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Abstract: Recently, Roy et al. proposed a physically unclonable function (PUF)-based authentication
and key exchange protocol for Internet of Things (IoT) devices. The PUF protocol is efficient, because it
integrates both the Node-to-Node (N2N) authentication and the Node-to-Server (N2S) authentication
into a standalone protocol. In this paper, we therefore examine the security of the PUF protocol under
the assumption of an insider attack. Our cryptanalysis findings are the following. (1) A legitimate
but malicious IoT node can monitor the secure communication among the server and any other
IoT nodes in both N2N authentication and N2S authentication. (2) A legitimate but malicious IoT
node is able to impersonate a target IoT node to cheat the server and any other IoT nodes in N2N
authentication and the server in N2S authentication, respectively. (3) A legitimate but malicious IoT
node can masquerade as the server to cheat any other target IoT nodes in both N2N authentication
and N2S authentication. To the best of our knowledge, our work gives the first non-trivial concrete
security analysis for the PUF protocol. In addition, we employ the automatic verification tool of
security protocols, i.e., Scyther, to confirm the weaknesses found in the PUF protocol. We finally
consider how to prevent weaknesses in the PUF protocol.

Keywords: physically unclonable function; authentication; key exchange; insider attack; surveil-
lance; impersonation

1. Introduction

In recent years, the Internet of Things (IoT) has been growing rapidly and all kinds of
IoT devices are often present in our personal lives in the form of various applications, such
as smart homes, smart transportation, and smart cities. Figure 1 depicts the communication
scenario between the IoT server and devices (nodes). However, security is one of the major
challenges when IoT enters sensitive fields, e.g., a smart street light monitoring system.
Unlike traditional networks, IoT consists of a large number of complex, heterogeneous,
and interoperable IoT devices [1]. Hence, under a hostile environment, IoT devices are
often vulnerable to attacks and therefore require stronger security techniques to overcome
their potential security weaknesses, such as counterfeit identity and sensitive data leakage.
Authentication and key exchange protocols can provide the service of authentication and
secret session key establishment between various IoT devices. Here, the session key is used
to support confidential data transfer between IoT devices.

However, designing authentication and key exchange protocols is an intractable task
for IoT applications. Firstly, there is a huge number of IoT devices, but their computing and
storage resources are usually limited. Therefore, lightweight protocols are urgently needed
to realize efficient interaction between devices without overloading their performance.
Secondly, IoT devices are often deployed in complex, heterogeneous network environments
and can be connected to and accessed by multiple unknown and untrusted devices, leading
to extreme security challenges. Robust authentication and key exchange protocols should
satisfy all strict requirements from IoT devices and their applications.
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The physically unclonable function (PUF) [2] can help build robust security protocols.
PUF is regarded as a basic security primitive for resource-constrained IoT devices. PUF
generates a unique digital fingerprint from micro-variations in physical devices. This
fingerprint is unable to be cloned and is sensitive to being tampered with. PUF generates an
unpredictable output (i.e., response) for corresponding input (i.e., challenge). The process
is irreversible and is independent of storage memory. PUF is realized in various scenarios,
such as field programmable gate array (FPGA) [3], cloud storage, and IoT, to protect data
from unauthorized access and attacks. The advantage of PUF is that resource-constrained
devices do not require the maintenance of the secret key [4]. Moreover, it reduces the
risks associated with key transmission, storage, and management to a greater extent than
other common cryptographic techniques. Therefore, PUF is as a promising alternative to
designing lower-cost authentication and key exchange protocols.

On the one hand, PUF has advantages in efficiency and security compared with
cryptographic algorithms. Hence, it is expected to design more practical authentication
and key exchange protocols for IoT. On the other hand, PUF-based authentication and
key exchange protocols are relatively new, compared with the protocols using purely
cryptographic algorithms and/or smart cards. And there are still many security issues in
its designs, which should be addressed. Hence, in this paper, we investigate the PUF-based
authentication and key exchange protocol for IoT devices.

1.1. Related Work

Cryptographic algorithms are widely used in security protocols. According to the
type of cryptographic algorithm, we divide PUF-based authentication and key exchange
protocols into two categories as follows:

• The PUF-based authentication and key exchange protocols using public key algorithms. The
public key algorithms have high key management flexibility. This is because the
communicating parties have two different keys, one of which is kept as a secret and
the other is made public. There is no need to share the secret key as in symmetric
key algorithms. The PUF-based protocols using public key algorithms inherit this
feature. Yilmaz et al. [5] applied the RSA algorithm in the lightweight PUF-based
authentication protocol. Chatterjee et al. [6] developed an authentication and key
exchange protocol combining PUFs, identity-based encryption (IBE), and the keyed
hash function. Chuang et al. [7] designed a PUF-based authenticated key exchange pro-
tocol for IoT devices without verifiers and an explicit challenge–response pair (CRP).
Using certificateless public key cryptography (CL-PKC), Li et al. [8] proposed a PUF-
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based end-to-end mutual authentication and key exchange protocol for IoT devices.
Chaterjee et al. [9] proposed a private PUF-based anonymous authentication protocol.
Siddiqui et al. [10] proposed a PUF-based authentication protocol, which is dependent
on two certificate authorities of the cloud IoT system. Harishma et al. [11] proposed a
PUF-based operationally asymmetric mutual authentication and key exchange pro-
tocol for secure communication. Qureshi and Munir [12] introduced a lightweight
CRP obfuscation mechanism using XOR and shuffle operations and further used it to
design the PUF-based key exchange protocol.

• The PUF-based authentication and key exchange protocols using symmetric key algorithms.
The advantage of symmetric key algorithms is low computational cost. These al-
gorithms are therefore well suited for authentication and key exchange protocols
for resource-constrained IoT devices and help to reduce the computational burden
of these IoT devices. In the PUF-based protocols using symmetric key algorithms,
shared keys are generated by PUFs and hash functions are commonly used to authen-
ticate messages. The researchers [13,14] proposed PUF-based mutual authentication
protocols for IoT systems. Their protocols are presented for two scenarios, that is,
device-to-device communication and device-to-server communication. Qureshi and
Munir [15] presented a PUF-based identity-preserving protocol. During the authenti-
cation run of their protocol, the server does not store, generate, transmit, or receive
complete devices’ CRPs. Lounis and Zulkernine [16] proposed PUF-based Thing-
to-Thing (T2T) architectures, where devices autonomously authenticate each other
without any human intervention involved. Nimmy et al. [17] proposed a protocol
that avoids explicit storage of CRPs for verification by using geometric threshold
secret sharing. Zheng and Chang [18] proposed a new lightweight PUF-based mutual
authentication and key exchange protocol for two PUF-embedded IoT devices. Wang
et al. [19] leveraged PUFs to generate symmetric shared keys in the lightweight proto-
col. Ebrahimabadi et al. [20] designed an authentication protocol to thwart modeling
attacks for PUF-based IoT devices. Zerrouki et al. [21] proposed a mutual authenti-
cation and session key establishment protocol for IoT devices based on PUFs. Sun
and Tian [22] further gave security analysis and improvements to this protocol and
suggested the idea of a key compromise to evaluate other novel PUF protocol de-
signs. Wang et al. [23] introduced a supplementary sub-protocol to the PUF-based
authentication protocol for the purpose of enhancing resistance to desynchronization
attacks. Park and Park [24] employed PUFs to realize an improved authentication and
key agreement protocol for cloud-enabled IoT devices. To achieve decentralization
and security, Aseeri et al. [25] introduced a secure, lightweight, cost-efficient rein-
forcement machine learning framework (SLCR-MLF) with PUFs. In addition, some
researchers [26–28] proposed PUF-based two-factor authentication mechanisms.

1.2. Our Motivations and Contributions

In IEEE Internet Things J. 2023, 10, 8547–8559, Roy et al. [29] proposed a PUF-based
authentication and key exchange protocol. Roy et al.’s protocol is interesting because it
tries to leverage cryptographic XOR operation and hash function for traditional secure com-
munication and PUF for preventing physical attacks. Moreover, this standalone protocol
can perform device-to-device and device-to-server authentication, eradicating the need for
disparate protocols. In addition, using the Scyther verifier tool, the security of Roy et al.’s
protocol is evaluated by the formal method.

Due to their inherent vulnerability, IoT devices (nodes) are easily compromised by
insider attackers. Therefore, in this paper, we carefully study the security of Roy et al.’s
protocol under the assumption of an inside attack. Our results are summarized as follows:

(1) A legitimate but malicious IoT node can monitor the secure communication among
the server and any other IoT nodes, because the malicious IoT node can reveal their
secret session key. The only requirement of the malicious IoT node is to observe the



Sensors 2023, 23, 6559 4 of 21

transmitted messages over public channel during the authentication and key exchange
phase of Roy et al.’s protocol.

(2) A legitimate but malicious IoT node is able to impersonate a target IoT node to cheat
the server and any other IoT nodes during the authentication and key exchange phase
of Roy et al.’s protocol. Finally, the malicious IoT node can establish a secret session
key for the subsequent secure communication.

(3) A legitimate but malicious IoT node can masquerade as the server to cheat any other
target IoT nodes during the authentication and key exchange phase of Roy et al.’s
protocol. Here, the malicious IoT node is able to generate the valid session key for the
target IoT nodes.

2. Basic Knowledge of PUF

PUFs make use of the intrinsic random variability in the physical microstructure of
integrated circuits (ICs) to produce a unique n-bit response Ri to an m-bit challenge Ci for
any i∈N. We can write a PUF’s instance as follows.

fPUF: Ci→Ri, (1)

where Ci∈{0,1}m and Ri∈{0,1}n.
PUF has the following safety features:

• Uniqueness: PUFs cannot output the same response for different input challenges,
while different PUFs output different responses for the same input challenge. For two
different Ci and Cj, with i, j∈N, and any two different PUF instances fAPUF and fBPUF,
the uniqueness expression is as follows.

fAPUF(Ci) 6= fAPUF(Cj). (2)

fAPUF(Ci) 6= fBPUF (Ci). (3)

• Reliability: This feature measures the reproducibility of a PUF response under different
operating conditions for a given challenge. The reliability expression of the PUF
instance for different time periods t1 and t2 is:

fPUF(Ci)|t= t1 = fPUF(Ci)|t = t2 . (4)

In fact, the PUF response is sensitive to various noise elements, such as temperature,
voltage, and other environmental changes. Under the same challenge, the noise can
cause the PUF to give an erroneous response, which is different from the original
one. To eliminate the effects of such noise, Roy et al. [29] considered the use of
lightweight error-correcting algorithms (ECAs) to stabilize the noisy PUF response
and thus improved its reliability.

3. Review of Roy et al.’s Protocol

The one-time enrollment phase is responsible for enrolling the new IoT nodes in the
server. The authentication and key exchange phase realizes mutual authentication between
the server and the node(s). To maintain consistency, we employ the same notions of [29]
and write them in Table 1.
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Table 1. Used notation and symbols.

Notation Description

A, B, C IoT node A, IoT node B, IoT node C
idA, idB, idC A’s identifier, B’s identifier, C’s identifier

CAi, CBi, CCi
A’s ith iteration PUF input, B’s ith iteration PUF input,

C’s ith iteration PUF input

RAi, RBi, RCi
A’s PUF output for CAi, B’s PUF output for CBi, C’s

PUF output for CCi
RN Random number

TAB,TCB
Secret sharing key between A and B, secret sharing key

between C and B
fAPUF, fBPUF, fCPUF A’s PUF function, B’s PUF function, C’s PUF function

⊕ Bit-wise XOR operation
hash() Cryptographic hash function

3.1. One-Time Enrollment Phase

This phase is run in a secure environment without the attacker. After completing this
phase, the IoT nodes can be deployed in the IoT network. When any A wants to enroll in
the server, the server randomly generates an input CAi (i.e., challenge) for A’s PUF and
collects its output RAi (i.e., response), where RAi = fAPUF(CAi). Then, the server stores A’s
ID-CRP {idA, CAi, RAi} in its secure database. The server only maintains one ID-CRP record
for each IoT device.

3.2. Authentication and Key Exchange Phase

This phase has two communication models, i.e., Node-to-Node (N2N) communication
and Node-to-Server (N2S) communication. N2N communication aims to provide the
mutual authentication and key establishment of any two IoT nodes. Meanwhile, N2S
communication realizes the mutual authentication and key establishment between any one
IoT node and the server.

3.2.1. N2N Communication

Assume that two nearby A and B nodes want to authenticate each other and establish
their session key. As shown in Figure 2, A, B, and the server perform the following steps.

Step 1. A sends a connection request {idA} to B. Upon receiving this request, B sends
the N2N connection establishment request {idA, idB} to the server.

Step 2. The server fetches corresponding ID-CRPs {idA, CAi, RAi} and {idB, CBi, RBi}
from its secure database and generates two random numbers RN and TAB. The server
computes:

MA←RAi⊕RN (5)

MB←RBi⊕RN (6)

T’AB←TAB⊕RN (7)

HA←hash(RAi‖MA) (8)

HB←hash(RBi‖MB). (9)

Then, the server sends the message {CAi, MA, MB, HA, HB, T’AB} to A and the message {CBi,
MA, MB, HA, HB, T’AB} to B.

Step 3. Upon receiving the message {CAi, MA, MB, HA, HB, T’AB}, A first computes:

RAi←fAPUF(CAi) (10)
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RN←RAi⊕MA (11)

RBi←MB⊕RN (12)

H*A←hash(RAi‖MA) (13)

H*B←hash(RBi‖MB). (14)

To authenticate the server, A then checks whether HA is equal to H*A and HB is equal to
H*B. If any verification fails, A terminates the session. Otherwise, A further calculates:

TAB←T’AB⊕RN (15)

TB←TAB⊕RBi. (16)

Finally, A sends {TB} to B.
Step 4. Upon receiving the messages {CBi, MA, MB, HA, HB, T’AB} and {TB}, B computes:

RBi←fBPUF(CBi) (17)

RN←RBi⊕MB (18)

RAi←MA⊕RN (19)

H*A←hash(RAi‖MA) (20)

H*B←hash(RBi‖MB). (21)

To authenticate the server, B checks HA and HB using H*A and H*B just like A. If any
verification fails, B also terminates the session. Moreover, B evaluates:

TAB←T’AB⊕RN (22)

R*Bi←TB⊕TAB. (23)

Now, B checks whether RBi is equal to R*Bi. If the verification is incorrect, B terminates the
session; otherwise, B computes:

TA←TAB⊕RAi (24)

CB(i+1)←CBi⊕RBi (25)

RB(i+1) ←fBPUF(CB(i+1)) (26)

MSB←RB(i+1)⊕RN (27)

HSB←hash(RB(i+1)‖MSB). (28)

Finally, B sends {TA} to A and {MSB, HSB} to the server.
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Step 5. Upon receiving the message {TA}, A computes:

R*Ai←TA⊕TAB. (29)
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A checks whether RAi is equal to R*Ai. If the verification is incorrect, A terminates the
session; otherwise, A computes:

CA(i+1)←CAi⊕RAi (30)

RA(i+1)←fAPUF(CA(i+1)) (31)

MSA←RA(i+1)⊕RN (32)

HSA←hash(RA(i+1)‖MSA). (33)

A then sends {MSA, HSA} to the server.
Step 6. Upon receiving the messages {MSA, HSA} and {MSB, HSB}, the server computes:

R*A(i+1)←RN⊕MSA (34)

R*B(i+1)←RN⊕MSB (35)

H*SA←hash(R*A(i+1)‖MSA) (36)

H*SB←hash(R*B(i+1)‖MSB). (37)

The server then checks whether HSA is equal to H*SA and HSB is equal to H*SB. If any
verification is incorrect, the server terminates the session; otherwise, the server computes:

C*A(i+1)←CAi⊕RAi (38)

C*B(i+1)←CBi⊕RBi. (39)

Now, the server updates {idA, CAi, RAi} to {idA, C*A(i+1), R*A(i+1)} and {idB, CBi, RBi} to {idB,
C*B(i+1), R*B(i+1)} in its secure database.

After the successful completion of above steps, TAB is used as the secret session key
for subsequent secure communication between A and B. Clearly, TAB gets updated in every
new session.

3.2.2. N2S Communication

Assume that B wants to authenticate the proximity server and establish a session key
with the server. As shown in Figure 3, B and the server perform the following steps.

Step 1. B sends the N2S connection establishment request {idB} to the server.
Step 2. The server fetches the corresponding ID-CRP {idB, CBi, RBi} from its secure

database and generates a random number RN. The server computes:

MB←RBi⊕RN (40)

HB←hash(RBi‖MB). (41)

The server then sends the message {CBi, MB, HB} to B.
Step 3. Upon receiving the message {CBi, MB, HB}, B computes:

RBi←fBPUF(CBi) (42)
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RN←RBi⊕MB (43)

H*B←hash(RBi‖MB). (44)

To authenticate the server, B then checks whether HB is equal to H*B. If any verification
fails, B terminates the session. Otherwise, B further computes:

CB(i+1)←CBi⊕RBi (45)

RB(i+1)←fBPUF(CB(i+1)) (46)

MSB←RB(i+1)⊕RN (47)

HSB←hash(RB(i+1)‖MSB). (48)

Finally, B sends {MSB, HSB} to the server.
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Step 4. Upon receiving the message {MSB, HSB}, the server computes:

R*B(i+1) ←RN⊕MSB (49)

H*SB←hash(R*B(i+1)‖MSB). (50)

The server then checks whether HSB is equal to H*SB. If the verification is incorrect, the
server terminates the session; otherwise, the server computes:

C*B(i+1)←CBi⊕RBi. (51)

Now, the server updates {idB, CBi, RBi} to {idB, C*B(i+1), R*B(i+1)} in its secure database.
Once the above authentication procedure is completed, B and the server share RB(i+1)

as their secret session key. This key is updated in every new session establishment.

4. Insider Attack on Roy et al.’s Protocol

Let A be an insider attacker. It means that A has a legitimate ID-CRP record {idA,
CAi, RAi} in the server’s secure database but attempts to sabotage the server and other IoT
nodes. When both A and B run the N2N communication model with the server, A executes
the steps as described in Figure 2. At the same time, A as an insider further performs the
following operations.

(1) A eavesdrops on B’s {idA, idB} during Step 1.
(2) A eavesdrops on the server’s {CBi, MA, MB, HA, HB, T’AB} during Step 2.
(3) In Step 4, A eavesdrops on B’s {MSB, HSB}.

Based on above, A can compute B’s CB(i+1) by evaluating CBi⊕RBi, because it knows
RBi (see Equation (12)) during Step 3. And A can correctly recover B’s RB(i+1) by calculating
MSB⊕RN. Here, we know that A also computes the correct RN (see Equation (11)) during
Step 3. Finally, we conclude that A obtains B’s {idB, CBi, RBi} used in the next session, i.e.,
{idB, CB(i+1), RB(i+1)}.

4.1. Surveillance on IoT Nodes and Server
4.1.1. Surveillance Exploiting N2N Communication

To achieve authentication and establish the session key, B runs the N2N communication
model with any C. As shown in Figure 4, A can eavesdrop on their session messages. And
then, A further discloses the secret session key TCB between C and B. Hence, A can monitor
the subsequent secret channel using TCB. For more detail, we describe A’s behaviors on the
session run of the N2N communication model between C and B.

(1) In Step 1, A eavesdrops on C’s {idc}.
(2) In Step 2, A eavesdrops on the server’s {CBi, MC, MB, HC, HB, T’CB}.

Now, A can obtain the RN by computing RBi⊕MB, where RBi is collected in A’s
previous session with B. A then recovers TCB by computing T’CB⊕RN. Moreover, if A wants
to monitor B’s next session, it can further perform as follows.

In Step 4, A eavesdrops on B’s {MSB, HSB}.
A can compute B’s CB(i+1) by evaluating CBi⊕RBi and then recover B’s RB(i+1) by calculating

MSB⊕RN. In the end, A updates its {idB, CBi, RBi} to {idB, CB(i+1), RB(i+1)} for B’s next session. In
addition, if A wants to monitor C’s next session, it further performs in the following.

(1) In Step 2, A eavesdrops on the server’s {CCi, MC, MB, HC, HB, T’CB}.
(2) In Step 5, A eavesdrops on C’s {MSC, HSC}.

In this situation, A computes RCi by using MC⊕RN and CC(i+1) by using CCi⊕RCi. A
also recovers C’s RB(i+1) by calculating MSC⊕RN. Finally, A can record {idC, CC(i+1), RC(i+1)}
for monitoring C’s next session.
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Comments. According to above surveillance, in the initial stage, the insider attacker
needs to collect information about the target IoT node (i.e., B) by running a session with the
target IoT node. Afterwards, the insider attacker can expand their surveillance to other IoT
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nodes (e.g., C), which run the sessions with the target IoT node. Meanwhile, the insider
attacker no longer needs to participate in those session runs and still obtains those secrets.
This effectively hides the insider attacker and reduces the probability of the insider attacker
being identified. Moreover, the insider attacker can establish a surveillance network of the
selected IoT nodes based on our proposed attack.

4.1.2. Surveillance Exploiting N2S Communication

A is able to monitor the session run of the N2S communication model between B and
the server. As shown in Figure 5, A can perform the following operations to reveal the
secret session key RB(i+1) shared by B and the server.
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(1) In Step 2, A eavesdrops on the server’s {CBi, MB, HB}.
(2) In Step 3, A eavesdrops on B’s {MSB, HSB}.

Because A knows B’s RBi, A can obtain the RN by computing RBi⊕MB. Now, A further
recovers the secret session key RB(i+1) by computing MSB⊕RN. A can therefore observe the
following secure communication using RB(i+1). Moreover, if A wants to continuously monitor
the session run of the N2S communication model between B and the server, A merely computes
CB(i+1) = CBi⊕RBi and replaces the old {idB, CBi, RBi} with the new {idB, CB(i+1), RB(i+1)}.
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4.2. Impersonating IoT Node
4.2.1. IoT Node Impersonation Exploiting N2N Communication

In N2N communication, A can imitate B run with any C, when A obtains a legal {idB, CBi,
RBi}. As shown in Figure 6, A replaces B to perform B’s following steps during the run of N2N
communication.
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(1) Upon receiving C’s request {idC} in Step 1, A sends the N2N connection establishment
request {idC, idB} to the server.

(2) Upon receiving the messages {CBi, MC, MB, HC, HB, T’CB} and {TB} in Step 4, A computes
RN←RBi⊕MB, RCi←MC⊕RN, TCB←T’CB⊕RN, TC←TCB⊕RCi, and CB(i+1)←CBi⊕RBi.
Then, A generates RB(i+1) at random. Next, A evaluates MSB←RB(i+1)⊕RN and HSB
←hash(RB(i+1)‖MSB). Finally, A sends {TC} to C and {MSB, HSB} to the server.

Herein, A randomly generates RB(i+1) instead of B’s RB(i+1) outputted by the valid PUF
to evaluate MSB and HSB in Step 4. A can still pass the server’s authentication, because
the server never checks the PUF validness of its receiving RB(i+1) in Step 6. If A wants to
continuously impersonate B, A further uses the new {idB, CB(i+1), RB(i+1)} to replace the
old {idB, CBi, RBi} for B’s next session. In addition, A can also employ a similar attack to
impersonate initiator C, if A obtains C’s {idC, CCi, RCi}.

Comments. After A completes above impersonation, B will no longer be able to suc-
cessfully run the authentication and key exchange phase with the server and other IoT
nodes. In this situation, we know that the server updates its {idB, CBi, RBi} to {idB, CB(i+1),
RB(i+1)}, where RB(i+1) is randomly generated by A. When B runs the authentication and key
exchange phase, the server should use the random RBi to generate MB (see Equation (6))
and send it to B in Step 2. However, in Step 4, B retrieves its local RBi by invoking fBPUF(CBi)
(see Equation (17)). Clearly, the server’s RBi and B’s RBi are always not equal because of
the PUF’s safety feature. Hence, B should recover an incorrect RN using Equation (18)
and fail the subsequent authentication and key exchange procedure with the server and
the counterpart IoT node. Therefore, B suffers from a denial of service attack due to A’s
impersonation.

4.2.2. IoT Node Impersonation Exploiting N2S Communication

In N2S communication, A can impersonate B to cheat the server, when A obtains B’s
{idB, CBi, RBi}. As shown in Figure 7, we demonstrate A’s operations as follows.
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(1) A sends the request {idB} to the server in Step 1.
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(2) Upon receiving the message {CBi, MB, HB} in Step 3, A computes RN←RBi⊕MB.
Then, A generates RB(i+1) at random. Next, A evaluates MSB←RB(i+1)⊕RN and
HSB←hash(RB(i+1)‖MSB). Finally, A sends {MSB, HSB} to the server.

This node impersonation is similar to that of the impersonation discussed in Section 4.2.1.
Clearly, the server should confirm the validity of A’s HSB in Step 4, and therefore we omit this
operation in Figure 7 for simplicity. The slight difference is that, after session run, A applies
RB(i+1) as the secret session key instead of TCB as in Section 4.2.1.

4.3. Impersonating Server
4.3.1. Server Impersonation Exploiting N2N Communication

A can impersonate the server to cheat both C and B in N2N communication, if A
obtains C’s {idC, CCi, RCi} and B’s {idB, CBi, RBi}. Figure 8 shows the process of A’s server
impersonation. A performs the following operations.
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(1) In Step 2, A randomly generates RN and TCB. A further computes MC←RCi⊕RN,
MB←RBi⊕RN, T’CB←TCB⊕RN, HC←hash(RCi‖MC), and HB←hash(RBi‖MB). Then, A
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sends the message {CCi, MC, MB, HC HB, T’CB} to C and the message {CBi, MC, MB, HC,
HB, T’CB} to B.

(2) Upon receiving the messages {MSC, HSC} and {MSB, HSB} in Step 6, A omits them.

A finally shares the session key TCB with both C and B. Moreover, A still can reuse C’s
{idC, CCi, RCi} and B’s {idB, CBi, RBi} to impersonate the server in the subsequent session,
because C and B do not verify the freshness of CCi and CBi in each session run. Certainly,
in Step 6, A can also compute R*C(i+1)←RN⊕MSC, R*B(i+1)←RN⊕MSB, C*C(i+1)←CCi⊕RCi,
and C*B(i+1)←CBi⊕RBi. This means that A obtains new ID-CRPs for future attacks.

4.3.2. Server Impersonation Exploiting N2S Communication

When B wants to run N2S communication, A can make use of B’s {idB, CBi, RBi} to
impersonate the server. As shown in Figure 9, A executes the following operations to
achieve it.
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(1) In Step 2, A generates the random number RN. A computes MB←RBi⊕RN and
HB←hash(RBi‖MB). Then, A sends the message {CBi, MB, HB} to B.

(2) Upon receiving the message {MSB, HSB} in Step 4, A computes R*B(i+1)←RN⊕MSB and
C*B(i+1)←CBi⊕RBi and further replaces its {idB, CBi, RBi} with {idB, C*B(i+1), R*B(i+1)}.

As a result, A and B establish the secret session key R*B(i+1). A can omit to replace
its {idB, CBi, RBi} with {idB, C*B(i+1), R*B(i+1)} and still use {idB, CBi, RBi} for the subsequent
impersonation. The reason is the same as in our discussion in Section 4.3.1.
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4.4. Discussion of Insider Attacker

We discuss how an IoT node practically becomes a malicious IoT node, i.e., an insider
attacker. In general, the IoT system contains plenty of IoT nodes. And some of them are
possibly manufactured and provided by third parties. From a third-party perspective,
these IoT nodes may not only want to work properly in the IoT system, but also engage
in malicious behaviors such as surveillance and impersonation. Clearly, in this situation,
the malicious IoT nodes can enter the IoT system during the one-time enrollment phase of
Roy et al.’s protocol.

After the deployment of the IoT nodes, physical attacks are very common for the IoT
system. They typically require physical proximity to the IoT system and can involve actions
that limit the efficacy of the IoT nodes. In order to turn benign IoT nodes into malicious IoT
nodes, the physical attack can further inject malicious codes into benign IoT nodes. These
malicious codes include the logic that requires the IoT nodes to execute insider attacks in
some cases. In addition, software attacks can be exploited to compromise the IoT nodes,
that is, the attackers use the malware, such as viruses, worms, and Trojans, to manipulate
the IoT nodes.

It is possible that malicious IoT nodes have limited resources and functionalities. This
means that the malicious IoT nodes cannot handle and store the derived session keys for
next session and for another IoT node, cannot intercept the transmitted messages over the
public channel, cannot impersonate the server, and so on. To complete our insider attacks,
the attacker can build a powerful auxiliary node to support malicious IoT nodes. Each
malicious IoT node A merely outputs its {idA, CAi, RAi} to the auxiliary node. The auxiliary
node can replace the malicious IoT node A to implement the insider attacks.

5. Experimental Verification of Proposed Insider Attacks

Scyther is a formal analysis tool for automatic verification of security protocols based
on the security protocol description language (SPDL). Scyther can analyze protocols that
contain multiple subjects, infinite session interaction, and the use of random numbers. We
therefore use Scyther to confirm our insider attacks on Roy et al.’s protocol. We implement
experimental verification on the 64-bit Windows 10 operating system, Graphviz v2.50, and
Python v2.7 using the Compile-0.9.2 version of the Scyther tool.

When using the Scyther tool to verify Roy et al.’s protocol, we write secret PUF
responses, XOR-encrypted messages, etc., into the SPDL script to model the protocol. The
details of the Scyther tool parameter settings are shown in Table 2. Here, the attacker
can obtain the secret PUF responses and furthermore derive the session key and random
numbers. This is consistent with the capabilities of the malicious IoT nodes assumed in
Section 4.

Table 2. Scyther tool parameters used for our analysis.

Parameters Parameter Specification

Max. number of runs 5
Matching type Typed matching
Search pruning Find best attack

Max. patterns/claim 10
Long-term key reveal None

Long-term key reveal after claim None(DY)
Session key reveal Checked

Random reveal Checked
State reveal None

For Roy et al.’s protocol, Figure 10 shows Scyther’s verification results for N2N com-
munication (see Figure 10a) and N2S communication (see Figure 10b). The results show
that both N2N communication and N2S communication do not meet Scyther’s automatic
declaration requirements of Alive, Weakagree (weak agree), Nisynch (noninjective synchro-
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nization), and Niagree (noninjective agreement). Moreover, the results also indicate that
the secret session key TAB in the N2N communication and the secret session key RB(i+1)
in the N2S communication are both insecure. Hence, we conclude that the process of the
authentication and key exchange in Roy et al.’s protocol is insecure and is subject to insider
attacks on the IoT nodes and the server.
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6. Suggestion for Preventing Insider Attacks

We know that A is required to recover B’s RBi (see Equation (12)) to verify B (see
Equation (14)) in the N2N communication of Roy et al.’s protocol. Similarly, B needs to
recovering A’s RAi (see Equation (19)) to verify A (see Equation (20)). However, we know
that both RAi and RBi are the secrets of A and B, respectively. It means that A and B obtain
each other secrets after Step 4 of the N2N communication, which incurs the secure breach.
In fact, these verifications conducted by A and B are unnecessary because both A and
B believe the server. Therefore, one suggestion is to cancel the verifications, that is, the
server does not send MB and HB to A and MA and HA to B during Step 2 of the N2N
communication.

Moreover, we find that both A and B share a random number RN in the N2N commu-
nication. RN is used to encrypt their all secrets. Because of sharing the RN, the malicious
IoT node can decrypt other IoT node’s secrets. Hence, another suggestion is that the server
must randomly select two random numbers instead of just one RN, that is, one random
number for A and the other one for B.

The above two suggestions may defend against our proposed insider attacks. How-
ever, accurate security results for improvements require formal security models, security
assumptions, security definitions, and reductions. We keep these for future work.

7. Conclusions

In the N2N communication of Roy et al.’s protocol, the IoT node requires the coun-
terpart IoT node’s secret output of the PUF to verify it. More importantly, the malicious
IoT node can derive the counterpart IoT node’s next output of the PUF if it eavesdrops
on the message transmitted to the server. These defects have led to our insider attacks
on Roy et al.’s protocol. Moreover, in the cases of the N2N communication and the N2S
communication, we must point out that once the attacker stole the session keys, i.e., TAB or
RB(i+1), he can always impersonate not only the IoT node to cheat other IoT nodes or the
server but also the server to cheat the IoT nodes in the subsequent sessions. The secure
communications between the server and the corresponding IoT nodes are also possibly
under the attacker’s surveillance. This means that Roy et al.’s protocol fails to provide
the known key security. Our security analysis results indicate that designing PUF-based
authentication and key exchange protocols for IoT remains a challenging task.
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