framework to classify the causes of fire
ignition in Southern France. Their study successfully predicted the sources of unknown
caused wildfires, with natural fires achieving the highest accuracy compared to accidental
and arson fires. The analysis identified spatio-temporal properties and topographic charac-
teristics as significant features in determining the classification of unknown caused fires in
the region.

4.2. Computer Vision and Convolutional Neural Networks (CNN)

The pioneering work of Cappellini et al. [94] has been instrumental in the application
of artificial intelligence (AI) for fire detection. Their research has laid a strong foundation for
subsequent advancements in utilizing AI algorithms to address the challenges associated
with timely and accurate fire detection. Similarly, other notable contributions such as
Okayama [95], Arrue et al. [96], and Chen et al. [97] have also made significant contributions
in proposing the use of neural networks in combinations with smoke sensor data, infrared-
image processing techniques and Fourier Transform Infrared (FT-IR) spectroscopy for gas
measurements, in their respective works. Nowadays, the research community has high
expectations in the use of artificial intelligence in the field of wildfire detection and many
researchers have proposed different algorithms and methodologies to effectively and timely
detect wildfire occurrence. Mahdi et al. [98] categorized machine learning approaches for
fire detection into two main groups: traditional methods and deep learning methods.
Traditional methods encompass classical algorithms such as decision trees and support
vector machines (SVM), while deep learning methods represent the prevailing models
that include various types of artificial neural networks. Deep learning models possess the
ability to automatically select features, resulting in high-performance outcomes. However,
they necessitate significant computational power and high-quality datasets for effective
training and deployment in real-world scenarios. An illustration of deep learning models
in fire detection can be found in the recent work by Seydi et al. [99]. They developed a
deep learning framework named Fire-Net, training it with satellite images captured by
Landsat-8 in various regions such as Australian and North American forests, the Amazon
rainforest, Central Africa, and Chernobyl (Ukraine). Additionally, Abdusalomov et al. [100]
utilized a modified version of the Detectron2 platform from Meta AI to achieve highly
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accurate fire detection. Xue et al. [101] focused on enhancing the well-known YOLOv5
model specifically for fire detection tasks. The literature is replete with system proposals
that employ deep learning methods, and this trend appears to be on the rise.

A new trend is emerging in the development of AI and ML models for wildfire de-
tection, as showcased by the latest works published by the research community. This
trend emphasizes the utilization of specialized hardware/embedded systems. Such an
approach holds great promise, particularly in terms of enhancing the performance of fire
detection systems with respect to response time, surpassing the capabilities of architectures
designed for general-purpose CPUs. In a recent study conducted by Thangavel et al. [102],
the feasibility of employing AI technologies directly on-board satellites for near real-time
fire detection was examined and confirmed. The research demonstrated the successful
utilization of a combination of specialized hardware, AI on-the-edge paradigms, and hyper-
spectral imagery. The paper introduced a one-dimensional convolutional neural network
(1-D CNN) specifically designed to accommodate on-board implementation and various
proposed hardware designs are discussed in the study. The authors considered three hard-
ware accelerators for model implementation: Intel Movidius NCS-2, Nvidia Jetson Nano,
and Nvidia Jetson TX2. By employing dedicated on-board hardware for wildfire detection,
the response time is significantly reduced, and the system’s efficiency is improved. This
approach eliminates the need to transfer hyperspectral imagery to the ground station
for processing through AI algorithms. Instead, only the vector data (point or polygon)
of the fire, along with the already flagged data intended for the appropriate wildland
fire dispatcher based on location, need to be downloaded. George L. James et al. [103]
conducted a recent study that shares similarities with the aforementioned research. Their
paper presented a system employing transfer learning techniques to develop a neural
network architecture suitable embedded systems. To create the model, they started with
a pre-trained MobileNetV2 architecture developed by Google and made modifications
to tailor it for their requirements, ensuring improved response time and computational
efficiency. The authors evaluated the models based on various performance indicators,
including flash usage, peak RAM usage, inferencing time, and an overall performance
indicator that combines these metrics. These indicators are crucial as the authors aimed to
develop a lightweight model for deployment in embedded systems, such as the Arduino
Nano 33 BLE Sense board utilized in their study. In their study, G. Peruzzi et al. [104]
developed a system prototype that leveraged both audio and video data to detect and
alert the presence of wildfires. To achieve better performance, the researchers utilized two
convolutional neural networks (CNNs) in combination: one for processing the audio data
and another for analyzing the video data. They also employed the MobileNetV2 architec-
ture from Google like the previous paper, as the primary objective of their research, much
like the aforementioned studies, was to create a classification model specifically designed
for deployment on embedded systems. In addition, the works by Johnston et al. [105],
Arguello et al. [106], and Khalifeh et al. [107] are closely associated with the emerging trend
of deploying high-speed classification models directly on embedded devices.

Another area of extensive research focuses on the utilization of computer vision models
for fire detection. Recent advancements in the development of highly robust and effective
models have facilitated real-time solutions that were previously unattainable solely through
the use of sensors. Among the various types of machine learning models, Convolutional
Neural Networks (CNNs) have emerged as the most promising solution in this domain.
Most state-of-the-art frameworks today are based on CNNs or their variants, enabling
significantly higher levels of reliability in fire detection compared to traditional sensor-
based approaches. Frizzi et al. [108] present a notable work in the field, demonstrating a
precise method for detecting smoke emitted by starting wildfires in video captures. They
employ a nine-layer CNN that automatically learns relevant features from video frames,
eliminating the need for a separate feature extraction phase. Another noteworthy solution
proposed by Yichao Cao et al. [109] deals with video recognition of smoke generated by
wildfires. The authors suggest using pan-tilt-zoom cameras (PTZ) to cover large woodland
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areas and propose an intriguing model called Attention Enhanced Bidirectional Long Short-
Term Memory Network (ABi-LSTM) as the detection component of the system. In this
architecture, a Bidirectional Long Short-Term Memory Network (LSTM) serves as the
spatial feature extraction network, while the temporal attention network is employed
to extract spatio-temporal features and evaluate different sections of the video frames
individually. The extraction of features from raw frames is accomplished using a pre-
trained CNN model called InceptionV3, developed by Google. According to the authors,
this model is highly accurate and easily deployable. In a more intricate approach, Renjie
Xu et al. [110] presented a system that employs multiple detection models simultaneously.
The proposed architecture consists of three distinct CNN models: You Only Look Once
version 5 (YOLOv5), EfficientDet, and EfficientNet. YOLOv5 and EfficientDet are utilized
for the actual object identification function, as they complement each other’s limitations.
YOLOv5 excels at detecting large and well-established wildfires but struggles to identify
smaller fire zones, potentially missing some of them. On the other hand, EfficientDet
is more meticulous in object detection, rarely overlooking potential fire objects, but it is
less adept at identifying extensive fire areas. Combining these two models is expected
to yield superior overall results. The third model, EfficientNet, functions as a binary
classifier, analyzing the entire image to determine whether it contains fire objects or not.
The results obtained from object detection and image classification are then forwarded
to a decision strategy module responsible for determining whether the identified objects
should be considered as fire or discarded. Essentially, the role of the EfficientNet model is
to detect false positives and filter them out. This is crucial because the first two models may
mistakenly identify certain objects, such as the sun or the colors of a sunset, as fire objects.
In summary, the performance of this comprehensive architecture, in terms of precision,
average recall, and particularly false positive rate, is well-suited for real-world applications.
Compared to other proposed object detection systems, this ensemble learning architecture is
more robust in mitigating false alerts. Table 3 compares the two main approaches presented
in the previous section, highlighting their advantages and disadvantages.

Table 3. Comparison table between environmental data trained ML models with vs computer
vision techniques.

Technique Real-Time
Detection

Reliability in
Identification

Wildfire
Prediction

Simulation of
Fire Spread Robustness Complexity Area Covered

ML models w/
environment data X Low X X Low Low/Medium Medium/Large
Computer vision X High High High Very variable

Forest fires in their early stages tend to have a relatively small size compared to the
wide areas covered by deep learning fire detection systems. This size difference poses a
challenge for the model as it may fail to capture important information related to these
small fires. The existing model might struggle to learn and detect such small targets
effectively. To address this problem, Xue et al. [101] introduced an improved model in 2022,
which is based on YOLOv5. The proposed method aims to enhance the detection of small
forest fire targets. The improvements in the model primarily focus on enhancements to the
Backbone layer and Neck layer of YOLOv5, on the replacement of Spatial Pyramid Pooling-
Fast-Plus (SPPFP) Module with the Spatial Pyramid Pooling-Fast-Plus (SPPFP) module,
the addition of the Convolutional Block Attention Module (CBAM) attention module,
and the adaptation of the Path Aggregation Network (PANet) to the Bi-directional Feature
Pyramid Network (BiFPN). According to the results obtained, the proposed improvements
have demonstrated effective enhancements in the method. The improved model based on
YOLOv5 with the modified Backbone layer and the substitution of the SPPF module with
the SPPFP module has shown improved performance in detecting small forest fire targets.
This suggests that the model is better equipped to learn and recognize crucial information
related to early-stage forest fires, despite their small size. Another common problem
encountered in forest fire detection is related to the distinct features and morphology of
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fires and flames. These differences can lead to an increased number of false positives
in the detection process and can also hinder the adaptability of the detection system.
To address these issues, Chen et al. [111] presented an improved multi-scale forest fire
detection model called YOLOv5s-CCAB in their 2023 work. The YOLOv5s-CCAB system
incorporates several key components to enhance its performance. Firstly, it includes a
Coordinate Attention (CA) module, which likely helps the model focus on relevant fire-
related regions by emphasizing spatial coordinates. Additionally, Contextual Transformer
(CoT) and CoT3 modules are incorporated to capture contextual information and improve
the understanding of complex fire patterns at different scales. Through the use of these
enhancements, Chen et al. achieved a high level of detection accuracy and speed with
their proposed method. This improved model enables real-time detection of multi-scale
forest fires, making it suitable for timely response and intervention in fire incidents. An
alternative approach to address the aforementioned problem is described in the research
conducted by Qian et al. [112]. Their work presents an algorithm that utilizes weighted
fusion to identify forest fire sources in various scenarios. In this approach, two independent
weakly supervised models, YOLOv5 and EfficientDet, are employed. These models are
trained and make predictions on the datasets simultaneously. The algorithm combines the
predictions from these models using a technique called the weighted boxes fusion algorithm
(WBF). The WBF algorithm processes the individual prediction results and generates a
fusion frame that combines the information from both models.

Among neural networks, one that is quite often used for image analysis is the GNN
(graph neural network). It basically consists of a class of neural networks for processing
data that can be represented as graphs. In case of computer vision CNNs (convolutional
neural networks), these can be seen as a GNN applied to structured graphs such as pixel
grids. Mingyang Wang et al. [113], in their work, define a GNN based on the dynamic
characteristics of the images. The method converts the input features of the nodes of the
graph into different relational features, establishing pairs of nodes representing different
points of view of the test images. The dynamic update of the characteristics of the images
is done through a future-bank relationship which allows to estimate the similarity of these
and improve their recognition rate. Rabah Attia et al. [114] offers a very effective method
of image analysis, based on Transformers, which allows a strong saving in computational
terms to be able to segment an image, thus obtaining the detail of interest. The core of this
transformation is related to the self-attention mechanism in the interaction between each
input element to the network, relative to the other elements. Two models are proposed
and tested in the study, the TransUNet and the MedicalTransformer. These, compared
with some CNNs (convolutional neural networks) such as U-Net, guarantee excellent
performance in the analysis and segmentation of the fire zones contained within the images
of the test dataset, with F1-score equal to 97.7% and 96%. Xinguo Hou et al. [115] proposes
an alternative method, based on GAN (Generative Adversarial Network), to effectively
recognize and outline the fire, through a process of analysis and segmentation of the image,
based on three main components of this algorithm: the generator, the discriminator and
the mask. The generator is used to analyze the image and through using the mask, start the
segmentation process on the flame to recognize the fire. The discriminator, on the other
hand, has the task of attesting the actual presence of a flame inside the image, once the
process started by the generator has ended.

Park et al. [116] addressed the challenge of the lack of wildfire occurred image datasets
by employing generative adversarial networks (GAN) and weakly supervised object local-
ization (WSOL). Their study aimed to create synthetic wildfire images with various shapes
by inserting damage into free-wildfire images. These synthesized images can be utilized as
training data for object detection, thereby enabling the training of deep learning models
in environments where mis-detection may occur due to factors such as distance from the
camera or objects resembling flame and smoke. This research contributes to the field
of early detection and monitoring of wildfires using artificial intelligence and computer
vision. Aslan et al. [117] proposed a vision-based method for real-time early detection
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of wildfire smoke using Deep Convolutional Generative Adversarial Neural Networks
(DC-GANs). Their approach addresses the challenge of limited labeled data in supervised
learning by employing a two-stage training framework. Additionally, a motion-based
transformation of images is integrated as a pre-processing step to capture the temporal
evolution of smoke. Experimental results demonstrate the effectiveness of their method in
real-time smoke detection with minimal false positive rates. Jiang et al. [118] introduced
a wildfire spread model implementing an Irregular Graph Network (IGN). This adaptive
approach effectively encodes complex regions with dense nodes and simpler regions with
sparse nodes. Comparative experiments with widely used fire simulation models were
conducted on a real wildfire in Getty, California, USA. The results demonstrate that the
IGN model accurately and explicitly captures the spatiotemporal characteristics of wildfire
spread in a novel graph form while maintaining competitive simulation refinement and
computational efficiency. Li et al. [119] designed a Recursive Bidirectional Feature Pyramid
Network (RBiFPN) incorporating it into the YOLOV5 framework, to better distinguish
subtle differences between clouds and smoke. They also utilize Swin Transformer to replace
the classification head, enhancing the network’s capability to model local and global fea-
tures by adapting the receptive fields to the size of smoke regions. Experimental results on
a dataset with various interference objects demonstrate that their proposed model achieves
higher performance in detecting wildfire smoke compared to state-of-the-art methods.

5. Open Problems and Promising Research Directions

Forest fires pose a significant threat to ecosystems, wildlife, and human lives. Over the
years, various advancements have been made in the fight against forest fires. This paper
explores the developments in the detection and monitoring of forest fires using WSNs and
video detection techniques. Additionally, it examines the crucial role that ML and AI play
in fire detection and prevention. These technologies have significantly improved the speed
and accuracy of fire detection and monitoring, allowing for prompt response and effective
resource allocation. As we continue to develop and refine these technologies, the potential
for preventing and minimizing the impact of forest fires grows. However, challenges remain,
including the need for robust and reliable communication networks, data integration,
and overcoming false alarms. The existing early detection and prediction systems for
wildfires face several limitations that need to be addressed. About coverage limitations,
current systems may have gaps in coverage, particularly in remote or densely forested areas,
where detection is challenging. Regarding false alarm rates, some systems may suffer from a
high false alarm rate, leading to unnecessary deployment of resources and decreased public
trust in the system. Delays in data processing and timely data processing and dissemination
of warnings to relevant authorities and communities are critical. However, there can be
delays in data processing, analysis, and decision-making, reducing the effectiveness of
early warning systems. By leveraging the power of technology and collaboration between
researchers, firefighters, and policymakers, we can continue to make significant strides in
protecting our forests and communities from the devastating effects of wildfires. Future
advancements may focus on developing more advanced fire detection systems that can
rapidly identify the presence of fires and accurately predict their behavior. These systems
could employ advanced sensors, machine learning algorithms, and real-time data analysis
to enhance early detection and improve response times. Moreover, improved fire modeling
techniques can help predict fire behavior more accurately. Integration of Various Data
Sources and Technologies represents a further and crucial challenge to wildfire prevention.
To enhance the effectiveness of early detection and prediction systems, it is essential to
integrate diverse data sources and technologies. One approach is the fusion of satellite,
sensor network, and weather data. By combining data from satellites, ground-based sensor
networks, and weather stations, a more comprehensive and accurate understanding of fire
occurrence, spread, and behavior can be achieved. This integration allows for a broader
coverage area and enables a more detailed analysis of environmental conditions relevant
to wildfires. Another integration aspect involves combining remote sensing techniques
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with ground-based monitoring systems. By incorporating aerial and satellite-based remote
sensing methods with on-ground monitoring systems, such as cameras and ground sensors,
the accuracy and coverage of early detection systems can be significantly enhanced. This
combination enables a multi-modal approach that captures both large-scale and localized
information about wildfire activities. By integrating various data sources such as weather
patterns, topography, fuel moisture content, and historical fire data, predictive models
can provide valuable insights into fire spread, intensity, and potential impacts. This
information can assist in proactive fire management and resource allocation. The enhancing
prediction accuracy and uncertainty estimation could be obtained improving the accuracy
and reliability of wildfire prediction models is crucial for making effective decisions in
wildfire management. There are two key strategies to achieve this goal. Firstly, it is essential
to enhance model calibration and validation techniques. Properly calibrating and validating
prediction models against historical wildfire data ensures their accuracy. By refining the
models based on past fire behavior patterns and outcomes, their performance can be
improved for future predictions. Secondly, addressing uncertainties in data inputs and
model assumptions is vital. Wildfire prediction models heavily rely on environmental and
weather data, which inherently have uncertainties. Accounting for these uncertainties in
data inputs and model assumptions, such as through probabilistic modeling or ensemble
approaches, can provide more robust predictions. Additionally, incorporating uncertainty
estimation techniques into the models can help convey the confidence level associated with
the predictions.

Future developments may focus on improving communication and information sys-
tems during fire incidents. This could include the implementation of robust and resilient
communication networks, satellite imaging for real-time fire mapping, and the use of
mobile applications to facilitate real-time data sharing among firefighters and emergency
response teams. Advancements in technology offer new possibilities for improving early
detection and prediction systems. One area of continuous exploration is the role of AI, IoT,
and big data analytics. Leveraging AI techniques, machine learning algorithms, and big
data analytics can enable more efficient processing and analysis of large volumes of data.
These technologies can extract valuable insights from various data sources, enhance data
fusion techniques, and improve the accuracy of predictions, ultimately leading to more
timely warnings and improved decision-making. Additionally, the potential of unmanned
aerial vehicles (UAVs) equipped with remote sensing technologies can be harnessed for
data collection. UAVs provide real-time, high-resolution data that can aid in rapid and
precise monitoring of wildfire activities. These aerial platforms can capture detailed in-
formation about fire behavior, fuel conditions, and environmental factors, contributing
to more accurate early detection and prediction systems. Further developments should
focus on strengthening public awareness and education regarding fire prevention and
preparedness. This may involve community outreach programs, educational campaigns
and the promotion of fire-safe practices. Empowering individuals with knowledge and re-
sources can significantly contribute to reducing fire incidents and minimizing their impact.
Moreover, the integration of social and behavioral factors in early detection and prediction
systems can enhance their effectiveness and impact on wildfire management. One aspect is
incorporating human behavior and evacuation dynamics into the models. Understanding
how people respond to early warnings and evacuation orders during wildfire incidents
can improve evacuation planning and decision-making. By simulating human behavior
and evacuation patterns, models can provide insights into evacuation effectiveness, po-
tential bottlenecks, and areas that require additional attention in emergency planning.
Furthermore, understanding public response and decision-making processes is crucial.
Factors such as risk perception, information dissemination, and community engagement
play a significant role in wildfire management. Considering these factors allows for the
development of more effective communication strategies, public awareness campaigns,
and community-based initiatives, fostering a proactive approach to wildfire prevention
and response. In conclusion, addressing the challenges in early detection and prediction of
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wildfires requires integrating multiple data sources, improving prediction accuracy and
uncertainty estimation, considering social and behavioral factors, and exploring emerging
technologies. By embracing these directions, the effectiveness of early detection and pre-
diction systems can be enhanced, leading to improved wildfire management and reduced
impact on ecosystems and communities.
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