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Abstract: The ability to accurately measure tibiofemoral angles during various dynamic activities is of
clinical interest. The purpose of this study was to determine if inertial measurement units (IMUs) can
provide accurate and reliable angle estimates during dynamic actions. A tuned quaternion conversion
(TQC) method tuned to dynamics actions was used to calculate Euler angles based on IMU data,
and these calculated angles were compared to a motion capture system (our “gold” standard) and
a commercially available sensor fusion algorithm. Nine healthy athletes were instrumented with
APDM Opal IMUs and asked to perform nine dynamic actions; five participants were used in training
the parameters of the TQC method, with the remaining four being used to test validity. Accuracy
was based on the root mean square error (RMSE) and reliability was based on the Bland–Altman
limits of agreement (LoA). Improvement across all three orthogonal angles was observed as the TQC
method was able to more accurately (lower RMSE) and more reliably (smaller LoA) estimate an angle
than the commercially available algorithm. No significant difference was observed between the TQC
method and the motion capture system in any of the three angles (p < 0.05). It may be feasible to use
this method to track tibiofemoral angles with higher accuracy and reliability than the commercially
available sensor fusion algorithm.

Keywords: wearable devices; sports medicine; anterior cruciate ligament

1. Introduction

There has been a discernible rise in non-contact anterior cruciate ligament (ACL)
injuries among athletes, despite the implementation of preventive measures [1,2]. These
injuries are of particular concern among young female athletes, with rates higher than
their male counterparts in similar sports [1–3]. These injuries can be expensive to treat,
with ACL reconstruction procedures ranging from USD 27,000 to USD 35,000 in cost; in
addition, there is an increased risk of early-onset osteoarthritis of the knee following these
operations [4–6]. Studies have identified sex-based differences in anatomy, hormones, and
movement patterns as possible risk factors for ACL injury susceptibility [7–16]. While
anatomical and hormonal factors cannot be controlled, identifying and modifying move-
ment patterns that may contribute to ACL injury, or reducing exposure to severe loading
cycles, is possible.

Traditionally, camera-based motion capture systems (MCS) are used in the labora-
tory to measure kinematics. These systems comprise multiple cameras and load cells
which make them difficult to use ‘in the field’. An inertial measurement unit (IMU) is a
wearable sensor made up of accelerometers, rate gyroscopes, and magnetic field sensors
that measures the linear acceleration, angular velocity, and magnetic field strength of a
particular body part. By using a specialized sensor fusion algorithm, the device can track
the orientation of the body part in inertial space. Additionally, combining the IMU data of
two adjacent body segments can be done to determine the Euler angles of a joint. These
sensors have been utilized in different scenarios, including gait analysis and rehabilitation
assistance, with success [17–28].
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Research conducted in laboratory settings on cadaveric models has suggested that
some ACL injuries are due to overuse and repetitive strain placed on the ACL [29]. Nu-
merous scenarios can lead to these high-strain conditions; however, one theory that is
commonly accepted suggests that such injuries occur when the knee is externally rotated
with a slight flexion and a slight valgus angle at the time of the incident [13,30]. In theory,
once these specific conditions are fulfilled, and the knee is subjected to a ground reaction
force, a strong quadriceps contraction might occur, resulting in the tibia moving anteriorly
to the femur; this movement could potentially cause the ACL to experience strain beyond
its injury threshold [13,30]. The ground reaction and quadriceps forces, as well as the
orientation of the knee, are crucial factors in this scenario [13,31]. Recently, a study has
explored and created algorithms for calculating ground reaction forces with IMUs, with
encouraging results. However, accurately estimating 3D tibiofemoral angles has been
more challenging. In agreement with refs. [32–36], we believe that commercially available
IMU algorithms may not be accurate for more dynamic activities like sports, where larger
changes in joint angles, velocities, and accelerations can occur; this theory was corroborated
through the results of our previous work [37]. Through testing with cadaveric specimens,
we discovered that adjusting the settings of a sensor fusion algorithm led to improved
performance compared to a commercially available version [37]. However, the use of
cadaveric specimens excludes the effect soft tissue artifact may have on estimated angle
accuracy. Thus, our goal in this study was to use the algorithm previously developed, but to
adjust it for use in live human subjects and determine if the tuned algorithm demonstrates
improved accuracy and reliability when measuring tibiofemoral (knee) angles in all three
orthogonal directions during more dynamic activities.

2. Materials and Methods
2.1. Subjects, Instrumentation, and Testing Procedures

Before the commencement of the study, we received IRB approval (HUM00150719).
Nine healthy (5 females, 4 males) current or former (within two years) soccer or basketball
athletes were recruited (Table 1). Participants with a BMI over 29 kg/m2 or who had a
current lower extremity injury were excluded. Instrumentation and testing procedures have
been described previously. Briefly, informed consent was obtained before a participant was
fitted with 46 retro-reflective spherical markers; the first 30 markers were placed according
to the 30 Rizzoli lower body protocol, with the remaining markers placed in clusters of four
on the lateral thigh and gastrocnemius (Figure 1). Motions were collected using a 12-camera
motion capture system (Prime 13 Optitrack, Corvallis, OR, USA) and two APDM wearable
sensors (APDM Opal, APDM Wearable Technologies, Portland, OR, USA); the wearable
sensors were placed similarly to previous works [37]. All data were collected at 200 Hz and
a sync device was used to synchronize the recordings. IMUs were calibrated before each
session through the predefined calibration conditions used by the Moveo Mobility software
(Version 1.0) developed by APDM. Participants were asked to complete seven related tests
three times: a jog with a pivot, an extension leap, a sidestep cut, a crossover cut, dominant
shooting, a vertical jump onto two feet, and a vertical jump onto one foot (Table 2). Because
both training and testing the validity of our tuned algorithm were needed, we randomly
separated our subject pool based on average subject weight into a training set (used in
tuning; N = 5) and a testing set (used in the testing of validity; N = 4).
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Table 1. Demographics of the subjects, separated between those used in tuning the algorithm and
those used in validation. Sport denotes the sports a subject participated in, with dual denoting a
subject who had played both sports within the allotted time.

Demographics of the Subjects Used in Amendment Training

Subject ID Sex Mass (kg) Height (m) Sport

TR1 F 79.0 1.85 Soccer
TR2 F 69.0 1.78 Basketball
TR3 F 63.2 1.63 Soccer
TR4 M 78.5 1.83 Soccer
TR5 M 70.3 1.78 Soccer

Demographics of the Subjects Used in Amendment Testing

Specimen ID Sex Mass (kg) Height (m) Sport

TE1 F 75.4 1.75 Dual
TE2 M 74.9 1.85 Soccer
TE3 F 63.7 1.73 Basketball
TE4 M 85.8 1.83 Soccer
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Non-dominant foot takes a firm step onto force plate to support the dominant leg swing 
through a “shooting” motion (Soccer or Dual subjects only). 
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Figure 1. Marker and IMU locations.

Table 2. Actions performed by subjects along with descriptions. Note: dominant shooting was only
performed by individuals who have played soccer.

Movement Description

Jog with pivot Participant jogs a few steps and pushes off dominant leg to turn body towards the opposite side.

Extension leap Participant pushes off dominant leg while fully extending the non-dominant leg to land on force
plate more than two comfortable step lengths away.

Sidestep cut Subject accelerates toward the direction opposite of the planted leg.

Crossover cut Participant crosses one leg over the planted leg and accelerates in the direction of the push off leg.

Dominant shooting Non-dominant foot takes a firm step onto force plate to support the dominant leg swing through a
“shooting” motion (Soccer or Dual subjects only).

Jump—land on one foot Subject stands with feet together, jumps maximum height, and lands on one foot.

Jump—land on two feet Subject stands with feet together, jumps, and lands on two feet at maximum height, 50% of maximum
and 25% of maximum.
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2.2. Data Processing

For the MCS, a six-degree-of-freedom kinematic model of the lower extremity was
created for each participant, including the pelvis, thigh, shank, and foot, using Visual 3D
software (C-Motion, Germantown, MD, USA). A static trial was collected to determine
the participant’s anatomic neutral. Joint angles at maximum ground reaction force were
calculated in Visual 3D using a Cardan rotation sequence (CRS). Joint angles are the relative
orientation of one local coordinate system to another and can be represented by three
rotations about a unique axis. Emphasis is placed on the order of these rotations. Within
this study, a CRS XYZ was implemented, with a lateral rotational matrix determined first,
followed by an anterior, and finally a vertical rotational matrix; this process has been used
in previous work [32]. Angles obtained through this kinematic model were normalized to
the femur through the Visual 3D software. For the IMU, two methods were used to obtain
the tibiofemoral angles: (1) the APDM proprietary algorithm (denoted as the IMU method);
and (2) a tuned quaternion conversion algorithm (denoted as the TQC method). Angles
obtained through the IMU method were not subjected to additional processing.

IMU data were filtered using a fourth-order, zero-lag, low-pass Butterworth filter.
Optimum cutoff frequencies for the Butterworth digital filter were obtained by applying
Winter’s method; this method has been used in previous works [37,38]. Only the training
set was utilized in determining the optimal frequencies (Table 3). Following filtering, a
nine-axis indirect Kalman filter using the quaternion conversion of the IMU accelerometer,
gyroscope, and magnetometer data was used. This process is detailed at greater length in
our previous work and in the paper by Stanley et al. [37,39]. Briefly, this process began
through the estimation of a sensor’s current orientations from the angular changes of the
previous orientation with the initial alignment estimated to be north-east-down (NED).
Once obtained, this estimated orientation was converted to a quaternion format. Next,
quaternion conversion estimations of the gravitational and magnetic field measurements
were obtained using linear acceleration and angular velocity. These estimates were used to
correct the gravitational and magnetic field data obtained from the previous orientation
and magnetometer. The corrected orientation and magnetometer estimates became the
innovation for the indirect Kalman filter. As mentioned by Stanley et al., the indirect
Kalman filter attempts to track errors rather than orientation as the data is updated through
a recursive process [39]. Additionally, this process being recursive meant that the prior
estimates of the error process and the state transition models were set to zero, thereby
allowing for the application of the reduced Kalman equations [39]. Because orientation was
in a quaternion format, the subtraction of the data from adjacent segments was mathemati-
cally valid. Therefore, the data attributed to the tibial IMU sensor was subtracted from the
femoral IMU sensor. The resulting values were then converted into Euler angles, similar to
what was done before [37].

Table 3. The optimal cutoff frequencies determined through the application of Winter’s method for
each direction. The average of both the right and left legs is presented. All filtering frequencies are in
Hz and based on a sampling rate of 200 Hz.

Optimal Cutoff Frequencies Determined for the IMUs

Parameter X Y Z

Tibial IMU
Linear Acceleration 19 20 18
Angular Velocity 18 18 22
Magnetometer 7 7 7

Femoral IMU
Linear Acceleration 17 14 16
Angular Velocity 17 19 15
Magnetometer 7 7 7
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2.3. Parameters Used in the TQC Method

Parameter adjustment followed what was previously done [37]. Briefly, several unique
parameters used in the covariance of the observation model noise and the predicted esti-
mate covariance were required; all the required parameters can be viewed at greater length
in the work by Stanley et al. [39]. APDM Opal documentation provided the values for ac-
celerometer noise, gyroscope noise, and magnetometer noise. Gyroscope drift noise, linear
acceleration noise, and magnetic disturbance noise were not detailed in the documentation,
so the default values based on the FRDM-FXS-Multi family of sensor boards (as used by
the Freescale Toolbox of MATLAB) were used; this was done in our previous work [37].
The use of these default values was implemented due to the potential value range being
theoretically infinite, such that a process of trial and error would not be possible.

The linear acceleration decay factor (LADF) and magnetic disturbance decay factor
(MDDF) were unknown parameters that accounted for the effects of drift in either the linear
acceleration or magnetic disturbance. Because their theoretical values ranged from 0 to 1,
and because, in previous testing, differences less than 0.0001 resulted in no distinguishable
change between subsequent LADF/MDDF, the values for the LADF/MDDF were theo-
retically finite. Using the training set of data, a trial-and-error approach was taken where
adjustments to the LADF and/or MDDF were performed in increments of 0.0001 from
0.0001 to 0.9999 to minimize the difference in angles between the TQC method and the MCS.
These adjustments were performed on each axe, resulting in 3 unique LADF and 3 unique
MDDF values per trial. An average for both the LADF and MMDF was determined and
used when calculating the angles of the testing set for validation. A trial-and-error approach
has been used in previous work [37].

2.4. Statistical Analysis

A repeated measured ANOVA with a pairwise comparison was performed on both
the training and testing sets to determine whether there were differences between the TQC
method and the MCS and between the IMU method and the MCS. A Bonferroni correction
was used to correct for multiple comparisons. Differences were considered significant if
p < 0.05. Bland–Altman (BA) limits of agreement (LoA) were constructed for the testing set
to assess each method’s reliability. LoAs were taken as the 95% confidence interval of the
residual difference between a sensor method (either the TQC or the IMU) and the MCS. To
assess each method’s accuracy, the root mean square error (RMSE) was determined between
the MCS and either the IMU or TQC methods. BA plots were developed for descriptive
analysis and used to comment on trends/biases that may exist; this was based on whether
angles estimated using the IMU exhibited a tendency to over/underestimate true angles, or
whether there was an increase or decrease in variability as the angle increased in magnitude.

3. Results
3.1. Training Set

Among all comparisons within the training set, flexion angle differences between the
MCS and IMU, as well as between the IMU and TQC, were the only ones that were statisti-
cally significant (Figure 2). The training set showed a mean difference in flexion/extension
between the MCS and IMU of −9.94◦ (95% CI: −13.9◦ to −5.96◦), while that between the
MCS and TQC was −0.18◦ (95% CI: −4.16◦ to −3.80◦). For abduction/adduction, a mean
difference of −0.47◦ (95% CI: −2.71◦ to 1.77◦) between the MCS and IMU was observed,
while the mean difference between the MCS and TQC was −0.13◦ (95% CI: −2.37◦ to 2.11◦)
(Figure 2). The mean difference in rotation between the MCS and IMU was −0.71◦ (95% CI:
−4.01◦ to 2.60◦); between the MCS and TQC, the difference was −0.10 (95% CI: −3.41◦ to
3.21◦). Across all cases, the LoA and the RMSE of MCS vs. TQC were determined to be
smaller, indicating increases in both accuracy and reliability in the TQC (Table 4).
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Figure 2. Box-and-whisker plots comparing the values of the motion capture system (MCS), the
sensor fusion algorithm of the IMU (IMU), and the tune quaternion conversion method (TQC) for
flexion (top), abduction (middle), and rotation (bottom). Differences that were determined to be
significant are denoted by *.

Table 4. Comparisons of the angles estimated using either the IMU or TQC method to those of the
MCS. Presented are the RMSE and LoA bound (taken as the difference between upper and lower
bound). Diff. is taken as the difference of MCS vs. TQC values or MCS vs. IMU.

Comparisons of the IMU and TQC Methods to MCS

Training Set Testing Set

Comparison RMSE LoA
(Upper–Lower) RMSE LoA

(Upper–Lower)

Flexion
MCS vs. IMU 16.6◦ 52.0◦ 19.0◦ 68.1◦

MCS vs. TQC 7.48◦ 29.3◦ 8.00◦ 32.9◦

Diff. −9.08◦ −22.6◦ −11.0◦ −35.2◦

Abduction
MCS vs. IMU 11.9◦ 46.6◦ 8.59◦ 33.4◦

MCS vs. TQC 3.51◦ 13.8◦ 3.14◦ 12.9◦

Diff. −8.37◦ −32.8◦ −5.44◦ −22.4◦

Rotation
MCS vs. IMU 25.5◦ 100◦ 29.7◦ 121◦

MCS vs. TQC 4.39◦ 17.2◦ 3.63◦ 15.0◦

Diff. −21.2◦ 82.9◦ −26.1◦ 105◦
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3.2. Testing Set

Flexion and rotation angles between the MCS and IMU, as well as between the IMU
and TQC, were determined to be statistically significant (Figure 2). A mean difference in
flexion/extension of −9.96◦ (95% CI: −14.3 to −5.64) was determined between the MCS
and IMU, while that between the MCS and TQC was determined to be 0.80◦ (95% CI:
−3.52 to 5.12). For abduction/adduction, the mean difference between the MCS and IMU
was −0.68◦ (95% CI: −2.58 to 1.23), while the mean difference between the MCS and TQC
was −0.49◦ (95% CI: −2.39 to 1.42) (Figure 2). For rotation, the mean difference between
the MCS and IMU was 5.42◦ (95% CI: 1.68 to 9.17), and it was 0.04◦ (95% CI: −3.70 to 3.79)
between the MCS and TQC. Across all comparisons, the differences between the MCS and
IMU resulted in larger RMSE values as well as larger LoAs (Table 4).

The BA plots comparing the MCS and IMU differences showed varying degrees of
bias and trends. For flexion/extension, there tended to be an underestimation of the angle
by the IMU, and a linear slope was observed between the residuals and the measured
flexion/extension angle; lower measured values skewed towards overestimations while
higher values tended to be underestimations (Figure 3). Within the abduction/adduction
BA plot between the MCS and IMU, as the magnitude of the measured angle increased
(regardless of whether abduction or adduction), estimated values by the IMU decreased
(Figure 3). For rotational angles between the MCS and IMU, the IMU tended to overestimate
the magnitude of the angle, regardless of whether it was internal or external rotation.
Comparing the MCS and the TQC, differences in flexion/extension as well as rotation
showed no discernable trends. With the abduction/addiction BA plot between the MCS
and IMU, as the magnitude of the measured angle increased, there was an increase in the
variability of TQC estimates.

Sensors 2023, 22, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 3. Bland–Altman plots associated with the residuals for flexion (top), abduction (middle), 
and rotation (bottom) between the motion capture system (MCS) and either the sensor fusion algo-
rithm (IMU; left) or the tuned quaternion conversion method (TQC; right). Residuals were plotted 
against the measured values of the MCS. Limits of agreement (LoAs) are shown in red while the 
line of zero difference is shown in black. 

4. Discussion 
We hypothesized that the sensor fusion algorithm employed by commercially avail-

able wearable sensors may not necessarily be accurate when used in dynamic activities, 
such as sports where larger changes in joint angles, velocities, and accelerations occur. 
Previous cadaveric testing supported this theory, as the tuning of certain parameters of a 
quaternion conversion algorithm resulted in more accurate and reliable angle estimates 
over an IMU’s sensor fusion algorithm [37]. However, we recognized several limitations 
in that previous work, such as a lack of soft tissue and a lack of variability in the motion. 
The purpose of this study was to use the algorithm previously developed but to retune it 
for use in human subjects in a variety of action types and determine if this tuned algorithm 
demonstrated improved accuracy and reliability in angle estimations. In all cases for the 
testing set, the differences between the TQC and MCS were determined to be statistically 
insignificant, while differences between the IMU and MCS were observed as being signif-
icant in both flexion and rotation. Whether or not these differences are clinically relevant 
is dependent on the particular scenario. A review paper examining ACL tears in athletes 
reported flexion angle differences of 10°–21.7° between injured and uninjured knees, and 
a laboratory study observed abduction angle increases of 8° in athletes who went on to 

Figure 3. Bland–Altman plots associated with the residuals for flexion (top), abduction (middle), and
rotation (bottom) between the motion capture system (MCS) and either the sensor fusion algorithm



Sensors 2023, 23, 6627 8 of 12

(IMU; left) or the tuned quaternion conversion method (TQC; right). Residuals were plotted against
the measured values of the MCS. Limits of agreement (LoAs) are shown in red while the line of zero
difference is shown in black.

4. Discussion

We hypothesized that the sensor fusion algorithm employed by commercially available
wearable sensors may not necessarily be accurate when used in dynamic activities, such as
sports where larger changes in joint angles, velocities, and accelerations occur. Previous
cadaveric testing supported this theory, as the tuning of certain parameters of a quaternion
conversion algorithm resulted in more accurate and reliable angle estimates over an IMU’s
sensor fusion algorithm [37]. However, we recognized several limitations in that previous
work, such as a lack of soft tissue and a lack of variability in the motion. The purpose of
this study was to use the algorithm previously developed but to retune it for use in human
subjects in a variety of action types and determine if this tuned algorithm demonstrated
improved accuracy and reliability in angle estimations. In all cases for the testing set, the
differences between the TQC and MCS were determined to be statistically insignificant,
while differences between the IMU and MCS were observed as being significant in both
flexion and rotation. Whether or not these differences are clinically relevant is dependent
on the particular scenario. A review paper examining ACL tears in athletes reported flexion
angle differences of 10◦–21.7◦ between injured and uninjured knees, and a laboratory
study observed abduction angle increases of 8◦ in athletes who went on to injure their
ACL [8,40]. Therefore, while differences between the IMU and MCS were observed as being
statistically significant in flexion, clinically this may be negligible. Across all comparisons,
the RMSE values associated with the differences between the TQC and MCS were smaller
than those between the IMU and MCS, with the largest difference occurring in the testing
set rotational angles (3.63◦ compared to 29.7◦); this was similarly observed during our
cadaveric testing [37]. In every case, the LoA associated with the difference between the
TQC and MCS were smaller than those between the IMU and MCS, indicating a smaller
range in differences and a better degree of reliability.

Various studies have calculated joint angles, particularly those of the knee, using IMU-
derived data, and then compared the results to those obtained through an
MCS [19,33–36,41–43]. However, the focus of many of these studies has been on examining
differences in flexion angles, possibly due to the knee flexion angle exhibiting the largest
change during an action, and consequently being easiest to measure reliably. However,
being able to accurately measure abduction and rotation angles is important because of
the potential effects these angles may play in knee injuries, specifically, in ACL injuries.
Many studies have proposed there is a correlation between ACL strain and the abduc-
tion/adduction and rotational orientation of the joint [16,44–50]. Because of this possible
correlation, to improve knee injury tracking, it becomes important to track all three knee
angles. Furthermore, the method by which joint angles are determined through IMUs
also varies widely from study to study, with some taking the integration of angular rates
while others use Euler angles. Studies such as those by Watanabe et al., Tong et al., and
Bakhshi et al. calculated knee joint angles by taking the integration of angular rates, with-
out the conversion to Euler angles and limiting themselves to only determining flexion
angles [19,34,35]. This process may be problematic as angles obtained do not describe the
orientation of the joint to a fixed coordinate system, but rather to some arbitrary coordinate
system. As such, each study’s estimated angles may not represent the knee’s true orienta-
tion, and comparisons between estimated and MSC-measured values may not be accurate.
However, these studies have shown their methods to be accurate in knee flexion estimates
as the least accurate of these studies (Tong et al.) demonstrated an RMSE value below that
which we reported between the MCS and TQC (our best case within flexion comparisons)
(RMSE of 6.4◦ compared to 7.48◦) [35]. This comparison may warrant criticism, as these
studies observed actions associated with rehabilitation, which can be less dynamic than
those in our study, but it may be that, due to possible increases in both angular velocities
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and linear accelerations, the results of our study were more prone to noise pollution and
thus inaccuracies. Various studies have noted the potential effects of soft tissue artifact on
the validity of results [51–53].

Bell et al. and Zügner et al. compared angles estimated via a sensor’s proprietary
sensor fusion algorithm and those of an MCS [41,42]. In these cases, the sensor fusion
algorithm was used to calculate the Euler angles of the knee joint. In the study by Bell et al.,
RMSE values between estimated and measured knee flexion angles were lower than any
previously mentioned study and lower than that of our study (RMSE of between 2◦ and
2.9◦ compared to 7.48◦) [42]. While this shows a high accuracy for flexion angle estimates,
the accuracy of abduction/adduction or rotational estimates were not reported, which are
important if IMUs are to be used for injury prevention. Zügner et al. reported that they
found no significance in the mean difference between estimated and measured knee flexion
angles (p = 0.7) and determined a high ICC (ICC > 0.8) [41]. Mean difference comparisons
and ICC compare data sets as groups and, as such, mitigate the effects of gross differences;
if the algorithm over- and underestimates angles similarly, the mean difference would be
relatively small and may be misleading to the performance of an algorithm. Approaches
such as RMSE or mean absolute percent errors remove this pitfall and may be much better
indicators of accuracy.

In a previous study performed using APDM Opal sensors, highly dynamic activities
(jumps) were observed and comparisons of all three knee angles were reported [37]. It was
concluded that, for both abduction/adduction and rotation, the APDM Opal algorithm
was able to perform well under certain conditions, particularly those of smaller angle
displacements, and experienced greater variability as the magnitude of the measured
angle increased [37]. We observed a very similar trend when comparing the IMU to the
MCS across both abduction/adduction and rotation angles, but it was only within the
abduction/adduction comparison between TQC and MCS that a similar trend was noted;
however, the extent of the increase in the variability as the angle magnitude increased was
not as prominent. In both this and our previous study, the mean difference between the IMU
estimated abduction/adduction angle and that of the MCS was not significant, although
the RMSE reported in this study was greater (RMSE of 8.59◦ compared to 4.91◦) [37].
However, several factors may have influenced this, such as the limited range of action
previously observed (limited to only vertical jumping). Differing action types, including
cutting maneuvers that induce more abduction/adduction and rotation, were examined in
this study. Normalization of both RMSE values may provide a better means of comparison.
Across all cases, the RMSE values between the TQC and MCS were smaller than those
reported by our previous study, illustrating that perhaps the TQC may estimate angles more
accurately. Furthermore, comparing the BA plots showed that the TQC demonstrated an
overall greater degree of reliability, as both lesser trends and smaller LoAs were observed.

Limitations

This study had several limitations, including the use of a controlled laboratory setting.
Due to the limited space and potential lack of comfort, participants may not have been
able to perform actions exactly as they would on-field. The floor, being stiffer than the
common surfaces in sports, might have also impacted our results, as several studies have
tracked the effects of surface stiffness on energy absorption and biomechanics; it may
be possible that greater errors/variations would be present in on-field activities where
surface stiffness can vary greatly [54,55]. The small population size (N = 9) of our study
was a limitation. Additional participants with more varying age, weight, height, etc., may
be needed to assess the true accuracy and reliability of the TQC. The way our sensors
were affixed may also be a limitation for using this in the field, as on-field use of these
sensors may preclude them from being similarly placed on athletes. Either due to game
rules or athlete comfort, sensor placement may need to be adjusted. Studies conducted
have correlated the relationship between sensor position and orientation with errors in
estimations, showing a reduction in accuracy of up to 20.8% [56]. Thus, although when
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using the current sensor placement we reported high levels of accuracy and reliability when
implementing the TQC, changes in sensor orientation/placement may adversely affect the
results. Additionally, the duration of each test may have omitted, or greatly reduced, the
potential effect drift and error accumulation can have on angle estimates. While the TQC
accounts for gyroscopic drift in a recursive process, test actions were performed within
several seconds. During on-field implementation, the sensor may need to be recording for
upwards of two hours, depending on the sport being examined. The effects of prolonged
recording on the accuracy/reliability of the TQC warrants additional research.

5. Conclusions

Our goal in this study was to ascertain the potential improvement in accuracy and
reliability of a tuned quaternion conversion algorithm when compared to the sensor fusion
algorithm often provided by manufacturers. The theory was that, due to their popularity
in rehabilitation settings, various parameters within the sensor fusion algorithm are tuned
to less dynamic actions and therefore may not be robust enough for implementation in
sports-related activities. Tuning a quaternion conversion algorithm and using dynamic
actions, we recorded improvement across all three angle types, as the TQC was able to more
accurately (lower RMSE) and more reliably (smaller LoA) estimate an angle than the IMU.
It may be feasible to use this algorithm to identify and track knee angle measurements
that might be associated with ACL injury. However, further testing for the effects that
surface-of-play can have, the optimal placement of sensors to ensure adherence to rules
and player comfort, and the effects that drift may have on the prolonged recording, will be
needed before an on-field application is possible.
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