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Abstract: Cardiac function indices must be calculated using tracing from short-axis images in cine-
MRI. A 3D-CNN (convolutional neural network) that adds time series information to images can
estimate cardiac function indices without tracing using images with known values and cardiac cycles
as the input. Since the short-axis image depicts the left and right ventricles, it is unclear which motion
feature is captured. This study aims to estimate the indices by learning the short-axis images and
the known left and right ventricular ejection fractions and to confirm the accuracy and whether
each index is captured as a feature. A total of 100 patients with publicly available short-axis cine
images were used. The dataset was divided into training:test = 8:2, and a regression model was
built by training with the 3D-ResNet50. Accuracy was assessed using a five-fold cross-validation.
The correlation coefficient, MAE (mean absolute error), and RMSE (root mean squared error) were
determined as indices of accuracy evaluation. The mean correlation coefficient of the left ventricular
ejection fraction was 0.80, MAE was 9.41, and RMSE was 12.26. The mean correlation coefficient of
the right ventricular ejection fraction was 0.56, MAE was 11.35, and RMSE was 14.95. The correlation
coefficient was considerably higher for the left ventricular ejection fraction. Regression modeling
using the 3D-CNN indicated that the left ventricular ejection fraction was estimated more accurately,
and left ventricular systolic function was captured as a feature.

Keywords: deep learning; 3D-CNN; cine-MRI

1. Introduction

The World Health Organization (WHO) states that approximately 17.9 million people
died from cardiovascular disease (CVD) in 2019, accounting for 32% of all deaths. Medical
imaging has revolutionized modern medicine and healthcare, with imaging and computing
technologies becoming increasingly important to the diagnosis and treatment of CVD.
Computed tomography (CT), magnetic resonance imaging (MRI), positron emission to-
mography (PET), single-photon emission computed tomography (SPECT), and ultrasound
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(US) are widely used for physiological understanding and diagnostic purposes in cardiol-
ogy. Specifically, CT and MRI are used to obtain specific information about the anatomy
of the heart. Cardiac magnetic resonance (CMR) is an important imaging modality that
allows noninvasive evaluation of myocardial disease and cardiac function [1]. The left
ventricular ejection fraction (LVEF) and right ventricular ejection fraction (RVEF) are critical
indices for assessing cardiac function in various clinical settings. These indices provide
vital information for guiding treatment and predicting a prognosis in patients with heart
disease. Specifically, the LVEF is considered an indicator in the diagnosis of CVD because
early detection of CVD leads to improved cardiac function and reduced mortality [2]. With
the development of CVD, the left ventricle (LV) experiences global and regional changes
characterized by progressive dilation, hypertrophy, and distortion of cavity shape. Func-
tional measurements such as ejection fractions are useful in analyzing structural changes in
the LV. On the other hand, the RVEF is useful in treating patients with acute lower wall
infarction complicated by right ventricular and pulmonary infarction [3]. The importance
of the RVEF lies in its lower value in patients with acute lower wall infarction complicated
by right ventricular infarction, obstructive pulmonary disease resulting in pulmonary
hypertension, valvular disease, and congenital heart disease. Therefore, the RVEF is an
essential diagnostic tool in heart disease. However, its reproducibility needs improvement
due to differences in skill among observers and high interobserver variability [4]. Thus, it
is crucial to develop a reliable method to measure the RVEF accurately.

Although echocardiography is widely used for measuring LVEFs and RVEFs, MRI
is considered the gold standard due to its superior accuracy and reproducibility over
echocardiography [5]. However, traditional MRI measurements of LVEFs and RVEFs
require manual tracing of the lumen, which is a time-consuming and labor-intensive
process. Furthermore, the interobserver variability is high due to the subjective nature of
manual tracing. Therefore, automatic or semi-automatic methods for measuring LVEFs
and RVEFs are needed to improve the accuracy and reproducibility of these indices.

In recent years, the availability of powerful graphics processing units (GPUs) has
reduced computational costs and made it possible to use 3D deep learning to analyze three-
dimensional (3D) medical images such as CT, ultrasound, and MRI scans, which provide
detailed 3D images of human organs and can be used to detect infections, cancer, trauma,
and vascular and organ abnormalities. Therefore, 3D convolutional neural networks
(CNNs) are increasingly being studied with medical images, and while 2D-CNNs can
extract spatial features from the input data, 3D-CNNs can be very effective in analyzing
volumetric data in medical images by simultaneously extracting both spectral and spatial
features from the input volume [6].

Since medical images contain a variety of information compared to normal images,
the network architecture should be designed according to the characteristics of medical
images; since most medical data, such as from CT and MRIs, exist in the form of 3D
volume data, a 3D-CNN can be used to better extract data-specific correlations [7]. Deep
learning techniques, specifically CNNs, have been applied to various medical image
analyses [8–11]. CNNs are widely used for image classification [12–14] regression [15–17],
object detection [18,19], super resolution [20,21], and semantic segmentation [22–24]. Recent
studies have proposed automatic segmentation of the left ventricle lumen to reduce tracing
time and interobserver errors in the study of cardiac function [25]. However, this method is
computationally expensive due to the need for slice-by-slice segmentation.

To overcome these limitations, we propose the use of a 3D-CNN, a deep learning
technique that extends CNN to 3D data. A 3D-CNN can extract 3D features that are more
useful in comparison to a 2D-CNN [26]. There was a report [27] on the estimation of
the Gleason score of the prostate by classification using a 3D-CNN; although, it was a
categorical prediction as a classification instead of a directly predicted value. Specifically,
we hypothesize that the LVEF and RVEF can be calculated from a series of heart movements
ranging from contraction to dilation using a 3D-CNN. Since the images used to calculate
the LVEF and RVEF are cine-MRI short-axis images that show both the left and right
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ventricles, we further hypothesize that a 3D-CNN can be used to predict both indices
simultaneously. If this method can be applied clinically, it may not only improve the time
efficiency of operations by reducing the manual or semi-automated complexity provided by
certain conventional devices manufacturers and analysis workstations, but also minimize
inter-observer errors in the calculation of LVEF and RVEF.

We developed a 3D-CNN model to predict the LVEF and RVEF. The model was trained
using 80 participants and tested using the remaining 20 participants. We used the mean
absolute error (MAE) and the root mean square error (RMSE) to evaluate the model’s
performance. Our results indicated that further improvements are needed to improve the
prediction accuracy of the RVEF, whereas the LVEF could be estimated using the 3D-CNN
with high accuracy.

The contributions of this paper are as follows:

- Proposed a method for simultaneously estimating the LVEF and RVEF from cine-MRI
images of the heart.

- Compared to traditional methods, the LVEF and RVEF were estimated without the
need for tracing.

- Showing the finding that the 3D-CNN captures left ventricle features rather than right
ventricle features from the short-axis images.

2. Materials and Methods
2.1. Subjects and Images

This study utilized cine-MRI images from the automated cardiac diagnosis challenge
(ACDC) dataset [28]. The ACDC dataset was created using real clinical examination results
from the University Hospital of Dijon (Dijon, France). This dataset is the first and largest
publicly available fully annotated MRI cardiac data in a medical imaging community setting.
The data comprised short-axis section sequences of cardiac magnetic resonance images
from 100 patients divided into five subgroups: 20 normal subjects (NOR), 20 patients with
previous myocardial infarction (MINF), 20 patients with dilated cardiomyopathy (DCM),
20 patients with hypertrophic cardiomyopathy (HCM), and 20 patients with abnormal right
ventricle. The spatial resolution ranged between 1.37 and 1.68 mm2/pixel. Our study used
a 100-patient ACDC training dataset.

These datasets contained cine-MRI images from the apex to the basal part of the heart,
although the total number of slices from each subject varied. To standardize these images,
the images were organized into a 3-dimensional matrix with 20 time phases per slice for a
cross-section of four slices in the central region of the heart, and saved as a neuroimaging
informatics technology initiative (NIFTI) file (Figure 1).
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Figure 1. Image extraction from dataset.

Since the number of images obtained from each subject varied, and because the apex
of the heart has extremely low delineation of the ventricle relative to the myocardium, and
the basal part of the heart has low delineation of structures other than the left and right
ventricles and myocardium, four cine-MRI slices of the mid-heart were used per subject in
order to standardize the number of slices (Figure 2). We obtained 20 images per slice for a
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total of 80 images per subject. The images were analyzed as a single 3D image of the heart
over time, from contraction to dilation. For data augmentation (Figure 3), the images were
rotated in 5◦ increments from −45◦ to 45◦ for 19-fold expansion.
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Figure 3. Rotation of image data for data augmentation.

2.2. Analysis Method

Building a regression model for estimating LVEF and RVEF from cardiac cine-MRI
images required using a regression CNN based on 3D-ResNet50. This 3D-ResNet50 is a
publicly available 3D-CNN for classification, in which the final layer of ResNet50, which
supports 3D input, has been replaced by a regression layer (Figure 4).

Our research assessed 3D-CNN using 5-fold cross-validation (training:test = 8:2).
During training, the CNN condition was the stochastic gradient descent with momentum
(SGDM) optimizer, with the initial learning rate, max epochs, and mini-batch size set to
0.0001, 10, and 512, respectively. These training and analyses were performed by in-house
developed software in MATLAB (2022a, The Mathworks, Natick, MA, USA). Detailed
information on the computer specifications used is shown in the Table 1.

Table 1. Software and equipment used in the study.

Environment Contents

Software MATLAB 2022a
OS Windows 10

CPU Intel core i9-10980XE 3.0 GHz
GPU NVIDIA RTX A6000 48 GB × 2

Memory DDR4 2933 Quad-Channel 64 GB
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Five subsets were created and assessed by sorting the LVEF and RVEF values in
descending order to avoid bias in both LVEF and RVEF within the subset. Regression
models were developed for LVEF and RVEF and tested (Figure 5).

2.3. Evaluation of Accuracy

The accuracy was measured using the correlation coefficient R, MAE, and RMSE.
Correlation coefficient R was calculated using Pearson’s correlation coefficient, and a
significance level of less than 0.05 was considered significant. MAE is a simple equation
for calculating the evaluation measure of a regression model, called the mean absolute
error between the observed and predicted values. It is used to evaluate the mean of the
data set residuals. RMSE is used to represent the root mean square difference between the
observed actual value and the model’s prediction. It is said to be used for absolute error
representations. MAE and RMSE were calculated from the following equations:

MAE =
∑i| f i − x i|

n

RMSE =

√
∑i( f i − x i)

2

n

where fi is the LVEF/RVEF predicted by the regression model, and xi is the known
LVEF/RVEF. The predicted LVEF and RVEF from the regression model were evaluated by
comparing them to the known LVEF and RVEF (Figure 6).
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Figure 6. Analysis and evaluation of LVEF and RVEF predicted from regression models against
known left ventricular ejection fraction LVEF and right ventricular ejection fraction RVEF.

The Bland–Altman method was used to assess the errors. Bland–Altman analysis is a
technique for expressing agreement between two quantitative measurements. It quantifies
the agreement between two quantitative measurements by constructing limits of agreement.
The resulting graph is a scatter plot XY, where the Y-axis shows the difference between two
paired measurements and the X-axis shows their average. In other words, the difference
between two paired measurements is plotted against the mean of the two measurements.
Bland–Altman analysis assumes a 95% confidence interval with 95% of data points within
±1.96 SD (SD: standard deviation) of the mean difference.
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3. Results

Table 2 shows each dataset’s correlation coefficients, MAE, and RMSE for the LVEF
prediction. Table 3 shows corresponding values for the RVEF prediction. The mean
correlation coefficient, MAE, and RMSE for the LVEF and RVEF are also presented: the
mean correlation coefficient, MAE, and RMSE for the LVEF were 0.804, 9.41, and 12.26,
respectively, while the mean correlation coefficient, MAE, and RMSE for the RVEF were
0.561, 11.35, and 14.95, respectively (Table 4, Figure 7). Figure 8 depicts the results of the
Bland–Altman analysis of dataset D, which was more accurate within the LVEF dataset,
and dataset H, which was the best within the RVEF dataset.

Table 2. Results of LVEF prediction.

Correlation
Coefficient R MAE RMSE

dataset A 0.845 (p < 0.05) 9.31 12.26
dataset B 0.704 (p < 0.05) 10.48 14.54
dataset C 0.824 (p < 0.05) 8.56 11.76
dataset D 0.888 (p < 0.05) 8.17 9.77
dataset E 0.757 (p < 0.05) 10.51 12.97

Table 3. Results of RVEF prediction.

Correlation
Coefficient R MAE RMSE

dataset F 0.407 (p = 0.08) 13.4 16.8
dataset G 0.637 (p < 0.05) 11.02 13.92
dataset H 0.641 (p < 0.05) 9.74 13.64
dataset I 0.641 (p < 0.05) 10.47 14.11
dataset J 0.480 (p < 0.05) 12.4 16.28

Table 4. Average of LVEF and RVEF results.

Correlation
Coefficient R MAE RMSE

LVEF 0.804 9.41 12.26
RVEF 0.561 11.35 14.95

Sensors 2023, 23, x FOR PEER REVIEW 8 of 14 
 

 

 

Figure 7. Representative linear regression lines for calculating correlation coefficients for predicted 

left ventricular ejection fraction (LVEF) against known LVEF (left) and for calculating correlation 

coefficients for predicted right ventricular ejection fraction (RVEF) against known RVEF (right). The 

green dashed lines represent a 95% prediction interval. 

 

Figure 8. Results of Bland–Altman analysis. The x-axis represents the mean of the predicted and 

true values. The green dashed line represents the acceptable range of error for the mean difference 

±1.96 standard deviation (SD). The black dashed lines represent the average difference between the 

predicted and true values. 

Figure 7. Representative linear regression lines for calculating correlation coefficients for predicted
left ventricular ejection fraction (LVEF) against known LVEF (left) and for calculating correlation
coefficients for predicted right ventricular ejection fraction (RVEF) against known RVEF (right). The
green dashed lines represent a 95% prediction interval.
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Figure 8. Results of Bland–Altman analysis. The x-axis represents the mean of the predicted and
true values. The green dashed line represents the acceptable range of error for the mean difference
±1.96 standard deviation (SD). The black dashed lines represent the average difference between the
predicted and true values.

Representative analysis results predicted on the software were shown in Figure 9. The
LVEF or RVEF per data (20 phases) can be calculated by loading the NIFTI file as test data,
and the regression line is obtained by loading all test data.
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4. Discussion

The LVEF and RVEF are crucial indices used to evaluate cardiac function in various
clinical settings. These indices provide critical information for guiding treatment and
predicting prognoses in patients with heart disease. Specifically, the LVEF is an essential
indicator in the diagnosis of CVD because early detection of CVD leads to improved
cardiac function and reduced mortality. On the other hand, the RVEF is useful in treating
patients with acute lower wall infarction complicated by right ventricular and pulmonary
infarction [2]. The importance of RVEF lies in its lower value in patients with acute
lower wall infarction complicated by right ventricular infarction, obstructive pulmonary
disease resulting in pulmonary hypertension, valvular disease, and congenital heart disease.
Therefore, RVEF is an essential diagnostic tool in heart disease. However, its reproducibility
needs improvement due to differences in skill among observers and high interobserver
variability. Thus, it is crucial to develop a reliable and accurate method to measure RVEF.

MRI is considered the gold standard for measuring the LVEF and RVEF due to its
superior accuracy and reproducibility over echocardiography. However, traditional MRI
measurements of the LVEF and RVEF require manual tracing of the lumen, which is a time-
consuming and labor-intensive process. Furthermore, the interobserver variability is high
due to the subjective nature of manual tracing. Therefore, automatic or semi-automatic
methods for measuring the LVEF and RVEF are needed to improve the accuracy and
reproducibility of these indices.

Recent advancements in deep learning techniques, specifically CNNs, have shown
potential in various medical image analyses [5–10]. CNNs are widely used for image
classification [11,12] and semantic segmentation [13,14]. Recent studies have proposed
automatic segmentation of the left ventricle lumen to reduce tracing time and interobserver
errors in the study of cardiac function [15]. However, this method is computationally
expensive due to the need for slice-by-slice segmentation.

To overcome these limitations, we propose the use of a 3D-CNN, a deep learning
technique that extends a CNN to 3D data. A 3D-CNN can extract 3D features that are more
useful in comparison to a 2D-CNN. Specifically, we hypothesize that the LVEF and RVEF
can be calculated from a series of heart movements ranging from contraction to dilation
using a 3D-CNN. Since the images used to calculate the LVEF and RVEF are cine-MRI
short-axis images that show both the left and right ventricles, we further hypothesize that a
3D-CNN can be used to predict both indices simultaneously.

We developed a 3D-CNN model to predict LVEF and RVEF. The model was trained
using 100 participants and tested using the remaining 20 participants. We used the MAE
and the RMSE to evaluate the model’s performance. Our results indicated that further
improvements are needed to improve the prediction accuracy of the RVEF, whereas the
LVEF could be estimated using the 3D-CNN with high accuracy.

Specifically, in this study, by training 3D (2D with time) cine-MRI short-axis images,
we obtained a significant positive correlation for the LVEF, indicating that the 3D-CNN
can accurately predict the movement of cardiac contraction of the left ventricle from cine-
MRI short-axis images. Meanwhile, the RVEF did not demonstrate a significant positive
correlation. This could be due to the fact that the short-axis images used in the analysis
were set perpendicular to the line bisecting the left ventricular myocardium through the
apex, possibly resulting in a significant correlation for the left ventricle. However, this
finding suggests that the 3D-CNN can accurately predict the LVEF from cine-MRI short-axis
images, which is clinically useful in the diagnosis and management of heart disease.

When we compared the correlation coefficients of the LVEF and RVEF, the LVEF had
a greater correlation, which is consistent with previous studies. Moreover, the Bland–
Altman analysis revealed that neither the LVEF nor the RVEF contained systematic errors,
indicating that the 3D-CNN reads and predicts left ventricle features without the right
ventricle’s influence. This is an important finding, as it suggests that the 3D-CNN model
can accurately estimate the LVEF without being influenced by the right ventricle’s motion.
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When comparing the accuracy of our 3D-CNN model with prior studies, we found that
the MAE and RMSE were lower than those reported in previous studies [29] that predicted
the LVEF without tracing and using a combination of classification and regression from 3D
images of 1000 subjects, as in the current study. Specifically, our results showed an MAE
of 6.84 and an RMSE of 9.74, which were better than the prior study’s results. However,
since our analysis included fewer subjects than the prior study, a single dataset may not
be sufficient to fully evaluate the model’s accuracy. Therefore, further studies with larger
sample sizes are needed to validate the accuracy of our 3D-CNN model. In addition, the
image types used in the analysis included 2-chamber and 4-chamber images as well as
short-axis images, indicating that analysis of short-axis images alone is not sufficient and
that adding various image types to the analysis is important for a more accurate prediction.
In addition, although the subject populations were limited, external validation was not
performed on the created prediction models. External validation reflects the unique image
features of medical imaging devices, and there is a review paper [30] that shows that the
algorithm’s performance on external data sets is diminished. Therefore, it is necessary to
increase the number of subjects and to examine how the prediction results are affected by
external data.

Compared to other studies that use segmentation, automatic segmentation was per-
formed using data from 440 subjects and reported an RMSE of 5.58 and MAE of 4.08 [31].
Another study performed automatic segmentation using data from 500 subjects and re-
ported an RMSE of 9.76 [32]. The comparison shows that segmentation is more accurate
than prediction without tracing, although the number of subjects is larger than in our
study. However, the regression model with the 3D-CNN can capture heart motion, as
evidenced by a significant positive correlation for the LVEF in our study. While the most
accurate RMSE reported in Table 2 is comparable to the RMSEs in the literature, further
improvement in accuracy is needed to make our 3D-CNN model a reliable and clinically
useful tool for measuring the LVEF and RVEF. The correctness of the prediction values was
also compared in manual tracing and in the developed algorithm to a paper [33] published
before the emergence of deep learning techniques. Since there is no baseline for assessing
the level of accuracy, it is necessary to continue to improve the predictive model to achieve
better robustness against manual and given supervised data.

A limitation of this research is that the LVEF and RVEF differed in the correlation
coefficient, MAE, and RMSE. These differences may have been influenced by the image type
used in the present study. In the present analysis, cine-MRI short-axis images were used,
resulting in a left ventricular significant result. Because of the structural differences between
the left and right ventricles in terms of volume, structure, and direction of contraction and
dilation, the short-axis images showed a significant LVEF result, which may have caused
the difference in the results. Therefore, there is potential for improving the accuracy of
both the LVEF and RVEF by adding not only short-axis images but also other types of
images such as two-lumen and four-lumen images to the analysis, not only to increase the
number of subjects, but also to learn heart motion from various directions. In addition,
since there is a possibility that other features other than the left ventricle are reflected,
it is necessary to investigate in more detail in the future which structures at which level
of the slice cross-section contribute the most to the prediction in the three-dimensional
image input in this study. These clarifications are important for proving the validity of the
results of this study and for clarifying problems and should be considered in the further
investigation.

Secondly, the data augmentation will be improved. In this study, the images were
rotated only by 5◦ from −45◦ to 45◦. Scaling the images was not implemented in this
study for the reason that enlarging the image would result in missing parts of the heart
depending on the subject, and reducing the image size would make it difficult to see the
heart movement. In addition, the images used in the analysis were only images of the
central four slices of the heart in the cine-MRI short-axis images, where the contractile and
diastolic function of the heart is clear. It is difficult to increase the number of images in the
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same data set because images of the base and apex of the heart have many locations other
than the ventricles and myocardium, which may be underestimated in estimating the LVEF
and RVEF. In the future, the number of images can be significantly increased by adding
other data augmentation in addition to rotation. Additionally, the images used in the study
need further consideration. The images used for training in this study were public data,
and subjects were classified into five classes, including healthy subjects. However, in actual
clinical practice, there are many more types of cardiac diseases, so the prediction model
needs to be able to deal with uncommon cases as well. Therefore, further training on a
larger number of datasets containing a variety of cases will be important in the future.
Furthermore, the effects of image noise and artifacts must be considered, and Lu et al. [34]
also reported a procedure that employed an algorithm to remove poor quality instances. For
clinical practice, the system must be able to deal with images taken under a variety of image
qualities. Therefore, since the dataset in this study only included good quality images with
relatively low noise, a future challenge is to create a more generalized prediction model by
training additional images that have more noise or contain artifacts such as body motion.

The varied correlation coefficient, MAE, and RMSE of the LVEF and RVEF in our study
suggest that there are differences in volume, structure, and systolic and diastolic motion
between the left and right ventricles. Moreover, the short-axis images used in our study
may not be sufficient to capture the full motion of the right ventricle. Therefore, including
other imaging modalities, such as two-chamber and four-chamber images, could increase
the number of images and improve the accuracies of both the LVEF and RVEF. Additionally,
since the basis of judgment for the results of this study was not visualized, revisiting these
issues in the future is recommended.

5. Conclusions

In this study, we proposed an automatic method to estimate the LVEF and RVEF
from cine-MRI images of the heart without the need for tracing compared to conventional
methods. A regression 3D-CNN model that simultaneously estimates the LVEF and RVEF
from cine-MRI short-axis images suggested that the LVEF can be accurately predicted
using the 3D-CNN, while further improvements are needed to improve the prediction
accuracy of the RVEF. Despite the potential for further improvement, our results suggest
that the 3D-CNN has the potential to allow refinement in the estimation of the LVEF and
RVEF, providing a faster, more accurate, and more reliable procedure for assessing cardiac
function.

Author Contributions: S.I. (Soichiro Inomata) contributed to the data analysis, algorithm construc-
tion, and writing and editing of the manuscript. T.Y., M.T. and S.I. (Shota Ichikawa) reviewed and
edited the manuscript. H.S. proposed the idea and contributed to the data acquisition, performed
supervision and project administration, and reviewed and edited the manuscript. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The created models in this study are available on request from the
corresponding author. The source code of this study is available at https://github.com/MIA-
laboratory/LVRVestimation (accessed on 25 April 2023).

Acknowledgments: The authors would like to thank the laboratory members of the Medical Image
Analysis Laboratory for their help.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/MIA-laboratory/LVRVestimation
https://github.com/MIA-laboratory/LVRVestimation


Sensors 2023, 23, 6580 12 of 13

References
1. Zhuang, X.; Li, L.; Payer, C.; Štern, D.; Urschler, M.; Heinrich, M.P.; Oster, J.; Wang, C.; Smedby, Ö.; Bian, C.; et al. Evaluation of

Algorithms for Multi-Modality Whole Heart Segmentation: An Open-Access Grand Challenge. Med. Image Anal. 2019, 58, 101537.
[CrossRef] [PubMed]

2. Liu, Z.; He, X.; Lu, Y. Combining UNet 3+ and Transformer for Left Ventricle Segmentation via Signed Distance and Focal Loss.
Appl. Sci. 2022, 12, 9208. [CrossRef]

3. Vonk-Noordegraaf, A.; Haddad, F.; Chin, K.M.; Forfia, P.R.; Kawut, S.M.; Lumens, J.; Naeije, R.; Newman, J.; Oudiz, R.J.;
Provencher, S.; et al. Right Heart Adaptation to Pulmonary Arterial Hypertension: Physiology and Pathobiology. J. Am. Coll.
Cardiol. 2013, 62, 22–33. [CrossRef]

4. Sugeng, L.; Mor-Avi, V.; Weinert, L.; Niel, J.; Ebner, C.; Steringer-Mascherbauer, R.; Schmidt, F.; Galuschky, C.; Schummers,
G.; Lang, R.M.; et al. Quantitative Assessment of Left Ventricular Size and Function: Side-by-Side Comparison of Real-Time
Three-Dimensional Echocardiography and Computed Tomography with Magnetic Resonance Reference. Circulation 2006, 114,
654–661. [CrossRef]

5. Pickett, C.A.; Cheezum, M.K.; Kassop, D.; Villines, T.C.; Hulten, E.A. Accuracy of Cardiac CT, Radionucleotide and Invasive
Ventriculography, Two- and Three-Dimensional Echocardiography, and SPECT for Left and Right Ventricular Ejection Fraction
Compared with Cardiac MRI: A Meta-Analysis. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 848–852. [CrossRef]

6. Singh, S.P.; Wang, L.; Gupta, S.; Goli, H.; Padmanabhan, P.; Gulyás, B. 3d Deep Learning on Medical Images: A Review. Sensors
2020, 20, 5097. [CrossRef] [PubMed]

7. Zhang, R.; Zhuo, L.; Chen, M.; Yin, H.; Li, X.; Wang, Z. Hybrid Deep Feature Fusion of 2D CNN and 3D CNN for Vestibule
Segmentation from CT Images. Comput. Math. Methods Med. 2022, 2022, 6557593. [CrossRef]

8. Sugimori, H.; Sugiyama, T.; Nakayama, N.; Yamashita, A. Development of a Deep Learning-Based Algorithm to Detect the Distal
End of a Surgical Instrument. Appl. Sci. 2020, 10, 4245. [CrossRef]

9. Sugimori, H. Evaluating the Overall Accuracy of Additional Learning and Automatic Classification System for CT Images. Appl.
Sci. 2019, 9, 682. [CrossRef]

10. Manabe, K.; Asami, Y.; Yamada, T.; Sugimori, H. Improvement in the Convolutional Neural Network for Computed Tomography
Images. Appl. Sci. 2021, 11, 1505. [CrossRef]

11. Sugimori, H.; Hamaguchi, H.; Fujiwara, T.; Ishizaka, K. Classification of Type of Brain Magnetic Resonance Images with Deep
Learning Technique. Magn. Reson. Imaging 2021, 77, 180–185. [CrossRef] [PubMed]

12. Yoon, T.; Kang, D. Bimodal CNN for Cardiovascular Disease Classification by Co-Training ECG Grayscale Images and Scalograms.
Sci. Rep. 2023, 13, 2937. [CrossRef] [PubMed]
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