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Abstract: Screening programs for early lung cancer diagnosis are uncommon, primarily due to the
challenge of reaching at-risk patients located in rural areas far from medical facilities. To overcome
this obstacle, a comprehensive approach is needed that combines mobility, low cost, speed, accuracy,
and privacy. One potential solution lies in combining the chest X-ray imaging mode with federated
deep learning, ensuring that no single data source can bias the model adversely. This study presents
a pre-processing pipeline designed to debias chest X-ray images, thereby enhancing internal clas-
sification and external generalization. The pipeline employs a pruning mechanism to train a deep
learning model for nodule detection, utilizing the most informative images from a publicly available
lung nodule X-ray dataset. Histogram equalization is used to remove systematic differences in image
brightness and contrast. Model training is then performed using combinations of lung field segmen-
tation, close cropping, and rib/bone suppression. The resulting deep learning models, generated
through this pre-processing pipeline, demonstrate successful generalization on an independent lung
nodule dataset. By eliminating confounding variables in chest X-ray images and suppressing signal
noise from the bone structures, the proposed deep learning lung nodule detection algorithm achieves
an external generalization accuracy of 89%. This approach paves the way for the development of a
low-cost and accessible deep learning-based clinical system for lung cancer screening.

Keywords: chest X-ray; confounding bias; deep learning; model generalization; lung cancer; feder-
ated learning

1. Introduction

Lung cancer is the leading cause of cancer mortality worldwide with 1.80 million
deaths documented by the World Health Organization in 2020 [1]. The global deaths
worldwide attributable to lung cancer are twice those from the second most common cause
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of cancer death, colorectal cancer. Studies have shown a favorable prognosis for early-stage
lung cancer, with five-year survival rates of up to 70% for patients with small, localized
tumors [2]. Relieving the economic and sociological costs associated with lung cancer is
therefore dependent on the early diagnosis of this condition.

A comprehensive meta-review [3] concluded that low-dose computed tomography
(LDCT) lung cancer screening could reduce lung cancer-associated mortality by 17% and
overall mortality by 4% in risk populations highly vulnerable due to tobacco exposure.
Although LDCT is more effective at detecting lung cancer at an early stage than chest
X-ray (CXR) [4], the feasibility and cost-effectiveness of LDCT screening in low- and
middle-income countries without well-developed healthcare infrastructures have been
questioned [5]. In some rural areas lacking transportation, long distances and poor road
conditions can make healthcare inaccessible for many [6]. Compounding this problem is the
relative lack of skilled radiologists and oncology professionals per person in the population,
particularly in low- and middle-income countries. Furthermore, even in high-income
countries, LDCT is known for its tendency to produce false positives, resulting in invasive
procedures to characterize the nodule and associated false positive nodule workup risks [7].
For these reasons, lung cancer screening remains uncommon, with only the USA and China
currently implementing lung cancer screening. These programs target high-risk lifetime
smokers, in contrast to the entire population screening programs common for other cancers,
such as breast, cervical, and colorectal cancers [8].

Extending the scope of lung cancer screening to cover a broader population depends
on increasing community access to screening facilities at affordable costs. CXR is a widely
available, safe, simple to operate, and inexpensive medical imaging technology compared
to LDCT [9]. In addition, the CXR image acquisition apparatus is readily available in
a portable/mobile form that is easily cleaned and maintained. For these reasons, CXR
remains a potentially appealing technology for lung cancer screening programs, especially
in situations in which clinical resources are limited, and patients are located far from health
infrastructure [10].

Implementation of the CXR imaging mode and deep learning techniques to boost ra-
diologist productivity and sensitivity could, in turn, provide a pragmatic and economically
feasible mechanism for broad population screening for lung cancer, potentially saving many
lives and reducing the economic impact of this disease. A population-wide lung cancer
CXR screening program would provide a valuable corpus of training data for lung cancer
detection deep learning models but only if the collected images were free of confounding
variables and bias, with privacy guaranteed. Much has been published in relation to the
use of federated learning as a technology to implement privacy by design [11,12], with one
study [13] investigating the susceptibility of these systems to biases caused by adversarial
images. There has been little investigation into the effects of homogenizing medical image
data to remove biases and thereby improve model generalization. This study proposes an
image pre-processing pipeline that simultaneously homogenizes and debiases chest X-ray
images, leading to improvements in internal classification and external generalization and
paving the way for federated approaches for effective deep learning lung nodule detection.
This study is the first that systematically assesses the utility of combining several debiasing
techniques using a process of ablation to determine the impact of each.

1.1. Related Work

Although many studies have used deep learning algorithms to classify thoracic dis-
ease [14–23], very few have applied image homogenization techniques apart from the
near-universal application of histogram equalization. Lung field segmentation was used
by [24] to improve both areas under the curve (AUC) and disease localization for 14 thoracic
conditions from the chest X-ray14 dataset [23], but no external generalization testing was
performed in their study. Lung field segmentation was also used in a study by [25] as
a pre-processing step in CXR-based nodule localization and characterization, leading to
state-of-the-art results for this task. However, ablation testing excluding the segmentation
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algorithm was not performed. A small number of studies have considered the effect of rib
and bone suppression on automated lung nodule detection [26–28]. Of these studies, [29] is
the most recent and comprehensive, being an investigation of deep learning with lung field
segmentation and bone suppression to improve automated nodule detection for the JSRT
dataset. This study found a segmented and bone-suppressed image corpus led to better
deep learning CNN training and validation accuracy when combined with the exclusion of
outlying records (5% of all images). External validation of these results was not reported.

An alternative line of research into debiasing deep learning CXR automated diagnosis
systems is the use of custom loss functions to disentangle features, thereby achieving
confounder-free training [30,31]. The idea involves including the training data source as
a “bias” feature that penalizes gradient descent, with that feature allowing the model to
distinguish the source dataset provenance. In the context of COVID-19 detection [30], this
approach improved the AUC by 13% on held-out data, outperforming both histogram
equalization and lung field segmentation as debiasing techniques. To date, the most ad-
vanced form of a fair confounder-free training algorithm can be found in [31], allowing for a
continuously variable confounder value, rather than the binary or discrete values typically
found with disentanglement training algorithms [32–34]. This study successfully applied
confounder-free learning to several tasks, including determining bone age from pediatric
hand X-ray images and reducing the effect of sex as a confounding variable. However, the
current state of the art is limited by a lack of advanced knowledge of the confounding vari-
able to be suppressed using this technique and the creation of inappropriately conditioned
datasets [31].

This study aims to address bias and confounding at the source, being the medical
images themselves since, in the federated learning context, data sources are indeterminate.
Therefore, source-based confounding variables would be too diverse to be mitigated by
feature disentanglement approaches alone.

1.2. Importance to the Field

The recent worldwide COVID-19 pandemic provided the research community with
a unique opportunity to validate computer vision-based CXR analysis techniques in a
real-world application since the accessibility of CXR as an imaging mode made it an ideal
tool for tracking COVID-19 lung involvement progression. Despite promising early re-
sults, many development studies proved to be overly optimistic due to confounding bias,
whereby machine learning-based classifiers chose “shortcuts” over signals especially when
disease-positive and control sample images were independently sourced [35]. In such
cases, source-dependent systematic differences in image attributes, such as brightness,
contrast, labeling, projection, and patient position, could overwhelm the pathological signal
differences between the classes, resulting in unreliable classification results for real-world
clinical applications. Confounding variables can also come from demographic factors, such
as the sex, socioeconomic status, and age of sample populations [36]. Egregious examples of
confounded machine learning-based CXR studies are the numerous COVID-19 diagnostic
studies that have reported extremely high diagnostic accuracy for COVID-19 pneumonia
against “other” viral pneumonias without recognizing that the COVID-19 sample popula-
tion consisted of elderly patients, while the viral pneumonia control population consisted
of pediatric samples, as reported by [37].

The problem of confounding bias is a core inhibitor of the clinical acceptance of ma-
chine learning CXR analysis algorithms. The usefulness of such systems depends upon the
quantity and quality of the labeled training data upon which they are trained. Systematic
differences caused by demographic factors, image acquisition apparatus calibration and
operation, projection, and regional morphology diversity will always be present. It follows
that biases in training data corpora are inherently unavoidable. Therefore, a practical and
reliable approach to CXR homogenization is needed to allow deep learning models to
generalize unseen datasets.
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2. Materials and Methods

Deep learning models were developed in Python/Tensorflow [38] in the University of
Technology Sydney interactive high-performance computing environment.

2.1. Datasets

A process of bibliographic analysis was undertaken to determine the list of publicly
available datasets containing CXR images labeled with lung cancer or conditions associated
with lung cancer. To identify lung cancer-specific datasets, a title/abstract/key search was
performed in Scopus using the following query string:

(TITLE-ABS-KEY (chest AND (X-ray or radiograph) AND (lung or pulmonary) and
(nodule or mass or tumor) AND (dataset or database))).

This query returned 451 results. A document-based citation analysis was performed
using VOSViewer [39], whereby the relatedness of the items was based simply on the
number of times that items had cited each other. The reasoning was that the publicly
available data sources would be among the most highly cited items in this field of research.
Of the 451 items, the largest set of connected (by citation) items was 153, resulting in a
graph consisting of seven clusters. Each paper in each cluster was then retrieved for full
text review to determine the underlying dataset used for the study. In addition, common
themes within the cluster were identified and logged in Table 1.

Table 1. Description of published research clusters.

Cluster Number
of Papers

Central
Paper/s

Imaging
Mode Connecting Theme Data

Source

1 36 [40,41] CXR

Connected by the use of JSRT [40]
and PLCO [41] datasets as a lung
nodule dataset, along with a deep

learning approach for image
analysis and nodule classification.

JSRT
PLCO

2 29 [42,43] CT/CXR

Connected using local feature
analysis, linear filtering, clustering

techniques, and other non-deep
learning techniques.

LIDC

3 24 [44] CXR

Artificial intelligence and machine
learning methods, including ANN,
SVM, and KNN. Typically used the

JSRT database.

JSRT

4 23 [45] CXR
Rib/bone suppression and image

enhancement techniques, including
wavelet transform methods.

JSRT

5 17 [46,47] CT
Use of deep learning and shape
analysis to diagnose lung cancer

from chest CT images.
Luna16

6 12 [48,49] CXR

KNN classification of nodules as
blobs. Used stratification of JSRT to
train/calibrate schemes to reduce

false positive detection
by algorithms.

JSRT

7 12 [50] CXR
A set of older papers using various
techniques to detect nodules and
reduce false-positive detections

Private
Data
JSRT

It was clear from this analysis that the most widely studied lung nodule dataset is
the Japanese Society of Radiological Technology database (JSRT) [40] with the CXR subset
of the Lung Image Database Consortium Image Collection (LIDC) [51], along with the
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Prostate, Lung, Colorectal, and Ovarian (PLCO) [41] dataset also used in influential studies.
The JSRT dataset is the most cited data source with 944 citations at the time of writing. The
use of this dataset across numerous studies has resulted in it being the de-facto standard
dataset for comparative studies of automated lung nodule detection. For this reason, we
chose the JSRT dataset as the CXR corpus for training deep learning models in this study.
The JSRT dataset also provides gold-standard lung field masks that allow for good-quality
segmentation of the dataset and training data for our U-Net [52]-based lung segmentation
algorithm, discussed in Section 2.3. Finally, the JSRT authors conducted an AUC-ROC study
using 20 radiologists from four institutions determining an average AUC of 0.833 ± 0.045.
This knowledge was useful for calibrating our expectations for model performance and
for sanity-checking our internal testing results. We selected a stable AUC of 80% as the
target reference to compare the number of images pruned for successful internal training of
each model.

For external testing, we used the CXR subset of the LIDC. This dataset includes
280 CXR images with expert labels indicating the presence and malignancy of lung cancer.
Four radiologists labeled this dataset with access to the corresponding patient computed
tomography (CT) scans to confirm the lung cancer diagnosis. This dataset was used as an
inference-only dataset to check the generalization of the JSRT-trained models with various
configurations of the pre-processing pipeline. Additional properties of the JSRT and LIDC
datasets are provided in Table 2.

Table 2. Summary of the datasets used in this study.

Dataset Nodule Image
Count

Non-Nodule
Image Count Image Size/Format Label Accuracy

AUC-ROC

JSRT 154 images from
154 patients

93 images from
93 patients

Universal Image Format
2048 × 2048

12-bit grayscale

20 radiologists
from 4 institutions.

0.833 ± 0.045

LIDC 280 images from
157 patients 0

DICOM
Extracted and

compressed to 512 × 512
PNG using Pydicom [53]

Not provided

2.2. Image Pre-Processing Operations
2.2.1. Histogram Equalization

CXR images exhibit variable contrast based on the technical calibration of the image
acquisition apparatus, particularly, the energy of the primary beam and the application
of scatter radiation minimization methods, such as collimation, grids, or air gaps [54].
Histogram equalization processing has proven to be effective in normalizing the gray-
level distribution of CXR images, resulting in uniform image histograms [55]. Histogram
equalization was applied to all images in this study as a standard first step toward image
homogenization. This step is required since deep learning-based computer vision algo-
rithms are trained on continuous pixel intensity values, and systematic differences in image
contrast between the datasets would result in biased model training and negatively impact
model generalization.

2.2.2. Lung Field Segmentation

Lung nodules occur within the lung field; therefore, non-lung field pixels are signal
noise. CXR features, such as projection labels and portability markers at the edges of
CXR images, have been shown by several studies to be sources of confounding bias in
deep learning-based medical imaging applications [35,56,57]. Projection labels are effective
predictors of CXR repository sources with accuracy of up to 99.98% and 100% accuracy
in separating emergency room from inpatient CXR images [56]. In addition, the use of
bedside mobile CXR apparatus is frequently associated with more severe disease (due to
lack of patient mobility), allowing deep learning models to use apparatus portability labels
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as a signal indicating the disease and its severity. Thus, eliminating non-lung field pixels
using segmentation effectively removes training bias and results in more generalizable
deep learning models.

The utility of this approach in medical image classification has been supported in
previous studies [58,59]. A comprehensive review of lung area segmentation techniques
may be found in [60]. The best performance reported by this survey was achieved using
a CNN-based deep learning system with a Dice similarity coefficient of 0.980 [61]. A
much simpler approach leveraging the U-Net architecture [52] was trained on the JSRT
dataset [40] consisting of 385 CXR images with gold-standard masks to achieve a Dice
similarity co-efficient of 0.974 [62]. We reasoned that the U-Net-based architecture could
be improved in terms of Dice similarity coefficients, as well as adaptability, using training
data from two additional data sources, the Montgomery and Shenzen datasets [63], thereby
creating a combined training data corpus of 1185 CXR image/mask pairs.

Lung field segmentation experiments were performed using a VGG-like CNN [64],
DenseNet [65], and ResNet [66]-based U-Net architectures. We found that a Deep Residual
U-Net following [67] provided the highest Dice similarity scores and was consistent with
other studies [68,69] outside the medical imaging domain. Since nodules are typically
small, we expanded the image size for the residual U-Net implementation from 224 × 224
pixels as used in the original study [67] to 512 × 512 pixels by the addition of extra
encoder/decoder residual blocks to maximize the image size with reasonable processing
time in our computing environment. This process allows the segmented images to retain
important anatomical features for downstream classification.

This combination of training datasets and network design achieved a maximum
validation Dice similarity co-efficient of 0.988 at epoch 93, which is a small improvement
from [70], who reported a result of 0.974 for lung field segmentation using the JSRT, Shenzen,
and Montgomery datasets, and [62], who used the JSRT dataset. Training loss, accuracy
curves, and Dice charts for our residual U-Net are included in Figure 1.

Figure 1. Training curves obtained for deep residual U-Net lung field segmentation.

When applied to the unseen LIDC dataset, the segmentation network produced
minimal artifacts, similar to those reported in [71] on six of the 280 source images, as shown
in Figure 2. These artifacts took the form of pinholes in the generated lung mask. These
pinholes were eliminated using morphological closing with a kernel size of 8, followed
by flood fill of any contour smaller than a parameterized minimum square area, which
was determined by the experiment to be optimal at 1/16th of the image area. The before
and after results of the parameterized morphological closing/contour filling operations are
shown in Figure 2.
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Figure 2. Results of morphological closing and parameterized contour filling to complete lung masks
for LIDC images. (a) Before the closing of pinhole artifacts; (b) after the closing of pinhole artifacts.

A montage of LIDC lung field segmentation masks is shown in Figure 3. Four image
masks (highlighted in red) were considered failures for either having a contour count of
fewer than 2 or poor visibility of a single lung field. The images associated with these masks
were not segmented. Instead, they were removed from the LIDC dataset for generalization
testing experiments.

Figure 3. LIDC lung field masks were automatically generated using a hybrid U-Net and single-
parameter morphological algorithm.

2.2.3. Segmented Lung Field Cropping

Following the segmentation of the CXR images using gold standard masks for JSRT
and U-Net generated masks for LIDC, the size of the lung field on the images was observed
to be highly variable due to differences in patient morphology and main beam focal distance,
as shown in Figure 4a. It may be noted that the area surrounding the lung field contains no
useful information and could potentially be a source of confounding bias. Therefore, the
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CXR images were closely cropped on all sides to ensure that the first non-black pixel is on
the border of the image for all directions, per Figure 4b.

Figure 4. (a) Segmented JSRT images; (b) segmented and cropped JSRT images. JSRT lung field
masks before cropping (a) and after cropping (b).

2.2.4. Rib and Bone Suppression

We noted that the ribcage features are very pronounced on the CXR images after
equalization and segmentation. Additionally, ribs in the LIDC dataset generally appeared
to be more prominent than ribs in the JSRT dataset. Therefore, we considered the appear-
ance of ribs as a potential confounding variable and sought to suppress and homogenize
the appearance of ribs on the CXR images. Two approaches were investigated: first, an
autoencoder-based suppression algorithm was trained using bone-suppressed JSRT im-
ages [72]; and second, we adopted a simple CNN-based approach following [73] by reusing
code provided to the community [74]. We found that the second approach resulted in
much sharper images with less blurring of the fine lung structure details, consistent with
the results of [73]. The before and after rib suppression, for example, CXR images, are
presented in Figure 5a–d.

2.3. Deep Learning Model

The JSRT image dataset was loaded into data/label arrays and randomly split into
four parts using the scikit-learn StratifiedKFold function [75]. A VGG16 [64] classifier
initialized with ImageNet [76] weights was selected following experimentation with VGG16,
VGG19 [64], DenseNet-121 [65], and ResNet50 [66]. The pre-trained VGG16 model showed
the least tendency to overfit and provided the most uniform training results for each part of
the JSRT dataset, consistent with our earlier results on small medical image datasets with
insufficient data to train deeper networks [77].

The pre-trained VGG16 classifier was modified with a hand-crafted output head
designed to regularize the network and facilitate binary classification of the nodule and
non-nodule image classes (see Figure 6).

The modified VGG16 classifier was trained for each of the four parts using a binary
cross entropy loss function with a learning rate of 0.0005 for 50 epochs and 10 fine-tuning
epochs at a lower learning rate of 0.00001 to avoid overfitting. The trained models were
captured at the point of minimum validation loss. Sample training and fine-tuning accu-
racy/loss curves are shown in Figure 7.
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Figure 5. Effect of rib suppression for the JSRT and LIDC datasets. Fine vascular detail has been
preserved well with minimal overall reduction in image sharpness. (a) JSRT example without rib
suppression; (b) JSRT example with rib suppression; (c) LIDC example without rib suppression;
(d) LIDC example with rib suppression.

Figure 6. Pre-trained VGG16 classifier with modified output head using sigmoid activation for binary
classification.
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Figure 7. VGG16 training/loss curves for base training (a) and fine-tuning (b). (a) Initial training for
50 epochs; (b) fine-tuning for 10 epochs.

2.4. Evolutionary Pruning Algorithm

During initial four-fold training/validation, we observed great variation in the valida-
tion accuracy of per-fold models despite the model and training hyperparameters being
held constant. This variability was due to the randomized images per fold producing some
dataset shards that trained more easily than others.

To identify the nodule image samples that were the least informative for the nodule
class, an inference operation was performed against each nodule CXR image in the JSRT
dataset following the completion of each training round. This inference operation tested all
four shards against the k-fold trained model, resulting in 16 inferences per nodule positive
image (4 data shards × 4 models). For each round, the JSRT nodule image with the largest
number of misclassifications was added to a prune list and ignored on the next training
round, thereby under-sampling the majority nodule image class. This process was repeated
61 times, and the number of nodule-positive images was reduced from 154 to 93 to balance
the non-nodule image sample number. The pruned JSRT dataset was then used to train a
master model for external generalization testing against the LIDC dataset. This end-to-end
process of pruning and external testing is illustrated in Figure 8.

2.5. Experiment Setup and Ablation Studies

This study was concerned with any potential effects from the mix-and-match combi-
nations of lung field segmentation, close cropping, and rib suppression on internal and
external classification results. Image histogram equalization was applied in all experiments
as a standard image processing technique that was implemented in line with data ingestion.

This process resulted in six experiment configurations, as detailed in Table 3. It may be
noted that the cropping operation was only applied in combination with the segmentation
operation (experiments E and F). Experiments A, C, and E did not include rib suppression,
while experiments B, D, and F employed rib suppression. Experiments C and D applied
lung field segmentation as a proposed debiasing process, and experiments E and F further
applied cropping to the segmented lung field. Each experiment may be considered an
ablation study for the complete debiasing pipeline represented by experiment F.
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Figure 8. Four-fold training/pruning and external testing flowchart.

Table 3. Experiment/ablation tests covering each element of the proposed debiasing pipeline.

Experiment Segmentation Cropping Rib Suppression Sample Image

A False False False

B False False True

C True False False
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Table 3. Cont.

Experiment Segmentation Cropping Rib Suppression Sample Image

D True False True

E True True False

F True True True

3. Results
3.1. Internal Four-Fold Training and Testing

The internal testing results for experiments A–F are illustrated in Figure 9a–f using a
plot showing the number of pruned images on the x-axis and the corresponding calculated
AUC values on the y-axis.

Figure 9. The results obtained from experiments are presented as (a–f) respectively. (a) represents
the results obtained from the raw data. (b) includes histogram equalization and rib suppression.
(c) includes histogram equalization and lung field segmentation. (d) includes histogram equalization,
rib suppression, and lung field segmentation. (e) includes histogram equalization, lung field segmen-
tation, and cropping to the lung boundary. (f) includes histogram equalization, rib suppression, lung
field segmentation, and cropping to the lung boundary.

3.1.1. Internal Testing Result in A (No Debiasing Operations)

Internal testing results for experiment A, which represent training with raw data, are
presented in Figure 9a. The initial training round achieved an AUC of around 67.6% ± 4.1%,
consistent with [23] and another deep learning study using the JSRT dataset [78]. However,
these results improved significantly as the poorest performing nodule test samples were
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pruned, achieving a stable 80% with 15 pruned records and 93.5% ± 2.4 when the classes
were balanced with 62 pruned records.

3.1.2. Internal Testing Result B (Rib Suppression Operator)

Internal testing results following the application of the rib suppression operator only
are shown in Figure 9b. Rib suppression resulted in a significant improvement of the initial
results to 70.4 ± 5.0%. Once again, the results improved linearly as the poorest test nodule
samples were pruned, with a stable 80% AUC achieved at around 15 pruned records with
an AUC of 92.6 ± 4.6% achieved at the point of class balance.

3.1.3. Internal Testing Result C (Segmentation Operator)

Application of the lung field segmentation operator resulted in a further improvement
of the initial internal testing results, with an AUC of 72.6 ± 1.6% achieved without record
pruning, as shown in Figure 9c. The results improved following pruning of the poorest
performing lung nodule test images. However, this improvement occurred at a lower rate
than in both experiments A and B. A stable AUC of 80% was not reached until around
35 pruned records. This slower rate of AUC improvement per pruned image could be
interpreted as improved classification sensitivity for the more challenging nodule images.
Despite the improved initial AUC, the slower rate of improvement resulted in a lower AUC
of 88.1 ± 1.0 at the point of class balance. The lower final AUC and a very low error margin
may have been caused by the removal of confounding variables outside the lung field that
allowed models A and B to take shortcuts in learning.

3.1.4. Internal Testing Result D (Segmentation + Rib Suppression Operators)

Application of lung field segmentation and rib suppression to the histogram equalized
images resulted in another incremental improvement in the initial testing round with an
AUC of 74.9 ± 3.9% with no pruned records, as shown in Figure 9d. A stable AUC of 80%
was reached after pruning only 13 records, representing a significant improvement over rib
suppression alone (experiment C). An AUC of 90.3 ± 4.1% was achieved at the point of
class balance, again a significant improvement over segmentation alone.

3.1.5. Internal Testing Result E (Segmentation + Cropping Operators)

Compared to segmentation only, the cropping operation reduced the initial AUC to
70.7 ± 11.4% but allowed the model to reach a stable 80% AUC at around 25 pruned records
(compared to 35 for segmentation only), as shown in Figure 9e. An AUC of 91.0 ± 2.4 was
achieved at the point of class balance with 62 pruned records, which is much higher than
the final AUC of 88.1 ± 1.0 achieved using segmentation alone.

3.1.6. Internal Testing Result F (Segmentation + Cropping + Suppression Operators)

The best result was achieved in experiment F using all operators, as shown in Figure 9f.
The initial average AUC was 74.2 ± 7.1%. However, this experiment achieved a stable 80%
AUC from 10 pruned records with an AUC of 90.5 ± 4% achieved at the class balance point
of 62 pruned nodule images. Although other experiments may have achieved higher AUC
values, this outcome was only possible after discarding far more difficult nodule images.
Experiment F provided the best balance of excellent initial results, with minimal pruning
of only 10 of 293 or 3.4% of nodule images to reach the target stable 80% AUC.

3.2. Pruned Records Analysis (from Experiment F)

Since experiment F achieved excellent results with minimally pruned nodule records,
we were interested in the attributes of the pruned records potentially leading our trained
CNN to misclassify the nodule images as non-nodules. Therefore, we consulted a practicing
radiology registrar to interpret the top five misclassified JSRT nodule images, as shown
in Table 4. Each of the images that were found to be challenging to automatically classify
was also challenging for human readers due to low visibility thresholds, such as nodule
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features hidden behind the cardiac silhouette and/or position overlapping bone, vascular
marking, or breast tissue.

Table 4. Top five most difficult JSRT nodule images pruned for experiment E. Pruning these images
resulted in a stable AUC of around 78%. A circle represents nodule location per JSRT metadata. All
nodules are in challenging positions even for human radiologists, except for JPCLN142.png, which is
at the threshold of human visibility.

Filename Image JSRT Metadata
Notes Radiologist Observations

JPCLN151.png Extremely subtle
14 mm

Extremely subtle
Behind cardiac silhouette

Overlaps vascular marking

JPCLN003.png Obvious
30 mm

Obvious
Overlaps vascular markings

JPCLN130.png Extremely subtle
30 mm

Extremely subtle
Behind cardiac silhouette

JPCLN141.png Extremely subtle
10 mm

Extremely subtle
Behind rib/clavicle
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Table 4. Cont.

Filename Image JSRT Metadata
Notes Radiologist Observations

JPCLN142.png Extremely subtle
10 mm Not visible.

3.3. External Testing Evaluation Using Pruned Models

A series of master models were trained for each experiment using JSRT-based datasets
that had been balanced by pruning the over-represented nodule classes, keeping only the
images that were most informative of the nodule classification by testing over four folds, as
described above. This resulted in six fully trained models used to infer nodule scores for
each image in the LIDC CXR subset.

All CXR images in the LIDC dataset are lung cancer cases, with nodules identified by
CT scan, which are sometimes very subtle or invisible to human readers on CXR images.
A final experiment was conducted to identify which image processing operators had
promoted the generalization of the JSRT-trained models to an independent dataset. The
results are presented in Figure 10, in which the nodule class probability has been plotted
for each LIDC image in a scatterplot.

Since all LIDC images are of lung cancer patients, the plot can be expected to have
most data points at greater than 0.5 probability if the JSRT model has been successfully gen-
eralized to the LIDC dataset. This is the case for models implementing the rib-suppression
operator (experiments B, D, and F), particularly those in which the lung field segmentation
operator was also used (experiments D and F), with the best results achieved in experiment
F using the combination of rib suppression, lung field segmentation, and close cropping
operators. This combination of operators achieved a classification accuracy of 89% with
LIDC nodule images which we considered to be an excellent result given the subtlety of
nodule features on some of the LIDC images; some nodules were measured to be smaller
than 3 mm on CT scans [51], and smaller nodules were poorly visible on the corresponding
CXR images.
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Figure 10. Results of external testing against the LIDC dataset using JSRT-trained models with
all combinations of proposed debiasing operators showing the effectiveness of rib suppression in
improving classification results (b,d,f) especially when lung field segmentation is also applied (d,f).
(a) Experiment A—no debiasing operations; (b) Experiment B—rib suppression only; (c) Experi-
ment C—segmentation only; (d) Experiment D—segmentation and rib suppression; (e) Experiment
E—segmentation and cropping; (f) Experiment F—segmentation, cropping and rib suppression.

4. Discussion

These experiments delivered promising results. The first key observation is that image
histogram equalization alone, with no further debiasing operators, resulted in models
that did not generalize at all, per Figure 10a. This fact is a concern given that most
studies implementing deep learning in automated analysis of CXR images used histogram
equalization as the only pre-processing step. The second interesting result is that lung field
segmentation alone worsened the classification metrics internally and externally. We see
this outcome as strong evidence of confounding variables present in the JSRT image data
corpus that allowed some degree of shortcut learning from unsegmented images, which
was eliminated when these images were segmented. Finally, the poor external testing result
provided evidence that lung field segmentation alone is not enough to sufficiently debias
an image corpus to promote generalization.
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Our best generalization results were achieved using the rib suppression operator.
Although this technique has been shown to improve the sensitivity of human radiologists
to nodules [79], there has been little published literature using rib and bone suppression in
deep learning model generalization for medical images. This study is the first to employ
this method to the best of our knowledge. In our work, lung field segmentation with and
without close cropping improved the external classification results, but only after applying
the rib suppression operator. This outcome shows that the appearance of ribs on CXR
images is a confounding variable, which matched our observations that the visibility of
ribs on CXR images significantly varies between datasets. Improvement in generalization
only becomes evident after lung field segmentation and cropping, when this confounder is
suppressed.

Limitations

The technique developed in this study could only detect nodules within the lung field.
It cannot detect nodules occurring in the heart, mediastinal, and diaphragm regions because
the lung field segmentation process masks these areas. It is important for radiologists to
carefully examine other anatomical regions within the pleural cavity that are prone to
being overlooked, such as vascular features within the hilum, apices, and rib-crossings [80].
Computer vision algorithms, including the one developed in this study, are also expected
to face challenges in distinguishing these features from lung nodules.

This study was constrained by the datasets publicly available from JSRT and LIDC.
The JSRT dataset does not include images with medical devices, such as pacemakers and
drains; surgical modifications, such as resection with displacement; or significant skeletal
deformities, such as kyphosis. For a clinically useful model, it would be necessary to train
using cases that encompass these feature classes. This aspect will be addressed in future
research endeavors. Considering that privacy concerns restrict access to CXR data, the
future progress of this study will involve adoption of a federated learning paradigm in
conjunction with a clinical study. This approach will allow for more extensive access to real-
world training data and enable clinical validation of the proposed debiasing pre-processing
pipeline. The ultimate aim is to develop a generalized lung nodule detection reference
implementation.

5. Conclusions

The potential of private, federated deep learning to improve access to training data
while maintaining privacy can only be realized with an effective debiasing image pre-
processing pipeline. In this study, we demonstrated that the combination of histogram
equalization, rib suppression, and close-cropped lung field segmentation effectively ho-
mogenized and debiased a corpus of CXR images, enabling trained models to generalize to
external datasets that utilize the same image pre-processing pipeline. Notably, this study is
the first to incorporate a rib suppression operator in an external generalization study. The
inclusion of this operator was essential in achieving external generalization accuracy of 89%
for a model trained on the JSRT dataset and evaluated against the external LIDC dataset.
This state-of-the-art result should instill confidence in the research community that deep
learning classifiers can be trained in a bias-free manner, enabling their application across
datasets from different sources. This advancement paves the way for the development of
valuable clinical tools with broad applicability. We envision that such a tool, utilizing the
CXR imaging mode, can facilitate lower-cost and lower-risk lung cancer screening, leading
to improved access to early diagnosis and potentially saving many lives while reducing the
societal burden associated with this deadly disease.
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