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Abstract: RGB-T tracking involves the use of images from both visible and thermal modalities. The
primary objective is to adaptively leverage the relatively dominant modality in varying conditions to
achieve more robust tracking compared to single-modality tracking. An RGB-T tracker based on a
mixed-attention mechanism to achieve a complementary fusion of modalities (referred to as MACFT)
is proposed in this paper. In the feature extraction stage, we utilize different transformer backbone
branches to extract specific and shared information from different modalities. By performing mixed-
attention operations in the backbone to enable information interaction and self-enhancement between
the template and search images, a robust feature representation is constructed that better understands
the high-level semantic features of the target. Then, in the feature fusion stage, a modality shared-
specific feature interaction structure was designed based on a mixed-attention mechanism, effectively
suppressing low-quality modality noise while enhancing the information from the dominant modality.
Evaluation on multiple RGB-T public datasets demonstrates that our proposed tracker outperforms
other RGB-T trackers on general evaluation metrics while also being able to adapt to long-term
tracking scenarios.

Keywords: multi-modality adaptive fusion; mixed-attention mechanism; RGB-T tracking

1. Introduction

Visual object tracking is an essential branch of computer vision that has recently
made significant progress and has been widely applied in various industries, including
autonomous driving, intelligent security, and robotics [1]. The current research on visual
object tracking predominantly focuses on visible modality (RGB tracking). This is primarily
due to the rich color and texture information that RGB images provide, making target
feature extraction more feasible as well as enabling the use of relatively low-cost imaging
devices based on visible modality [2].

However, researchers have identified the limitations of RGB tracking in extreme
environments such as rain, fog, and low-light conditions. Thermal infrared imaging, on
the other hand, relies on the target’s thermal radiation and is less affected by intensity
variations in illumination, making it possible to penetrate rain and fog. It provides a
complementary and extended modality to RGB tracking [3]. This complementarity has led
researchers to progressively concentrate more on object tracking based on the fusion of
these two modalities to create trackers with higher accuracy and robustness [4]. As shown
in Figure 1, the complementary fusion of visible images and thermal images can provide
more stable features for target-tracking tasks to overcome environmental challenges that
cannot be dealt with in a single modality.
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connected network to obtain the target position. However, this simple approach intro-
duced excessive background noise, leading to a decrease in the network’s recognition ca-
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the bounding box was regressed. One significant drawback of such methods is that the 
sizes and ratios of RoI regions are limited and local in nature. They cannot adapt flexibly 
to variations in the target’s appearance, as illustrated in Figure 2. Additionally, these 
methods fail to incorporate sufficient background information for feature learning. This 
limitation results in inadequate modeling of the global environmental context in the 
search framework due to the potential insufficient feature interaction between RoIs from 
different modalities. Consequently, the mutual enhancement and complementary effects 
between the two modalities are restricted. 
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of the architecture is the modality shared-specific feature interaction (SSFI) module. The 
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shared and specific features to suppress the weights of low-quality modalities. The mixed-
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redundant noise. 

Figure 1. Illustration of the complementary information between multi-modal images.

The object tracking method that combines visible and thermal modalities is known as
RGB-T tracking. The key point in RGB-T tracking is to achieve complementary information
fusion between the visible and thermal modalities. Early RGB-T tracking methods mostly
employed CNN for feature modeling. Some methods [5,6] simply concatenated the features
extracted from the visible and thermal modalities and fed them into a fully connected
network to obtain the target position. However, this simple approach introduced excessive
background noise, leading to a decrease in the network’s recognition capability. Other
methods [1,7–15] first generated candidate boxes (RoIs) from the search frame and then
performed feature fusion on the RoIs from different modalities using mechanisms such as
gating, attention, and specific data attribute annotations. Finally, binary classification of
foreground/background was conducted on the fused features, and the bounding box was
regressed. One significant drawback of such methods is that the sizes and ratios of RoI
regions are limited and local in nature. They cannot adapt flexibly to variations in the tar-
get’s appearance, as illustrated in Figure 2. Additionally, these methods fail to incorporate
sufficient background information for feature learning. This limitation results in inadequate
modeling of the global environmental context in the search framework due to the potential
insufficient feature interaction between RoIs from different modalities. Consequently, the
mutual enhancement and complementary effects between the two modalities are restricted.
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Figure 2. Comparing the model proposed in this paper with other advanced RoI-based RGB-T
tracking models when the target undergoes large deformation (the yellow box represents ground
truth). We can observe that our MACFT model accurately extracts the features of the target and, due
to not being restricted by RoI’s scale, can generate bounding boxes that are closer to the ground truth.
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To enhance the adaptive fusion capability of the algorithm for complementary infor-
mation from different modalities, we have designed a tracking architecture based on a
combination of multiple attention mechanisms (referred to as MACFT). This architecture
can learn the complementary features between visible and thermal modalities. The core of
the architecture is the modality shared-specific feature interaction (SSFI) module. The SSFI
module performs cross-attention and mixed-attention operations on the shared and specific
features from both the visible and thermal modalities. The cross-attention operation facili-
tates the interaction of information between modalities, while also merging the shared and
specific features to suppress the weights of low-quality modalities. The mixed-attention
operation is used to enhance the fused modality information and further remove redundant
noise.

Furthermore, in the feature extraction stage, considering that the effective receptive
field of CNN may grow much more slowly in practice than theoretically due to the contin-
uous downsampling process [16], there is still a significant amount of local information
retained even after multiple convolutional layers. To achieve long-range modeling of target
pixels, we employ the Vision Transformer [17] architecture, which has been widely used
in recent years for Single-Object Tracking (SOT), as the backbone of our network. We
extend it to a dual-branch Siamese architecture. Additionally, although visible and thermal
images have different imaging wavelengths, they still share many correlations, such as
object edges, contour information, and fine-grained texture details [9]. Therefore, apart
from the dual-branch backbone used to extract features from visible and thermal images
separately, we introduce a shared-parameter backbone. By introducing a KL divergence
loss function as a constraint, we maintain the consistency between modalities and learn
shared features across modalities. Finally, we insert the SSFI module after the backbone to
perform feature fusion and achieve cross-modal interaction.

After cross-fusing features from the modality-specific feature branch and the modality-
shared feature branch, we generate the target bounding box with only a simple structured
corner point predictor. After extensive experiments on several public RGB-T tracking
datasets, we verify that the proposed method is effective and outperforms most of the
current state-of-the-art RGB-T tracking models.

The main contributions of this paper are summarized as follows. Firstly, a high-
performance RGB-T tracking method has been proposed, which utilizes a deep transformer-
based backbone to extract both the specific features and shared features from visible and
thermal modality images. This method demonstrates excellent performance in challeng-
ing scenarios such as significant target deformations and occlusions. Secondly, a novel
modality feature fusion structure based on a combination of multiple attention mecha-
nisms is designed, and through the cross-input and fusion of cross-modal shared/specific
information, the complementary features between modalities can be fully interacted. It
can adaptively suppress low-quality modalities and enhance the features of dominant
modalities for tracking. Thirdly, as a versatile fusion strategy, the module we designed can
be easily extended to other multi-modal scenarios.

2. Related Work
2.1. RGB Tracking Methods

Visual object tracking based on RGB images has been developed for quite some time,
but it was not until recent years when deep neural networks were successfully applied
to computer vision tasks that models with high tracking accuracy emerged. They can
be broadly classified into two categories, namely, discriminative models and generative
models.

Discriminative models are trained using the whole image labeled with the target loca-
tion, aiming to obtain a classifier that can distinguish between foreground and background.
They often need to generate multiple proposal regions during the tracking process before
feeding the classifier through the forward propagation to obtain positive and negative
samples. These samples are further refined through post-processing methods such as the
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cosine window penalty, and the best samples are retained. Typical discriminative trackers
include MDNet [8], ATOM [18], DiMP [6], etc. Although these models are known for
their high accuracy, the excessive online processing required for them consumes many
computational resources, which results in slow operation; indeed, the RGB-T tracking
methods extended from the above-mentioned approaches also face the challenge of not
being able to meet real-time requirements, such as DMCNet [12], MaCNet [3], APFNet [1],
etc. To address this drawback, Jung et al. [19] modified the forward propagation based on
MDNet with the ROI Align [20], thereby increasing its speed.

Contrary to the discriminative model, the generative model solely relies on offline
training and has no online update step. The final prediction of the target is obtained by
computing the joint probability density of both the template and search image. Typical
generative models such as the Siamese network-based tracker [21–23]. The generative
model’s major strength is its small computational effort and fast speed, but its tracking
accuracy is often inferior to that of discriminative models due to insufficient information
interaction between the template and the search images and the lack of an online update
step.

In recent years, the field of computer vision has witnessed the gradual replacement
of CNN as the backbone architecture with the transformer. In the domain of visual object
tracking, Chen et al. [24] designed self-contextual augmentation (ECA) and cross-feature
augmentation (CFA) modules in their proposed model TransT that differ from the tra-
ditional transformer structure to achieve a better fusion of features between templates
and search regions. Yan et al. [25] proposed a method based on the transformer codec
structure to achieve tracking directly by bounding box prediction, in which the image is
fed into a simple fully convolutional network for feature extraction and then directly fed
into the transformer prediction head for bounding box prediction without pre-generating
proposal regions. Cui et al. [26] proposed an asymmetric attention mechanism for infor-
mation interaction between the template and search images, which saves computational
resources and provides the possibility to update the template online during the tracking
process. Furthermore, attention mechanisms have also been widely utilized in other fields.
For instance, Zhou et al. [27] and Zheng et al. [28] applied attention mechanisms in tool
condition monitoring and bearing defect detection.

To improve the speed of our tracker, the model proposed in this paper is based on
the idea of the generative model, whereby the process of tracking relies entirely on offline
training. Inspired by the work of Chen et al. [29], the full interaction between the target
template and the search image is implemented within the transformer backbone, which
also gives our tracker a very high accuracy.

2.2. RGB-T Tracking Methods

RGB-T tracking, based on the fusion of visible and thermal modalities, is a branch
of single-object tracking that focuses on effectively utilizing complementary information
from multiple modalities to achieve a more stable and robust tracking performance. In
2018, Wang et al. [30] introduced correlation filters into the field of RGB-T tracking, using
average correlation peak energy to compute weights. In 2021, Zhang et al. [31] proposed
a novel robust RGB-T tracking framework called JMMAC. JMMAC is based on the well-
known ECO algorithm [32] in single-modality tracking and takes motion principles into
full consideration to design an adaptive structure that allows the model to switch between
appearance modeling and motion modeling.

In recent years, more high-performance RGB-T trackers have been proposed because
of the introduction of deep neural networks. Li et al. [10] developed a multi-adapter
convolutional network for RGB-T tracking by following MDNet’s multi-domain learning
framework that performs feature extraction for modal-generic features, modal-specific
features, and instance features. However, performing forward propagation too many times
leads to slow running speed of the model, which cannot meet the real-time requirements.
Zhu et al. [14] also used MDNet, but through a 1 × 1 convolutional kernel + Relu + LRN
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(local response normalization) to form a feature aggregation module to fuse the features
of two modalities and randomly reject the feature channels using the channel dropout
technique, which effectively eliminates redundant information and noise while preventing
model overfitting. Zhang et al. [5] first implemented the task of RGB-T fusion tracking
based on a Siamese network combined with multi-modal features. In this method, the
modality weight calculation is designed according to the size of the predicted target position
deviation, which improves the reliability of the model. The disadvantage of this method is
that only the concatenation method is used for the fusion of modes, which fails to effectively
suppress low-quality mode noise. Zhu et al. [7] proposed a trident architecture to integrate
the fused modality features and two modality-specific features, thus achieving robust
target representation. Zhang et al. [33] introduced a complementary perception module for
multi-modal feature fusion, which reduces the modality discrepancy between single-modal
features to enhance the discriminability of fused features. This is done to fully utilize
training data and address various challenges such as illumination variations, occlusion,
thermal crossover, and fast motion. Zhu et al. [11] designed a feature fusion structure
based on the attention mechanism proposed in SKNet [34] during the modality fusion
stage, enabling different neurons of the model to have adaptive receptive fields. Zhang
et al. [35] built upon the mfDiMP [36] framework and unified multiple modality fusion
strategies (including pixel-level fusion, feature-level fusion, and decision-level fusion) into
a hierarchical fusion framework. They also designed a self-attention-based module to
model the confidence of modalities and exploit modal information in a non-local manner.

With the trend of the transformer architecture surpassing CNN in performance in
recent years, many researchers in the field of RGB-T object tracking have attempted to
incorporate the core idea of the self-attention mechanism into their algorithm models. One
typical example is APFNet proposed by Xiao et al. [1]. Building upon the challenges posed
by RGB-T-specific attributes, APFNet adopts specific strategies for fusion and incorporates
three independent and separate encoders (based on the self-attention mechanism) and
decoders (based on the cross-attention mechanism) in each fusion branch. This enables
self-enhancement within modalities and interaction enhancement between modalities.
The limitation of this method is that it still relies on CNN to extract general features and
performs attention operations in the high-level semantic space after downsampling multiple
times but fails to consider more fine image information. Zhu et al. [37] introduced ViPT,
which is based on a unified ViT backbone for feature extraction. By leveraging the idea of
visual prompt tuning [38], ViPT adds the thermal modality information to the tokens for
learning, while preserving the original feature structure of the transformer. This approach
significantly reduces the number of trainable parameters, but the price is insufficient fusion,
making the model perform poorly in scenes such as illumination changes.

3. Method

In this section, our proposed RGB-T tracking model MACFT is described in detail,
as shown in Figure 3. The whole model consists of three parts, which comprise the
modality complementary feature extraction network based on the transformer backbone,
the modality shared-specific feature interaction module based on the mixed-attention
mechanism, and the target localization regression network; each of these components will
be discussed more specifically later. The overall information pipeline of the model can
be summarized as follows: after the images from the two modalities are sent to different
feature extraction backbones, the modal-shared features and modal-specific features will
be obtained, respectively, and then these features will be crossed in pairs and fused by the
SSFI module (generating a group of shared features of visible mode and specific features
of thermal mode, and a group of shared features of thermal mode and specific features
of visible mode). The fused features are then fed into the target localization network to
generate the position of the target. Additionally, the explanation of symbols used in this
section will be shown in Abbreviations section.
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modal-specific/shared feature extraction, information fusion between modalities, and bounding box
regression.

3.1. Transformer-Based Complementary Feature Extraction Backbone

In our proposed model, the feature extraction part is divided into four branches,
namely, the visible modal-specific feature extraction branch, the thermal modal-specific
feature extraction branch, and two modal-shared feature extraction branches. ViT [17]
served as the base backbone for all four branches, initiated with parameters from the
CLIP [39] pre-trained model. Furthermore, the template image is concatenated with the
search image in the same dimension to achieve information interaction. The process is
detailed as follows.

3.1.1. Model-Specific Feature Extraction Branch

First, given a video sequence, we select the first frame as the reference frame and crop
the template image Z ∈ RHz×Wz×3 according to the labeled bounding box, where Hz ×Wz
is the size of the template image, and accordingly, the subsequent frames in the video
sequence are used as the search image with the size set to X ∈ RHx×Wx×3. To accommodate
the generic ViT backbone, we set the search image size Hx ×Wx to 224 × 224 and the
template image size Hz ×Wz to 112 × 112.

Before using the transformer backbone for feature extraction, the input image is first
serialized, i.e., patch embedded, by dividing the 2D image into N blocks of size D = P2×C
(P is the size of patch; here, P = 16 since the backbone used is ViT-B-16, and C is the number
of channels of the image (here C = 3), before projecting the patch onto the space with
dimension D through a linear transformation. For our input template image and search
image, the dimensions of the image after serialization will be transformed into Zp ∈ RNz×D

and Xp ∈ RNx×D, where Nz = HzWz/P2 and Nx = HxWx/P2.
For the transformer backbone, there is an additional step in the input process which is

to add positional encoding to help the model distinguish the order of the input sequence.
For the search image sequence, the pre-trained positional encoding ps = pptr can be used
directly because its size is consistent with the pre-trained ViT backbone input. However,
for the template image, its size is not aligned with the ViT input and cannot accommodate
the pre-trained positional encoding, so we set up a learnable positional encoding structure
that consists of a two-layer fully connected network, which is added to the template image
sequence to obtain the positional encoding vector pz of the template image.
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After adding the position encoding vector, we obtain the final input vectors z ∈
RNz×D∗ and x ∈ RNx×D∗ , and subsequently, we concatenate z, x along the first dimension
and feed them into the transformer backbone network for learning. Let the concatenated
vector be r:

r = Concat(z, x, dim = 0). (1)

Let the output of layer n in the backbone network be rn; then we have:[
r*] = [

rn−1]+ MA
([

rn−1]),
[rn] =

[
r*]+ FFN

([
r*]).

(2)

where MA denotes mixed-attention operation and FFN denotes feed forward network.
The calculation within MA can be expressed as follows:

MA([rn]) = so f tmax
([

a(zn, zn), a(zn, xn)
a(xn, zn), a(xn, xn)

])([
znWV
xnWV

])
(3)

where a(x, y) = (xWQ)(yWK)
T/
√

d.
It is in the cross-attention operations such as a(zn, xn) and a(xn, zn) that the model

learns the relationship between the template image and the search image, and in the self-
attention operations such as a(zn, zn) and a(xn, xn) that this relationship is self-enhanced.
We construct two identical and independent feature extraction branches for RGB and
thermal images based on the above method for extracting features unique between different
modalities. Let the feature vectors output from the two branches be:

Rv ∈ R(Nz+Nx)×D*
, Rt ∈ R(Nz+Nx)×D*

. (4)

3.1.2. Modal-Shared Feature Extraction Branch

To better construct a complementary feature representation between the visible and
thermal modalities, we add two modal-shared feature extraction backbones to the model
(again using ViT as the backbone with the same input structure as the modal-specific feature
branch) for learning features shared by both modalities. Further, to be able to constrain
the backbone of this branch to ensure that its output features are consistent across the two
modalities, we introduce a Kullback–Leibler (KL) divergence loss Ldiv. The formula is
expressed as follows:

Ldiv = KL(Gv‖Gt) =
1

Nz + Nx
∑Nz+Nx

n=1 (gvnlog(gvn − gtn)) (5)

where Gv ∈ R(Nz+Nx)×D∗ , Gt ∈ R(Nz+Nx)×D∗ denote the output vectors (after softmax) of
the visible modality input and thermal modality input through the shared feature branch
backbone, respectively, while gvn, gtn denote the nth term of the first dimension in Gv, Gt.
KL divergence is based on the information entropy principle, and it can accurately measure
the information lost when approximating one distribution with another, so it can be used
to calculate the similarity between two distributions.

3.2. Modality Shared-Specific Feature Interaction Module

After obtaining the features from the four branches (the visible branch, the thermal
branch, and the shared branches), we design a modality shared-specific feature interaction
module based on the mixed-attention mechanism, with the aim of learning an adaptive
discriminative weight for features from different modalities, thus enhancing high-quality
modality while suppressing low-quality modality.

As shown in Figure 4, we use two types of attention mechanisms in the SSFI module:
the cross-attention module (CAM) and the mixed-attention module (MAM).
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Figure 4. Schematic diagram of the SSFI module. It consists of 2 CAM modules and N = 6 MAM mod-
ules. The CAM modules utilize cross-attention to aggregate features from the visible specific/thermal
shared branch and the thermal specific/visible shared branch. The MAM modules further enhance
the aggregated features by introducing mixed-attention.

Given a vector consisting of visible features connected with thermal features x =
Concat(xv, xt), we first map the input into three equally shaped weight matrices called
query, key, and value by a linear layer. qv, kv, vv are used below to denote the visible part
and qt, kt, vt denote the thermal part. From (3), the calculation of MAM can be described
as:

MAM([x]) = so f tmax
([

a(xv, xv), a(xv, xt)
a(xt, xv), a(xt, xt)

])([
xvvv
xtvt

])
(6)

where a(xv, xt) = (xvqv)(xtkt)
T/
√

d, a(xv, xv), a(xt, xt), a(xt, xv) in the same way.
The CAM module, on the other hand, eliminates the self-attention component and

retains only the cross-attention, which can be described as:

CAM([x]) =
[

softmax
(
a(xv, xt)

)
∗ xtvt

softmax
(
a(xt, xv)

)
∗ xvvv

]
(7)

In the SSFI module, we connect the outputs from the visible modal-specific feature
branch with the modal-shared feature branch (thermal part), and from the thermal modal-
specific feature branch with the modal-shared feature branch (visible part), but only the
part with the same size as the search image is selected and the template part is discarded:

Rv, Rt ∈ R(Nz+Nx)×C → Rx
v , Rx

t ∈ RNx×C,
Gv, Gt ∈ R(Nz+Nx)×C → Gx

v , Gx
t ∈ RNx×C.

(8)

Hvt = Concat(Rx
v , Gx

t ),
Htv = Concat(Rx

t , Gx
v).

(9)

Subsequently, Hvt, Htv are fed into the CAM module for modal information interaction:

{tv = CAM(Htv),
{vt = CAM(Hvt).

(10)

Only cross-attention is used here for the fusion of features from different branches
due to the fact that sufficient self-enhancement has been performed in the backbone for the
features from each modality, and there is no need to add extra self-attention modules. Addi-
tionally, removing the self-attention operation can also reduce the model’s parameter count.
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However, in the following MAM modules, we introduce self-attention operation because
the initial interaction mapped features from different modalities into a new space, necessi-
tating further enhancement of feature representation with the self-attention mechanism.
These points will be supported in Chapter 4 in the subsection on ablation studies.

Finally, we connect the output of the CAM module and reduce the dimension and
send it to the MAM module to further enhance the information interaction between the
modalities:

{mix = DR (Concat ({tv, {vt)). (11)
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3.3. Target Localization Regression Network

After the SSFI module, we use a lightweight corner predictor to localize the target.
First, the features are reshaped into 2D; then, for the top left and bottom right corners of the
bounding box, the features are downsampled using 5 convolutional layers, and finally the
corner coordinates are calculated using the softArgmax layer and are reverse mapped to the
coordinates corresponding to the original image according to the scale of the image crop.

3.4. Training Method
3.4.1. Training in Stages

We employ a staged approach for model training, which comprises three stages. The
first two stages involve backbone training, requiring the modality fusion network to be
removed while retaining only the corner predictor.

In the first stage, we freeze the modal-shared feature branch and load the pre-trained
model to initialize the backbone of the modal-specific feature branches. We then train the
backbone of the corresponding branches using RGB and thermal image data and save the
model parameters.

In the second stage, the modal-specific feature branches are frozen, and the modal-
shared branch is unfrozen. During the forward pass, RGB and thermal images are re-
peatedly used to update the parameters of the backbone, and the model parameters are
saved.

In particular, during the training of the feature extraction backbone in the first two
stages, in order to reduce the number of trainable parameters of the network and consider-
ing the shared characteristics of the low-level features between images, we freeze the first
eight multi-head attention modules of the ViT backbone and only fine-tune the last four.

In the third stage, all feature extraction backbone branches are frozen, and the models
trained in the first two stages are loaded for initializing the backbone parameters. The
modality fusion network (SSFI) is added for training and the model parameters are saved.

3.4.2. Loss Function

The model proposed in this paper uses a total of three loss functions in the offline
training phase, which are l1 loss, generalized GioU loss [40], and KL divergence loss,
and the loss functions are combined in the first and third stages of model training in the
following manner:

L = λgiou Lgiou

(
bi, b*

i

)
+ λL1L1

(
bi, b*

i

)
. (14)

where L1 denotes the l1 loss, Lgiou denotes the generalized GIoU loss, bi denotes the target
bounding boxes predicted by the model on the search image, b∗i denotes the true value of
the target bounding boxes, and λgiou and λL1 are the weight parameters of the loss.
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In the second stage of model training, we additionally introduce the KL divergence
loss, and the loss function is combined in the following way:

L = min
[
λgiou Lgiou

(
bv, b*

v
)
+ λL1L1

(
bv, b*

v
)
,

λgiou Lgiou
(
bt, b*

t
)
+ λL1L1

(
bt, b*

t
)]

+λKLLdiv(bv, bt).
(15)

where Ldiv denotes KL divergence loss, λKL is its weight, and bv, bt represent the target
bounding boxes obtained from the RGB image and thermal image after modal-shared
feature branches and corner predictors, respectively.

3.5. Inference

The RGB-T tracking model proposed in this paper does not contain any additional
post-processing operations in the inference stage, and consists of only a few steps of image
sampling, forward pass, and coordinate transformation, so MACFT can run in real time at
a high speed.

4. Experiments

This section focuses on the experimental setup and procedure, evaluated on three
major RGB-T public datasets (RGBT234 [41], LasHeR [42], and VTUAV [35]) and compared
with current state-of-the-art models.

4.1. Implementation Details
4.1.1. Experimental Platform Setup

MACFT training was performed in Python 3.8.13, Pytorch 1.7.1, and CUDA 11.7. All
experiments were conducted on a workstation equipped with two RTX 3090 GPUs, a Core
i7 12700k CPU, and 32 GB of RAM.

4.1.2. Parameter Details

The first stage of training trains visible and thermal modal-specific feature branches
for 40 epochs, which was in total an 80-epoch training: 40 epochs of training for the second
stage and 80 epochs of training for the third stage. Each epoch consists of 12,000 image
samples, with a batch size of 64. All models are learned using the AdamW optimizer [43],
with the weight decay set to 10−4 and the initial learning rate set to 10−5 for the backbone
and 10−4 for the rest.

In particular, when testing the LasHeR dataset, the model is trained using LasHeR’s
own training set, while when testing the RGBT234 dataset and VTUAV dataset, the model
is trained using the full LasHeR dataset. In all training stages, similar to our baseline model,
λgiou and λL1 are set to 2 and 5, respectively, whereas in the second stage of training, λKL
is set to a large number (in this case, 800) with the purpose of suppressing the optimizer’s
focus on other loss terms, thereby facilitating the learning of modal-shared features.

4.2. Public Dataset Evaluation
4.2.1. Evaluation Metrics

In this paper, we use the two most commonly used metrics to evaluate the performance
of the tracking algorithm, which are the precision rate (PR) and the success rate (SR).
The precision rate is calculated as the center location error (CLE) between the predicted
bounding box and the ground truth, which is eventually expressed as the percentage of
frames where the CLE is within a threshold (usually set to 20 pixels), and by varying the
size of the threshold, a precision rate curve can be obtained. The success rate is calculated
as the percentage of frames whose intersection over union (IoU) between the predicted
bounding box and the ground truth is greater than the threshold value, and by setting
different thresholds, a success rate curve can be obtained.
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4.2.2. Evaluation on RGBT234 Dataset

The RGBT234 dataset contains a total of 234 RGB-T video sequences with a total of
about 116.7 K frames, as well as 12 different challenge attributes, no division between
the training and test sets, and the images of the two modalities are not precisely aligned.
As shown in Table 1, we evaluate 10 different RGB-T tracking algorithms (APFNet [1],
TFNet [7], DAFNet [13], MANet++ [9], MANet [10], SiamCDA [33], ViPT [37], JMMAC [31],
MaCNet [3], DMCNet [12]) on the RGBT234 dataset and compare them with the algorithm
proposed in this paper. The results show that our MACFT model achieves a precision rate
of 85.7% and a success rate of 62.2% on the RGBT234 dataset, which is 5.7% and 4% better
than the baseline, respectively.

Table 1. Evaluation results on the RGBT234 dataset. Red, blue, and green represent the first, second,
and third place, respectively.

APFNet TFNet DAFNet DMCNet MANet++ SiamCDA ViPT JMMAC MaCNet MACFT

PR (↑) 0.827 0.806 0.796 0.839 0.795 0.760 0.835 0.790 0.790 0.857
SR (↑) 0.579 0.560 0.544 0.593 0.559 0.569 0.617 0.573 0.554 0.622

4.2.3. Evaluation on LasHeR Dataset

The LasHeR dataset is the largest RGB-T tracking dataset with accurate annotation and
alignment, with a total of about 734.8 K frames, 19 challenge attributes, divided training
and testing sets, and a higher tracking difficulty compared to the RGBT234 dataset. To
further evaluate the effectiveness of the model proposed in this paper, as shown in Figure 5,
we compare its results evaluated on the LasHeR dataset with 10 RGB-T tracking algo-
rithms (APFNet [1], DMCNet [12], MaCNet [3], mfDiMP [36], MANet [10], MANet++ [9],
DAPNet [14], DAFNet [13], TransT [24], ViPT [37]). Our MACFT model achieves a 65.3%
precision rate and a 51.4% success rate on the LasHeR dataset, which is a 7.5% and 5%
improvement, respectively, compared to the baseline.
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4.2.4. Evaluation on VTUAV Dataset

The VTUAV dataset is a large-scale RGB-T dataset designed for unmanned aerial vehi-
cle (UAV) tracking, and it is currently the highest-resolution RGB-T dataset that considers
both short-term and long-term tracking scenarios. However, the disadvantage of VTUAV
is that the visible and thermal modalities are not aligned, and each frame in the sequence is
not precisely manually annotated. Nevertheless, from another perspective, such data are
more in line with the images obtained in real-world applications.
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We evaluated our approach on both short-term and long-term tracking subsets of
the VTUAV dataset and compared it with state-of-the-art RGB-T tracking algorithms.
The results are shown in Tables 2 and 3. In particular, HMFT-LT is a model optimized
specifically for long-term tracking (using GlobalTrack [44] as the global detector and RT-
MDNet [19] as the tracking selector). When RT-MDNet recognizes that the target does not
exist, GlobalTrack is selected to search for the target in the entire image.

Table 2. Quantitative comparison against state-of-the-art RGB-T trackers on the VTUAV short-term
subset. Red, blue, and green represent the first, second, and third place, respectively.

Trackers PR SR FPS

MACFT 80.1% 66.8% 31.7
HMFT [35] 75.8% 62.7% 30.2
ADRNet [4] 62.2% 46.6% 25.0
mfDiMP [36] 67.3% 55.4% 28.0
DAFNet [13] 62.0% 45.8% 21.0
FSRPN [45] 65.3% 54.4% 30.3

Table 3. Quantitative comparison against state-of-the-art RGB-T trackers on the VTUAV long-term
subset. Red, blue, and green represent the first, second, and third place, respectively.

Trackers PR SR FPS

MACFT 54.1% 46.7% 31.7
HMFT-LT [35] 53.6% 46.1% 8.1

HMFT [35] 41.4% 35.5% 30.2
ADRNet [4] 17.5% 25.3% 25.0
mfDiMP [36] 31.5% 27.2% 28.0
DAFNet [13] 25.3% 18.8% 21.0
FSRPN [45] 36.6% 31.4% 30.3

In the short-term subset evaluation, MACFT achieves a precision rate of 80.1% and a
success rate of 66.8%, far surpassing the second-ranked tracker. In the long-term subset
evaluation, MACFT achieves a precision rate of 54.1% and a success rate of 46.7%. It can
be observed that even without specific optimization for long-term tracking tasks, MACFT
still achieves state-of-the-art tracking performance on the long-term subset, which also
demonstrates its potential for long-term tracking tasks.

4.2.5. Evaluation Based on Challenge Attributes

To better evaluate the effectiveness of our proposed MACFT model, we evaluated it
on the RGBT234 dataset based on 12 labeled challenge attributes, which are: No Occlusion
(NO), Partial Occlusion (PO), Heavy Occlusion (HO), Low Illumination (LI), Low Reso-
lution (LR), Thermal Crossover (TC), Object Deformation (DEF), Fast Motion (FM), Scale
Variation (SV), Motion Blur (MB), Camera Movement (CM), and Background Clutter (BC).

As shown in Table 4, our proposed model (MACFT) outperforms other state-of-the-art
tracking models (DMCNet [12], APFNet [1], TFNet [7], MaCNet [3], DAFNet [13], ViPT [37],
JMMAC [31], respectively) in most challenging attributes, especially in scenarios involving
object occlusion and deformation, which further validates the effectiveness of the tracking
model.
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Table 4. Precision rate and success rate (PR/SR) of MACFT and other trackers under different
challenge attribute subsets on the RGBT234 dataset. Red, blue, and green represent the first, second,
and third place, respectively.

DMCNet ViPT APFNet TFNet MaCNet DAFNet JMMAC MACFT

NO 93.7/70.6 94.5/74.2 96.0/70.5 92.1/69.0 94.0/68.4 83.6/60.0 91.6/70.2 97.3/73.0
PO 89.9/63.0 84.4/63.3 85.8/60.4 80.8/56.7 81.1/56.5 80.1/55.9 79.9/59.4 85.7/63.9
HO 71.5/51.2 77.1/57.2 75.0/51.6 68.7/46.6 71.9/48.5 65.6/42.8 67.8/47.6 77.8/56.1
LI 85.3/59.2 79.1/57.2 86.8/58.5 81.5/54.8 81.4/54.0 82.5/55.1 88.4/61.8 82.7/58.3
LR 83.2/58.1 84.6/61.3 83.8/57.3 81.0/53.8 77.9/53.1 77.6/51.9 75.3/51.4 84.2/58.7
TC 87.0/61.9 88.9/66.2 84.4/59.1 80.1/57.2 81.5/59.0 81.8/57.5 72.7/50.4 82.7/60.7

DEF 75.4/54.9 81.3/63.4 79.4/56.8 71.4/50.9 73.5/51.4 65.1/44.2 68.0/51.2 83.4/63.8
FM 81.0/53.6 89.7/64.8 86.6/55.6 76.1/47.4 80.9/49.2 65.6/41.5 68.0/36.6 85.0/59.6
SC 82.3/59.8 82.6/62.9 83.7/58.5 77.6/56.0 78.3/55.7 73.7/50.9 81.0/60.6 86.1/64.1
MB 79.4/60.3 86.8/67.7 80.1/60.2 71.2/53.3 75.8/57.4 62.9/46.1 74.3/56.7 86.9/65.5
CM 81.2/59.4 85.4/65.0 81.0/59.1 76.0/54.1 75.9/54.2 68.1/47.0 74.2/55.0 88.4/65.2
BC 82.1/54.7 83.7/59.1 81.0/54.1 80.2/50.7 79.6/49.0 78.3/45.7 63.8/44.3 85.0/57.9

ALL 83.9/59.3 83.5/61.7 82.7/57.9 80.6/56.0 79.0/55.4 79.6/54.4 79.0/57.3 85.7/62.2

4.2.6. Qualitative Evaluation

Our results for the tracking performance of MACFT on several challenging video
sequences are presented in Figure 6. These sequences included object deformation, camera
movement, object occlusion, low illumination, high illumination, and other challenges. To
test our method, we compared it with several advanced RGB-T trackers. This comparison
indicates that MACFT had a higher ability to utilize the modality complementary informa-
tion while excluding the interference of low-quality modality. Furthermore, MACFT had a
more accurate understanding of the high-level semantic features of the target, making it
more robust in tracking.
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4.2.7. Comprehensive Evaluation of Efficiency and Effectiveness

Our method runs at 33.3 FPS (50.2 FPS for a lighter version with modality-shared
feature branches removed) on an RTX 3090 GPU and can run in real time. Figure 7 gives
a visual display of the comprehensive comparison of MACFT’s success rate and running
speed on the RGBT234 dataset with other advanced RGB-T tracking methods (the compared
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methods include TFNet [7], APFNet [1], MANet++ [9], MDNet [8], JMMAC [31], HMFT [35],
SiamCDA [33], and DAFNet [13]).
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Figure 7. Comprehensive comparison of tracking success rate and speed on the RGBT234 dataset.
Our MACFT model achieves the highest tracking success rate under the premise of ensuring real-time
running (33.3 FPS on average).

4.3. Visualization

To prove that the fusion structure we designed can suppress the noise well from
low-quality modality while enhancing the feature expression of the dominant modality, we
selected specific sequences for visualization. The results are shown in Figure 8.
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Figure 8. Visualization of the attention weights of different branches when one of the modalities is of
low quality.

The visualization method involves computing the attention weights by multiplying
the query weight matrix with the key weight matrix at different network positions. Then,
the average is taken along the token dimension to obtain a 14 × 14 (search size/patch size)
attention weights map, which represents the regions of the image that the network focuses
on at the current position.

We selected the car light sequence (thermal modality is dominant) from the RGBT234
dataset and the left mirror sequence (visible modality is dominant) from the LasHeR
dataset for visualization. Among the attention weights maps, we can clearly observe
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that when facing a lack of target information in a certain modality, the network struggles
to concentrate its attention entirely on the target location after feature extraction by the
backbone. However, after incorporating our designed fusion structure, the noise introduced
from the low-quality modality image is effectively suppressed, while the features from the
dominant modality image are further enhanced.

4.4. Ablation Study
4.4.1. Model Pruning Experiments

To verify the validity of our model structure, specific analyses were performed for each
component, and we set up several variants of the MACFT model (prefix B for baseline and
DM for dual-modality), namely (1) MACFT (B-T): uses the baseline model + thermal modal-
ity, (2) MACFT (B-RGB): uses the baseline model + visible modality, (3) MACFT (DM): uses
2 modal-specific branches but removes all fusion modules based on attention mechanism,
only concatenating the features from the two modalities and sending them to a fully con-
nected layer for fusion, (4) MACFT (DM + CAM): uses 2 modal-specific branches (removing
modal-shared feature branch) and 6 cascaded CAM modules for modality fusion (5) MACFT
(DM + MAM): uses 2 modal-specific branches (removing modal-shared feature branch) and
6 cascaded MAM modules for modality fusion, (6) MACFT (DM + CAM + COM): uses all
three branches and uses CAM modules in early feature fusion, but in late feature fusion,
uses CAM modules instead of all MAM modules, (7) MACFT (w/o-FT): uses the complete
model of MACFT but removes the finetune operation of the backbone.

The performance of the above control groups on the two RGB-T datasets is shown in
detail in Table 5. The experimental results show that each component in MACFT improves
the tracking performance to different degrees, and also indicates that the designed modal-
shared branch and modality fusion network are effective.

Table 5. Evaluation results of MACFT and its variants on the RGBT234 dataset and the LasHeR
dataset.

Trackers
LasHeR RGBT234

PR (↓) SR (↓) PR (↓) SR (↓)
MACFT (B-T) 42.8% (−22.5%) 33.2% (−18.2%) 67.4% (−18.3%) 48.8% (13.4%)

MACFT (B-RGB) 57.8% (−7.5%) 46.4% (−5.0%) 80.0% (−5.7%) 58.2% (−4.0%)
MACFT (DM) 62.2% (−3.1%) 48.7% (−2.7%) 83.7% (−2.0%) 58.9% (−3.3%)

MACFT (DM + CAM) 63.8% (−1.5%) 50.3% (−1.1%) 83.7% (−2.0%) 60.7% (−1.5%)
MACFT (DM + MAM) 63.9% (−1.4%) 50.2% (−1.2%) 83.9% (−1.8%) 60.7% (−1.5%)

MACFT (DM + CAM + COM) 64.3% (−1.0%) 50.7% (−0.7%) 85.3% (−0.4%) 61.6% (−0.6%)
MACFT (w/o-FT) 64.3% (−1.0%) 50.8% (−0.6%) 84.0% (−1.7%) 60.9% (−1.3%)

MACFT 65.3% 51.4% 85.7% 62.2%

In particular, comparison between MACFT (DM + MAM) and MACFT (DM + CAM)
confirms our view that since the features from different modalities are sufficiently self-
enhanced in the backbone, it does not make sense to simply add a self-attention operation
after the backbone without introducing the modal-shared branch. However, after introduc-
ing modal-shared feature branches and cross-fusing them with modal-specific branches,
the feature distribution is changed so there is room for learning with the introduction of
the self-attention operation.

4.4.2. Parameter Tuning Experiments

To find the optimal number of MAM modules in series under the current volume
of datasets, we evaluated the precision rate and success rate on the LasHeR test set and
conducted experiments on the number of MAM modules in series from 4 to 8, respectively,
and the results are shown in Table 6. The best results are obtained with 6 MAM modules
in series under the current volume of training datasets and using fewer MAM modules is
not enough to build the relationship of complementary information interactions between
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modalities, while using more MAM modules makes the model parameters not adjusted
properly under the same epoch of training due to the limitation of the volume of data.

Table 6. The relationship between the number of MAM modules and the tracking performance; the
evaluation results in the table are all tested on the LasHeR dataset.

Number of MAM Blocks PR SR

4 64.80% 51.00%
5 64.90% 51.20%
6 65.30% 51.40%
7 65.00% 51.20%
8 64.80% 51.10%

4.4.3. Parameter Size and Inference Speed

As an object tracking algorithm, the inference speed of MACFT is crucial as it directly
affects the practical usability of the algorithm. Table 7 shows the inference speed of MACFT
and its variants on an RTX 3090 GPU, as well as the success rate of tracking on the LasHeR
dataset, and the number of trainable parameters for these models.

Table 7. Inference speed, success rate, and corresponding model parameters using MACFT and
its variants on LasHeR (* represents the maximum number of trainable parameters in three-stage
training, excluding frozen network layers).

Trackers Speed
(FPS) Params * SR

MACFT 33.3 59.6 M 65.3%
MACFT (DM + CAM + COM) 35.5 59.6 M 64.3%

MACFT (DM + CAM) 50.5 45.4 M 63.8%

It can be observed that the inclusion of the modal-shared branch has a significant
impact on the inference speed. If the requirement for tracking performance is not very high
but the demand for inference speed is high in practical applications, a light version without
the modal-shared branch can be considered.

5. Conclusions

In this paper, we propose an RGB-T tracking method, MACFT, based on a mixed-
attention mechanism. Four separate branches are established to extract modal-specific
features and modal-shared features, and information interaction between the template
image and the search image is introduced in each layer of the backbone. In the modality
fusion stage, both cross-attention and mixed-attention are used to fuse the image features
from different branches, which effectively reduces the noise from low-quality modality and
enhances the feature information of the dominant modality. After conducting extensive
experiments, we demonstrate that MACFT can understand the high-level semantic features
of the target well, thus enabling it to cope with multiple challenges and achieve robust
tracking.

However, our work still has some limitations, such as insufficient discriminability of
target instances, large parameter count, and complex training procedures. In the future,
we will address these issues by exploring various approaches, including but not limited
to designing lightweight fusion modules, employing knowledge distillation to reduce
parameter count, and integrating modal feature fusion into the feature extraction process
to simplify training steps. At the same time, we will also explore ways to make the model
compatible with more other modalities.



Sensors 2023, 23, 6609 17 of 19

Author Contributions: Conceptualization, Y.L., X.G., M.D. and J.Y.; methodology, Y.L. and M.D.;
software, Y.L.; validation, Y.L.; formal analysis, X.G., Y.L. and M.D.; investigation, Y.L.; resources, X.G.
and J.Y.; data curation, Y.L.; writing—original draft preparation, Y.L.; writing—review and editing,
X.G. and J.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by The National Key Research and Development Program of China,
grant Nos. 2022YFB3901800, 2022YFB3901805.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw results of our experiments could be available at: https://drive.
google.com/file/d/1Fing9GjH6i5RTvRXuNRZ5fWt03DSE_ZO/view?usp=drive_link (accessed on 4
July 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Symbols Explanations
Concat Means to connect two tensors in the same dimension.

WQ, WK, WV
Refers to the three weight matrices used by the self-attention mechanism
in transformer, namely: query, key, and value.

d Refers to the dim of WQ and WQ

softmax
Refers to the normalized exponential function; the function is to make the range of
each element mapped between (0, 1).

KL Refer to the Kullback–Leibler divergence calculation.
DR Refers to operations that use linear layer dimensionality reduction.
softArgmax Refers to finding the index corresponding to the maximum value through softmax.
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