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Abstract: In this paper, we focus on the event-triggered robust state estimation problems for nonlinear
networked systems with constant measurement delays against denial-of-service (DoS) attacks. The
computation of the extended Kalman filter (EKF) generates errors of linearization approximations,
which can result in increased state estimation errors, and subsequently amplifies the linearization
errors. DoS attacks interfere with the transmission of measurements sent to the remote robust
state estimator by overloading the communication networks, while the communication rate of
the communication channel is constrained. Therefore, an event-triggered robust state estimation
algorithm based on sensitivity penalization with an explicit packet arrival parameter is derived
to defend against DoS attacks and linearization errors. Meanwhile, the presence of measurement
delays precludes the direct use of conventional state estimation algorithms, prompting us to devise
an innovative state augmentation method. The results of the numerical simulations show that the
proposed robust state estimator can appreciably improve the accuracy of state estimation.

Keywords: nonlinear systems; robust state estimation; linearization errors; denial-of-service attacks;
measurement delay; event-triggered mechanism

1. Introduction

Networked systems have achieved successful applications in various fields, includ-
ing civil infrastructure, environmental monitoring, intelligent transportation, and smart
grids [1]. The performance of various components within a networked system is contin-
gent upon the accuracy of data transmission over the communication network, which
is determined by the capabilities of the measurement and data transmission technolo-
gies employed. Recent advancements have shown a proclivity toward wireless shared
communication networks over wired or dedicated networks [2]. Although the adoption
of multi-purpose communication networks can reduce maintenance costs and provide
flexibility in system architecture design, it also introduces new challenges. Open wireless
communication networks, in particular, are vulnerable to network attacks and delays as
opposed to separate dedicated network communication channels [2,3]. For this reason, an
increasing number of studies focus on the security of wireless networked systems.

Deception attacks, denial-of-service (DoS) attacks, and replay attacks are among the
most prevalent forms of attack in networked systems [4–6]. Due to the ease of implemen-
tation, DoS attacks have become one of the most common threats to networked systems.
These attacks interfere with communication channels between sensors and robust state
estimators, disrupting the availability of resources and resulting in packet dropping [7].
Various results have been published for the security of networked systems under DoS
attacks. The measurement of missing phenomena caused by DoS attacks can be modeled
using two fundamental methods: a binary switching sequence or a Markov chain. The
security control of networked switched systems under the threat of DoS attacks during the
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transmission of output information from sensors to controllers is investigated in [8]. By
assuming that DoS attacks follow a Bernoulli distribution, an event-triggered sampling
mechanism is proposed to reduce the communication burden while preserving satisfactory
performance. In [9], two independent Bernoulli distributions are used to model periodic
DoS attacks and random packet dropout for cyber-physical systems. In [10], an aperiodic
DoS attack is introduced, characterized by its duration and frequency, and a switched
fuzzy Markov jump closed-loop system is established. An event-triggered scheme that
incorporates membership functions is proposed to address the mismatched behavior be-
tween the membership functions of a fuzzy system and its fuzzy controller. The problem
of event-triggered resilient L∞ control for the Markov closed-loop jump system subject
to DoS attacks is considered in [11], where criteria are proposed to ensure the L∞ control
performance of the system.

In the literature mentioned above, network communication is considered to be con-
tinuous, leading to a waste of communication resources. By reducing unnecessary data
transmissions, an event-triggered mechanism helps reduce network traffic or congestion
and mitigate network-related phenomena such as transmission delays and packet loss,
thereby satisfying the basic quality-of-service requirements in the design of networked
system estimators. An event-triggered mechanism can achieve a balance between the de-
sired system estimation performance and resource utilization efficiency. In [12], a dynamic
event-triggered strategy is proposed, which offers greater flexibility in setting the event-
trigger threshold. The application of a node-based adaptive strategy eliminates the need
for global information in the investigation of consensus for multi-agent systems. In [13], a
new dynamic event-triggered mechanism is introduced for event-triggered control systems,
featuring the inclusion of an internal dynamic variable. A general framework for the
event-triggered stabilization of nonlinear systems using hybrid system tools is presented
in [14]. This framework encompasses a wide range of existing event-triggered control tech-
niques and provides a basis for their generalization and revision. The use of deterministic
event triggers to schedule sensors destroys the Gaussian property of the state, rendering it
computationally intractable to obtain an exact minimum mean-squared-error estimate. In
response, a stochastic event-triggered sensor schedule for state estimation is introduced
in [15], which is designed to preserve the Gaussianity of the system. Time delays are a
common occurrence in complex networks due to factors such as network traffic congestion
and the finite speed of signal transmission over links. The preponderance of the existing
literature on the control and state estimation of systems with delays pertains to delays in
inputs or actuators. Nonetheless, in networked systems, delays can also originate from
sensor measurements or communication networks. The delay of most sensors and com-
munication networks is similar or slightly modified due to their acquisition environment,
acquisition algorithm, and transmission environment. Considering that subtle changes
have less impact in the discrete domain, it is reasonable to assume that the measurement
delay is constant. The decision-making process of a controller within a networked system
depends on data from sensor measurements, and any delay in measurements or network
transmission can adversely affect the system’s performance. Therefore, it is crucial to have
an accurate real-time estimator capable of providing an accurate state of the system in the
presence of delays.

Measurement delay in state estimation is a well-known issue, often referred to as the
time-varying measurement problem, the time-delayed measurement problem, or the out-
of-sequence measurement (OOSM) problem. Four distinct approaches exist for addressing
problems with known delays: prediction, extrapolation, re-organized innovation, and state
augmentation. Prediction, when applied within the Kalman filter algorithm, provides a
solution to the one-step delayed OOSM problem. In [16], a method for forward prediction
of OOSMs that does not rely on retrodiction is proposed. The tracklet is predicted forward
and de-correlated from the actual track using a track de-correlation method similar to the
information filter approach before being fused with the actual track. This method, referred
to as forward-prediction fusion and de-correlation, has been shown to compare favorably
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to retrodiction-based algorithms while requiring less data storage in most cases. The ex-
trapolation approach is a second viable method for addressing time-delayed measurement
problems. In [17], a method involving the “extrapolation” of measurements to the current
moment using past and present estimates of the Kalman filter is proposed, and the optimal
gain of the extrapolated measurements is determined. Re-organized innovation is derived
based on the projection in Hilbert space and an innovation analysis method. In [18], a sys-
tem with l-time delayed measurements is studied using re-organized innovation analysis.
State augmentation is an effective approach for tackling the time-delayed measurement
problem. The approach involves utilizing the delayed measurement to estimate the state
of the corresponding past moment and deriving the current state prediction from this
corrected past state. The key to this approach lies in augmenting the state vector in a
skillful manner and establishing a correlation between the augmented state vector, which
includes the corresponding past state, and the delayed measurement. An augmented state
Kalman filter is proposed in [19] to address the state estimation problem with time-delayed
measurements. The uncertainty of the delay time is resolved based on its probability
distribution. In [20], the problem of state estimation in the presence of delay uncertainty is
studied and uncertain delay is represented as a probability density function. The proposed
estimator addresses the impact of uncertain delayed measurements by incorporating an
augmented state Kalman filter.

State estimation, commonly employed in automatic control and signal processing,
refers to the process of estimating the internal state of a dynamic system based on available
measurement data. Many conditions in the dynamic and measurement processes of real net-
worked systems are nonlinear [21,22]. As a result, various estimation methods for nonlinear
systems have been proposed, including the extended Kalman filter (EKF) [23], unscented
Kalman filter (UKF) [24], cubature Kalman filter [25], and so on. Ref. [26] presents a method
for nonlinear state estimation of biomass in a batch bioprocess, which employs the EKF
with a sample-state augmentation method to incorporate delayed measurements. A dy-
namic state estimation algorithm is proposed in [27], which employs Holt’s two-parameter
exponential smoothing and extended Kalman filtering techniques. The recursion formula
for parameter identification, state prediction, and state filtering incorporates the statistical
characteristics of data packet losses caused by DoS attacks. However, all these techniques
assume that the system model is accurate and do not account for linearization errors.

The EKF is an efficient method for state estimation of a nonlinear state-space model,
which is an expanded version of the standard Kalman filter. However, this approach may
suffer performance degradation if there are considerable linearization errors caused by
first-order linear approximations. To enhance estimation performance, various methods
have been developed to address linearization errors. In [28], an adaptive loop is proposed
that repeatedly executes a nonlinear solver on a fixed mesh until the linearization error
estimate falls below the discretization error estimate. The mesh is then adaptively refined
and the loop continues. In order to overcome the limitations imposed by linearization,
the unscented transformation is introduced in [29] as a method for conveying mean and
covariance information through nonlinear transformations. It is more precise, simpler
to implement, and requires the same order of calculations as linearization. A robust
tracking technique for the heating value in an underground coal gasification process
is presented in [30], which utilizes dynamic integral sliding-mode control and a gain-
scheduled modified Utkin observer. This control scheme can effectively handle parametric
uncertainties, measurement noise, and water influx disturbance. A robust EKF is developed
in [31] to provide an optimized upper bound on the state estimation error covariance, even
in the face of model uncertainties and linearization errors. It possesses robustness against
process noises, measurement noises, linearization errors, and model uncertainties.

Although there is extensive research on nonlinear systems, as indicated by the above
analysis, few papers in the public domain specifically address methods for simultaneously
overcoming constant measurement delays, DoS attacks, and linearization errors in nonlin-
ear systems. In this paper, we concentrate on the event-triggered robust state estimation



Sensors 2023, 23, 6553 4 of 19

for nonlinear networked systems with constant measurement delays against DoS attacks.
The robust state estimation algorithm is investigated based on the connection between the
Kalman filter and the regularized least-squares problem. To reduce the transmission bur-
den on the communication network, an event-triggered mechanism is implemented in the
estimation process and a binary variable is used to represent the packet-sending parameter.
Packet loss resulting from DoS attacks that jam communication networks is characterized
by a Bernoulli distribution. Subsequently, a packet-arrival parameter that contains infor-
mation about both the packet-sending and packet-loss parameters is explicitly included in
the improved cost function. We meticulously design a specific state augmentation method
to address constant measurement delays and modify the cost function of the regularized
least-squares problem to account for linearization errors. An analytic expression for the
robust state estimator is obtained, which is recursively implementable and has a form
similar to the EKF. Furthermore, we design numerical simulations to confirm the efficacy
of the proposed event-triggered robust state estimator.

The remainder of this paper is organized as follows. In Section 2, we present our model
of packet loss due to DoS attacks and the packet transmission of the event trigger, as well as
introduce an event-triggered nonlinear system model with a constant measurement delay
under DoS attack conditions. In Section 3, a time-delay model is transformed into a formally
non-time-delay model using a state augmentation method, an improved event-triggered
model with a fixed measurement delay under DoS attacks is obtained, and a robust state
estimation algorithm that employs a sensitivity penalty for the nonlinear networked system
is proposed. In Section 4, we present numerical examples that demonstrate the efficacy of
the estimator proposed in this paper. Finally, Section 5 summarizes the work of this paper.

Notations: N denotes the set of natural numbers, including zero. Rn denotes the
n-dimensional Euclidean space. ‖x‖V denotes the norm with weighted coefficients

√
xTVx.

The Euclidean norm for real vectors is denoted by ‖∗‖. E(∗) represents the expectation
of a random vector or matrix and Pr(∗) represents the probability of ∗. var(∗) denotes
the variance of ∗. col{∗} indicates the operation bracket of the stacking vector or matrix.
diag{∗} is a block diagonal matrix.

2. Problem Formulation

We present a nonlinear networked system structure for even-triggered remote robust
state estimation with a measurement delay against DoS attacks, as depicted in Figure 1.
It consists of six main parts: a process, a sensor, an event trigger, a wireless network, an
attacker, and a remote robust state estimator. The sensor continuously sends measurement
values to the event trigger, where the event-triggered transmission mechanism decides if
transmission to the remote state estimator over the wireless communication network is
necessary. In addition to the packet loss caused by DoS attacks from network attackers, the
wireless communication network also experiences transmission delays due to its structure,
as shown in Figure 2.

Figure 1. Framework of the event-triggered nonlinear networked system against DoS attacks.

If a sensor takes a measurement at the same instant that the measurement value is
available in a filter, a general filtering algorithm such as the EKF can generate a consistent
and correct estimation result. This ideal scenario is represented in Figure 3, where there is
no time delay in the system. In contrast, in a delayed networked system, the time at which
the sensor sends out the measurement value and the time at which it is received by the
remote state estimator do not coincide, as shown in Figure 2.
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Figure 2. Measurement data transmission with fixed delay.

Figure 3. Ideal measurement data transmission situation.

An event-triggered transmission strategy is an effective method for reducing commu-
nication rates and alleviating bandwidth pressure on wireless communication networks.
We consider a noisy measurement channel

yt = h(xt) + vt, (1)

where xt ∈ Rn and yt ∈ Rm denote the state vector and measurement output, respectively.
vt ∈ Rm represents the effect of communication noise. h(·) : Rn → Rm is a nonlinear
function and is assumed to be continuously differentiable. Let ct represent a packet-
sending parameter, which is a binary variable taking the value of 1 if the data packet yt is
transmitted at time instant t, and 0 otherwise. This relationship can be expressed as follows:

ct =

{
0, if ‖yt − ỹt‖2 ≤ Ξ,
1, otherwise,

(2)

where the vectors ỹt = yt−nt ∈ Rm. nt ≥ 0 denotes the number of time instants elapsed
since the last transmission of the sensor, i.e., nt is such that ct−nt = 1 and ct−1 = · · · =
ct−nt+1 = 0. The positive real Ξ has to be chosen to ensure that it satisfies the following
transmission rate constraint:

lim
τ→∞

1
τ

τ

∑
t=1

E{ct} = α, (3)

where the transmission rate α ∈ (0, 1). For any given desired transmission rate α, the
threshold Ξ can be readily determined by Ξ = ε−1

m (1− α), where εm(·) is the cumulative
distribution function of an χ2 random variable with m degrees of freedom.

In a wireless networked system, the inherent openness of the wireless communication
network makes it vulnerable to malicious network attacks such as DoS attacks—one
of the most common and typical types of network attacks. When a DoS attack occurs,
network congestion can lead to the loss or even continuous loss of sensor measurement
data packets. This packet loss is time-varying due to the limited power of DoS attacks,
which affects the state estimation results and endangers the safe operation of the system.
Let γt represent a packet-dropping parameter, which is determined depending on whether
the communication channel is congested by an attacker using DoS attack techniques. We
assume that the sequence of γt is independent and identically distributed, forming a
Bernoulli process, which is used to illustrate the stochastic property of packet sequential
loss. Therefore, the packet-dropping parameter γt can be expressed as follows:

Pr(γt = 1) = 1− ρ, Pr(γt = 0) = ρ, var(γt) = ρ(1− ρ),E(γt) = 1− ρ.
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γt predicts the occurrence of packet loss caused by DoS attacks at time instant t, which
receives a value of 1 when the data packet is successfully delivered and a value of 0 when
the communication channel is congested due to DoS attacks. The packet-dropping rate is
represented by ρ ∈ (0, 1).

For the convenience of representation and calculation, let ψt = ctγt represent a packet-
arrival parameter, which can be expressed as follows:

ψt =


1, if ct = 1, γt = 1, sent and transmitted normally,
0, if ct = 1, γt = 0, sent but transmission failed,
0, if ct = 0, unsent.

(4)

This parameter represents whether the remote state estimator has received the packet
from the event trigger. At time instant t when the remote robust state estimator successfully
receives the packet, ψt = 1; otherwise, ψt = 0. In practical engineering, the packet-arrival
parameter ψt can be achieved through timestamp technology.

Consider an event-triggered nonlinear networked system Σ1 with a constant measure-
ment delay under DoS attacks. The plant dynamics and its output measurements received
by a remote robust state estimator are assumed to be describable using the following
discrete model:

Σ1 :
{

xt+1 = f (xt, ut) + wt (5)

yt = ψth(xt−d) + vt, t ≥ 0, (6)

where t ∈ N represents the time index. The variable d ∈ N indicates the number of time-
delayed frames of the measurement signal, which is known and time-invariant. ut ∈ Rl

is a known external input signal. The vector wt ∈ Rn denotes the process noises. f (·, ·) :
Rn ×Rl → Rn, which is nonlinear, is assumed to possess continuous differentiability. It is
assumed that xt, wt, and vt are uncorrelated random vectors, with E(col{wt, vt, x0}) = 0
and E(col{x0, wt, vt}colT{x0, ws, vs}) = diag{P0, Qtδts, Rtδts},∀t, s > 0, where P0, Qt, and
Rt are known positive definite matrices, and δts represents the Kronecker delta function,
which equals 1 when t = s and 0 whenever t 6= s. ψt is the packet-arrival parameter, which
is equal to 1 or 0, and needs to be adjusted according to whether the data packet arrives
or not.

3. Design of the Robust State Estimator

We perform the three-step operation shown in Figure 4 on nonlinear system Σ1 to
further design the robust state estimation algorithm.

Figure 4. The flow diagram of the system processing.

In the same manner as with the EKF, we first perform a first-order Taylor approxima-
tion to the nonlinear system Σ1. By linearizing the nonlinear function f (·, ·) in Equation (5)
and the function h(·) in Equation (6) at the posterior estimate and the prior estimate, re-
spectively, and omitting higher-order infinitesimals, we can approximate the nonlinear
system as follows:

Σ2 :

{
xt+1 = f (x̂t|t, ut) + At(x̂t|t)(xt − x̂t|t) + wt (7)

yt = ψt(h(x̂t−d|t−d−1) + Ct−d(x̂t−d|t−d−1)(xt−d − x̂t−d|t−d−1)) + vt, t ≥ 0. (8)

The matrices in the above equation are defined as

At(x̂t|t) =
∂ f (x, u)

∂x
| x=x̂t|t

u=ut

, Ct−d(x̂t−d|t−d−1) =
∂h(x)

∂x
|x=x̂t−d|t−d−1

, (9)
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which are known Jacobian matrices at the t-th sampled instant. We abbreviate At(x̂t|t) and
Ct−d(x̂t−d|t−d−1) to At and Ct, respectively. x̂t|k represents the state estimate based on the
measurement output yt|kt=0.

Linearization errors can severely degrade the performance of the EKF, particularly
when heavily weighted. To mitigate these problems, it is necessary to implement specific
considerations and employ an estimation algorithm that is robust to linearization errors. By
combining the known terms of the system Σ2 and taking into account linearization errors
in state estimations, we revise the system Σ2 as the following system:

Σ3 :

 xt+1 = At(x̂t|t, ε1
t )xt + at + wt (10)

yt = ψt

[
Ct−d(x̂t−d|t−d−1, ε2

t−d)xt−d + bt−d

]
+ vt, t ≥ 0, (11)

where at = f (x̂t|t, ut)− At(x̂t|t)x̂t|t and bt−d = h(x̂t−d|t−d−1)− Ct−d(x̂t−d|t−d−1)x̂t−d|t−d−1,
which are known values at the t-th sampled instant. We abbreviate At(x̂t|t, εt) and Ct(x̂t|t−1, εt)

to At(εt) and Ct(εt), respectively. In addition, ε1
t and ε2

t denote the differences between
the true value of the plant state vector and its posterior and prior estimates at time t,
respectively. To be more precise, At(x̂t|t, ε1

t ) is composed of x̂t|t + ε1
t and Ct(x̂t|t−1, ε2

t ) is
composed of x̂t|t−1 + ε2

t , which corresponds to the true value of the plant state vector.
In order to make the corresponding estimation problem mathematically tractable, the

elements of the state estimation errors, namely ε1
t,k and ε2

t,k, k = 1, 2 . . . , n, are assumed to
be independent of each other. Specifically, the matrices At(x̂t|t, ε1

t ) and Ct(x̂t|t−1, ε2
t ) are

defined in the same manner as At(x̂t|t) and Ct(x̂t|t−1) in Equation (9). In other words, the
definitions of these matrices are identical to those of At(x̂t|t) and Ct(x̂t|t−1), respectively.

At(x̂t|t, ε1
t ) =

∂ f (x, u)
∂x

| x=x̂t|t+ε1
t

u=ut

, Ct−d(x̂t−d|t−d−1, ε2
t−d) =

∂h(x)
∂x
|x=x̂t−d|t−d−1+ε2

t−d
. (12)

By expanding At

(
x̂t|t, ε1

t

)
at ε1

t = 0, we obtain

At

(
x̂t|t, ε1

t

)
= At

(
x̂t|t

)
+

n

∑
j

∆At,jε
1
t,j + o

(∥∥∥ε1
t

∥∥∥2

2

)
, (13)

where ε1
t,j denotes the j-th component of ε1

t , ∆At,j =
∂At(x̂t|t ,εt)

∂εi,j
|εi,j=0. Furthermore, we obtain

At

(
x̂t|t, ε1

t

)
= At

(
x̂t|t

)
+
(

ε1
t ⊗ I

)T
∆At + o

(∥∥∥ε1
t

∥∥∥2

2

)
, (14)

where ∆At = col(∆At,j). The system matrices At(x̂t|t, ε1
t ) and Ct(x̂t|t−1, ε2

t ) are differen-
tiable at every time instant with respect to every element of ε1

t and ε2
t , respectively.

Since conventional state estimators such as the EKF are not directly applicable to
systems with time delays, we implement state augmentation to transform the measurement-
delay system Σ3 into a system without time delays in its form.

Theorem 1. Under the assumption that the number of measurement-delay frames is known
and constant, we construct the augmented state Xt = col[xt ∆t ∆t−1 · · ·∆t−d+1], where ∆t =
Ct−1

(
ε2

t−1
)

xt−1 + bt−1−Ct
(
ε1

t
)
xt− bt. We transform the system Σ3 into the following equivalent

model:

Σ :


Xt+1 = Ãt

(
ε1

t , ε2
t+1

)
Xt + Dtdt + B̃t

(
ε2

t+1

)
at + B̃t

(
ε2

t+1

)
wt, (15)

yt = ψt

(
C̃t

(
ε1

t

)
Xt + bt

)
+ vt, t ≥ 0, (16)
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where

Dt =

 0n×m
Im

0(d−1)m×m

, (17)

dt = bt − bt+1, (18)

Ãt

(
ε1

t , ε2
t+1

)
=

 At
(
ε1

t
)

0n×(d−1)m 0n×m

Ct
(
ε1

t
)
− Ct+1

(
ε2

t+1
)

At
(
ε1

t
)

0m×(d−1)m 0m×m
0(d−1)m×n I(d−1)m 0(d−1)m×m

, (19)

B̃t

(
ε2

t+1

)
=

 In×n
−Ct+1

(
ε2

t+1
)

0(d−1)m×n

, (20)

C̃t

(
ε1

t

)
=

Ct

(
ε1

t

) d︷ ︸︸ ︷
Im · · · Im

. (21)

Proof of Theorem 1. First, we define

zt
∆
= Ct−d(x̂t−d|t−d−1, ε2

t−d)xt−d + bt−d − Ct(x̂t|t−1, ε2
t )xt − bt. (22)

Thus, the system Σ2 can be re-expressed as the following system: xt+1 = At(x̂t|t, ε1
t )xt + at + wt (23)

yt = ψt

[
Ct(x̂t|t−1, ε2

t )xt + bt + zt

]
+ vt, t ≥ 0, (24)

By combining Ãt
(
ε1

t , ε2
t+1
)

and Xt, and calculating Ãt
(
ε1

t , ε2
t+1
)
Xt, we can obtain

Ãt

(
ε1

t , ε2
t+1

)
Xt =

 At
(
ε1

t
)

0n×(d−1)m 0n×m

Ct
(
ε1

t
)
− Ct+1

(
ε2

t+1
)

At
(
ε1

t
)

0m×(d−1)m 0m×m
0(d−1)m×n I(d−1)m 0(d−1)m×m



×


xt
∆t

∆t−1
...

∆t−d+1

 =


At
(
ε1

t
)

xt
Ct
(
ε1

t
)
xt − Ct+1

(
ε2

t+1
)

At
(
ε1

t
)
xt

∆t
...

∆t−d+2

. (25)

Combining Equations (17)–(20) and (25) yields

Ãt

(
ε1

t , ε2
t+1

)
Xt + Dtdt + B̃t

(
ε2

t+1

)
at + B̃t

(
ε2

t+1

)
wt

=


At
(
ε1

t
)

xt + at + wt
Ct
(
ε1

t
)

xt + bt − Ct+1
(
ε2

t+1
)[

At
(
ε1

t
)
xt + at + wt

]
− bt+1

∆t
...

∆t−d+2

 =


xt+1
∆t+1

∆t
...

∆t−d+2

 = Xt+1.
(26)
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From (21), we can deduce that

ψt

(
C̃t

(
ε1

t

)
Xt + bt

)
+ vt = ψt

(
Ct

(
ε1

t

)
xt + bt + ∆t + · · ·+ ∆t−d+1

)
+ vt

= ψt

[
Ct−d(ε

2
t−d)xt−d + bt−d

]
+ vt = yt. (27)

By combining (26) and (27), we can obtain the system Σ. The proof of Theorem 1 ends
here.

State augmentation is a straightforward yet potent method that entails modifications
to the parameter matrix. This transformation results in the system Σ with no measure-
ment delay in its form and an increase in the system dimension from n to n + md. The
proposed state augmentation method indirectly establishes a correlation between the de-
layed measurements and the current state. As the time delay becomes larger, the system
requires more computational resources to process and handle the delay. More specifically,
the computational burden of the system does indeed increase correspondingly with the
increase in the measurement delay. However, in practical engineering applications, the
degree of the time delay is typically not excessive, minimizing the impact of this issue.
During the derivation of the state estimator, the number of time-delayed frames, denoted
as d, is required as it is included in both the coefficient matrix and the augmented state Xt.

According to [32], the Kalman filter can be interpreted as the solution of a regularized
least-squares (RLS) problem, which for the system Σ can be expressed as

X̂t+1|t+1 = Ãt(0, 0)X̂t|t+1 + Dtdt + B̃t(0)at + B̃t(0)ŵt|t+1,(
X̂t|t+1
ŵt|t+1

)
= arg min

Xt|t+1,wt|t+1

[∥∥∥Xt|t+1 − X̂t|t

∥∥∥2

P−1
t|t

+
∥∥∥wt|t+1

∥∥∥2

Q−1
t

+ ‖et(0, 0)‖2
R−1

t+1

]
,

(28)

where et(0, 0) = yt+1 − bt+1 − C̃t+1(0)[Ãt(0, 0)Xt|t+1 + Dtdt + B̃t(0)at + B̃t(0)wt|t+1]. The
objective of the RLS problem is to ameliorate the estimation through the inclusion of new
measurements; however, its effectiveness may be constrained by linearization errors.

Considering the appreciable deterioration of estimation performance because of lin-
earization errors, which are generally unavoidable, and the pockets of sensor measurement
data that do not arrive due to malicious network attacks and event triggers, we improve
the cost function of the RLS problem as follows:

J
(

Xt|t+1, wt|t+1

)
=

1
2

{
µt

[∥∥∥Xt|t+1 − X̂t|t

∥∥∥2

P−1
t|t

+
∥∥∥wt|t+1

∥∥∥2

Q−1
t

]
+

ψt+1

µt‖et(0, 0)‖2
R−1

t+1
+ (1− µt)

n

∑
k=1

∥∥∥∥∥∂et(ε1
t , ε2

t+1)

∂ε1
t,k

∥∥∥∥∥
2

2

+

∥∥∥∥∥∂et(ε1
t , ε2

t+1)

∂ε2
t+1,k

∥∥∥∥∥
2

2


ε1

t=0
ε2

t+1=0


,

(29)

where et(ε1
t , ε2

t+1) = yt+1 − bt+1 − C̃t+1(ε
2
t+1)[Ãt(ε1

t , ε2
t+1)Xt|t+1 + Dtdt + B̃t

(
ε2

t+1
)
at +

B̃t
(
ε2

t+1
)
wt|t+1]. When disregarding the linearization error, we can obtain the cost function

of the RLS problem, which is Equation (28). However, a large linearization error can reduce
the estimation accuracy of the estimator and even cause a divergence of the estimation
values. To improve the estimation performance of the state estimator when there is a large
linearization error in the system and to enhance the robustness of the estimator, we add
penalties for sensitivity to the linearization error by adding the corresponding differential
terms in Equation (28). The basic principle is that the deviation of the innovation process
from its nominal value reflects the contribution of the linearization error to the prediction
error of the Kalman filter concerning the equipment output. These deviations usually
have complex expressions, making it difficult to mathematically handle the corresponding
estimation problem. To streamline processing, we conduct a first-order approximation of



Sensors 2023, 23, 6553 10 of 19

the deviations via linearization around the origin. In Equation (29), µt ∈ (0, 1] is a design
parameter reflecting a trade-off between nominal estimation accuracy and penalization on
the first-order approximation of deviations of the innovation process. Furthermore, ψt+1
is explicitly utilized and is generally obtainable in communications following the receipt
of yt+1. To enable access to this information, the only requirement is the incorporation of
an indication code or timestamp into the communication channel. In the event that the
measurement is successfully conveyed, as denoted by ψt+1 = 1, this cost function signifies
that given the arrival of new information concerning xt at time instant t + 1, its estimate
should be updated in a robust fashion. If the remote robust state estimator is unable to
receive the sensor measurement data packets, as denoted by ψt+1 = 0, then yt+1 will be
devoid of any information pertaining to the plant output. A recursive robust estimation
algorithm can be derived through the application of this construction procedure.

Theorem 2. Assume that both Pt|t and Qt are invertible, and (1− µt)/µt is defined as λt. The state
vector xt+1 of the nonlinear system Σ1 can be estimated based on yk|t+1

k=0 and Equations (28) and (29)
using the following recursive process.

(1) Linearization.

At(x̂t|t, ε1
t ) =

∂ f (x, u)
∂x

| x=x̂t|t+ε1
t

u=ut

, (30)

Ct(x̂t|t, ε1
t ) =

∂h(x)
∂x
|x=x̂t|t+ε1

t
, (31)

x̂t+1|t = f
(

x̂t|t

)
, (32)

Ct+1(x̂t+1|t, ε2
t+1) =

∂h(x)
∂x
|x=x̂t+1|t+ε2

t+1
, (33)

where we abbreviate At(x̂t|t, 0), Ct(x̂t|t, 0), and Ct+1(x̂t+1|t, 0) as At, Ct, and Ct+1, respec-
tively.

(2) Parameter modification.

Ãt

(
ε1

t , ε2
t+1

)
=

 At
(
ε1

t
)

0n×(d−1)m 0n×m

Ct
(
ε1

t
)
− Ct+1

(
ε2

t+1
)

At
(
ε1

t
)

0m×(d−1)m 0m×m
0(d−1)m×n I(d−1)m 0(d−1)m×m

, (34)

B̃t

(
ε2

t+1

)
=

 In×n
−Ct+1

(
ε2

t+1
)

0(d−1)m×n

, (35)

C̃t

(
ε1

t

)
=

Ct

(
ε1

t

) d︷ ︸︸ ︷
Im · · · Im

, (36)

P̂t|t =
(

P−1
t|t + λtψtST

t St

)−1
, (37)

Q̂t =

[
Q−1

t + λtψt+1TT
t

(
I + λtStPt|tS

T
t

)−1
Tt

]−1
, (38)

Ât =
[

Ãt − λtψt+1B̂tQ̂tTT
t St

][
I − λtct+1γt+1P̂t|tS

T
t St

]
, (39)

B̂1t = B̃t − λtψt+1

(
ÂtPt|tS

T
t + B̂2tQ̂tTT

t

)
Tt, (40)

B̂2t = B̃t − λtψt+1 Ãt P̂t|tS
T
t Tt, (41)

at = f (x̂t|t, ut)− At x̂t|t, (42)

bt = h(x̂t|t−1)− Ct x̂t|t−1, (43)
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St(ε
1
t , ε2

t+1) = col


 C̃t+1

(
ε2

t+1
) ∂(Ãt(ε1

t ,ε2
t+1))

∂ε1
t,j

∂(C̃t+1(ε2
t+1))

∂ε2
t+1,j

∂(Ãt(ε1
t ,ε2

t+1))
∂ε2

t+1,j


n

j=1

 , (44)

Tt(ε
1
t , ε2

t+1) = col


 0

∂(C̃t+1(ε2
t+1))

∂ε2
t+1,j

∂(B̃t+1(ε2
t+1))

∂ε2
t+1,j

n

j=1

 , (45)

∆t = Ct−1

(
ε2

t−1

)
xt−1 + bt−1 − Ct

(
ε2

t

)
xt − bt, (46)

Dt =

 0n×m
Im

0(d−1)m×m

, (47)

dt = bt − bt+1, (48)

where we abbreviate St(0, 0, 0), Tt(0, 0, 0), Ãt(0, 0, 0), B̃t(0), and C̃t(0) as St, Tt, Ãt, B̃t,
and C̃t, respectively.

(3) Time-update step: update of the state predictions and pseudo-covariance matrix of the predic-
tion errors.

X̂t+1|t = ÂtX̂t|t + Dtdt + B̂1tat, (49)

h
(

x̂t−d+1|t−d

)
= C̃t+1X̂t+1|t + bt+1, (50)

Pt+1|t = At P̂t|t AT
t + B̂2tQ̂t B̂T

2t, (51)

Re,t+1 = ψt+1C̃t+1Pt+1|tC̃
T
t+1 + R−1

t+1. (52)

(4) Measurement-update step: update of the state estimation, pseudo-covariance matrix, and estimator
gain.

Kt+1 =
[

P−1
t+1|t + ψt+1CT

t+1R−1
t+1Ct+1

]−1
CT

t+1R−1
t+1 = P−1

t+1|t+1CT
t+1R−1

t+1

= Pt+1|tC
T
t+1R−1

e,t+1 = Pt+1|tC
T
t+1(ψt+1Ct+1Pt+1|tC

T
t+1 + Rt+1)

−1, (53)

X̂t+1|t+1 = X̂t+1|t + ψt+1Kt+1(yt+1 − h(x̂t−d+1|t))

= ÂtX̂t|t + Dtdt + B̂1tat + ψt+1

[
P−1

t+1|t + ψt+1C̃T
t+1R−1

t+1C̃t+1

]−1

× C̃T
t+1R−1

t+1

{
yt+1 − bt+1 − C̃t+1

(
ÂtX̂t|t + Dtdt + B̂1tat

)}
, (54)

Pt+1|t+1 =
{

P−1
t+1|t + ψt+1C̃T

t+1R−1
t+1C̃t+1

}−1

= (I − ψt+1Kt+1C̃t+1)Pt+1|t (55)

= Pt+1|t − ψt+1Pt+1|tC̃
T
t+1(ψt+1C̃t+1Pt+1|tC̃

T
t+1 + Rt+1)

−1C̃t+1Pt+1|t,

x̂t+1|t+1 =
[

X̂t+1|t+1,1, X̂t+1|t+1,2, . . . , X̂t+1|t+1,n

]T
, (56)

where X̂t|t,j denotes the j-th component of vector X̂t|t.

To demonstrate the theoretical results presented in this paper, the following well-
known results from matrix analysis and linear estimations, as described in [33], are required.
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Lemma 1. Assuming arbitrary matrices A, B, C, and D with dimensions that are compatible, it is
postulated that all matrix inverses necessary for the calculations are present. Then,[

A B
C D

]
=

[
I 0

CA−1 I

][
A 0
0 D− CA−1B

][
I A−1B
0 I

]
=

[
I BD−1

0 I

][
A− BD−1C 0

0 D

][
I 0

D−1C I

]
(57a)

[A + BCD]−1 = A−1 − A−1B
[
C−1 + DA−1B

]−1
DA−1 (57b)

A(I + BA)−1 = (I + AB)−1 A. (57c)

Proof of Theorem 2. In the interest of brevity, we define the vectors αt0 and αt as αt0 =
col{X̂t|t, 0} and αt = col{Xt|t+1, wt|t+1}, respectively. Furthermore, we define the matrices
P̂t|t, Q̂t, B̂1t, B̂2t, and Ât as (37)–(41), respectively.

It should be noted that for all k ∈ {1, 2, . . . , n}, the following is satisfied:

∂et
(
ε1

t ε2
t+1
)

∂ε1
t,k

= C̃t+1

(
ε2

t+1

)∂Ãt
(
ε1

t , ε2
t+1
)

∂ε1
t,k

Xt|t+1, (58)

∂et
(
ε1

t , ε2
t+1
)

∂ε2
t+1,k

=
∂C̃t+1

(
ε2

t+1
)

∂ε2
t+1,k

[
∂Ãt

(
ε1

t , ε2
t+1
)

∂ε2
t+1,k

Xt|t+1 +
∂B̃t+1

(
ε2

t+1
)

∂ε2
t+1,k

at +
∂B̃t+1

(
ε2

t+1
)

∂ε2
t+1,k

wt|t+1

]
. (59)

It can be easily shown, based on the definition of the cost function J
(

Xt|t+1, wt|t+1

)
, that

J(αt) =
µt

2

{
(∗)Tdiag

{
P−1

t|t , Q−1
t

}
(αt − αt0) + ψt+1(∗)T R−1

t+1

×
[
bt+1 + C̃t+1

([
Ãt B̃t

]
αt + Dtdt + B̃tat

)
− yt+1

]
+ λtψt+1(∗)T([St Tt]αt + Ttat)

}
.

(60)

Therefore.

∂J(αt)

∂αt
= µt

{
diag

{
P−1

t|t , Q−1
t

}
(αt − αt0) + ψt+1

(
C̃t+1

[
Ãt B̃t

])T

× R−1
t+1
[
bt+1 + C̃t+1

([
Ãt B̃t

]
αt + Dtdt + B̃tat

)
− yt+1

]
+λtψt+1[St Tt]

T([St Tt]αt + Ttat)
}

= µt

{(
diag

{
P−1

t|t , Q−1
t

}
+ λtψt+1[St Tt]

T [St Tt] + ψt+1
[
Ãt B̃t

]TC̃T
t+1R−1

t+1C̃t+1
[
Ãt B̃t

])
αt

− diag
{

P−1
t|t , Q−1

t

}
αt0 + ψt+1

[
Ãt B̃t

]TC̃T
t+1R−1

t+1(bt+1 − yt+1)

+ ψt+1

([
Ãt B̃t

]TC̃T
t+1R−1

t+1C̃t+1B̃t + λt[St Tt]
TTt

)
at

+ψt+1
[
Ãt B̃t

]TC̃T
t+1R−1

t+1C̃t+1Dtdt

}
.

(61)

It should be noted that J(αt) is a convex function and µt 6= 0. The optimal value of αt,
denoted as α̂t, which minimizes J(αt), is determined by its first-order derivative condition.
That is,

α̂t =
(

diag
{

P−1
t|t , Q−1

t

}
+ λtψt+1[St Tt]

T [St Tt] + ψt+1
[
Ãt B̃t

]TC̃T
t+1R−1

t+1C̃t+1
[
Ãt B̃t

])−1

×
{

diag
{

P−1
t|t , Q−1

t

}
αt0 − ψt+1

[
Ãt B̃t

]TC̃T
t+1R−1

t+1(bt+1 − yt+1)

−ψt+1

([
Ãt B̃t

]TC̃T
t+1R−1

t+1C̃t+1B̃t + λt[St Tt]
TTt

)
at − ψt+1

[
Ãt B̃t

]TC̃T
t+1R−1

t+1C̃t+1Dtdt

}
.

(62)
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We can directly utilize the inverse application of the matrix inversion in Lemma (57b)
to obtain the following equation:

TT
t Tt − λtψt+1TT

t St

[
P−1

t|t + λtψt+1ST
t St

]−1
ST

t Tt = TT
t

[
I + λtψt+1StPt|tS

T
t

]−1
Tt. (63)

Then, from Lemma 1 and the definitions of the matrices P−1
t|t and Q−1

t , we can immedi-
ately obtain the following relation:

diag
{

P−1
t|t , Q−1

t

}
+ λtψt+1[StTt]

T [StTt]

=

[
I 0

λtψt+1TT
t St P̂t|t I

][
P̂−1

t|t 0

0 Q̂−1
t

][
I λtψt+1P̂t|tST

t Tt
0 I

]
.

(64)

By substituting this relation into (62), it can be further proved that

α̂t =

[
I −λtψt+1P̂t|tST

t Tt
0 I

]{[
P̂−1

t|t 0

0 Q̂−1
t

]
+ ψt+1

[
Ãt B̂2t

]TC̃T
t+1R−1

t+1C̃t+1
[
Ãt B̂2t

]}−1

×
{

col
{

I,−λtψt+1TT
t St P̂t|t

}
P−1

t|t X̂t|t + ψt+1
[
Ãt B̂2t

]TC̃T
t+1R−1

t+1(yt+1 − bt+1)

−ψt+1

([
Ãt B̂2t

]TC̃T
t+1R−1

t+1C̃t+1B̃t + λt

[
I 0

−λtψt+1TT
t St P̂t|t I

]
[St Tt]

TTt

)
at

−ψt+1
[
Ãt B̂2t

]TC̃T
t+1R−1

t+1C̃t+1Dtdt

}
.

(65)

Hence,

X̂t+1|t+1 =
[
Ãt B̃t

]
αt + Dtdt + B̃tat

=
[
Ãt B̂2t

]{
I + ψt+1diag

{
P̂t|t, Q̂t

}[
Ãt B̂2t

]TC̃T
t+1R−1

t+1C̃t+1
[
Ãt B̂2t

]}−1
diag

{
P̂t|t, Q̂t

}
×
{

col
{

I,−λtψt+1TT
t St P̂t|t

}
P−1

t|t X̂t|t + ψt+1
[
Ãt B̂2t

]TC̃T
t+1R−1

t+1(yt+1 − bt+1)

−ψt+1

([
Ãt B̂2t

]TC̃T
t+1R−1

t+1C̃t+1B̃t + λt

[
I 0

−λtψt+1TT
t St P̂t|t I

]
[St Tt]

TTt

)
at

−ψt+1
[
Ãt B̂2t

]TC̃T
t+1R−1

t+1C̃t+1Dtdt

}
+ Dtdt + B̃tat

=
[

I + ψt+1Pt+1|tC̃
T
t+1R−1

t+1C̃t+1

]−1{
ÂtX̂t|t + ψt+1Pt+1|tC̃

T
t+1R−1

t+1(yt+1 − bt+1)

−ψt+1

(
Pt+1|tC̃

T
t+1R−1

t+1C̃t+1B̃t + λt

(
ÂtPt|tS

T
t + B̂2tQ̂tTT

t

)
Tt

)
at − ψt+1Pt+1|tC̃

T
t+1R−1

t+1C̃t+1Dtdt

}
+ Dtdt + B̃tat,

(66)

where Pt+1|t =
[
Ãt B̂2t

]
diag

{
P̂t|t, Q̂t

}[
Ãt B̂2t

]T
= Ãt P̂t|t ÃT

t + B̂2tQ̂t B̂T
2t.

In the derivation of the above equation, the relation P̂t|tP
−1
t|t = I − λtψt+1P̂t|tST

t St is
utilized, which is a direct result of the definition of the matrix. By adding the relation [I +
ψt+1Pt+1|tCT

t+1R−1
t+1Ct+1]

−1 = I − ψt+1[I + ψt+1Pt+1|tCT
t+1R−1

t+1Ct+1]
−1Pt+1|tCT

t+1R−1
t+1Ct+1

to the above equation, we can finally obtain
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X̂t+1|t+1 =ÂtX̂t|t − ψt+1

[
I + ψt+1Pt+1|tC̃

T
t+1R−1

t+1C̃t+1

]−1
Pt+1|tC̃

T
t+1R−1

t+1C̃t+1 ÂtX̂t|t

+ ψt+1

[
I + ψt+1Pt+1|tC̃

T
t+1R−1

t+1C̃t+1

]−1
Pt+1|tC̃

T
t+1R−1

t+1(yt+1 − bt+1)

− ψt+1

[
I + ψt+1Pt+1|tC̃

T
t+1R−1

t+1C̃t+1

]−1
Pt+1|tC̃

T
t+1R−1

t+1C̃t+1B̃tat

− ψt+1λt

(
ÂtPt|tS

T
t + B̂2tQ̂tTT

t

)
Ttat + B̃tat

+ ψ2
t+1λt

[
I + ψt+1Pt+1|tC̃

T
t+1R−1

t+1C̃t+1

]−1
Pt+1|tC̃

T
t+1R−1

t+1C̃t+1

×
(

ÂtPt|tS
T
t + B̂2tQ̂tTT

t

)
Ttat

− ψt+1

[
I + ψt+1Pt+1|tC̃

T
t+1R−1

t+1C̃t+1

]−1
Pt+1|tC̃

T
t+1R−1

t+1C̃t+1Dtdt + Dtdt

=ÂtX̂t|t + Dtdt + B̂1tat + ψt+1

[
P−1

t+1|t + ψt+1C̃T
t+1R−1

t+1C̃t+1

]−1

× C̃T
t+1R−1

t+1

{
yt+1 − bt+1 − C̃t+1

(
ÂtX̂t|t + Dtdt + B̂1tat

)}
.

(67)

The proof of Theorem 2 ends here.

4. Numerical Simulations

In this section, we choose a simple yet representative nonlinear system as the object
observed by the sensor since its highly representative nonlinear characteristics can well
reflect the superiority of the robust state estimation algorithm designed in this paper. As
illustrated in Figure 5, the voltage value v of the oscillation circuit consisting of a double-
tunnel diode negative-resistance circuit, as described in [34], is selected as the estimation
target. When the negative-resistance circuit satisfies characteristic i = −v + 1

3 v3, the circuit
equation can be rewritten as the following equation:

v̈− ς(1− v2)v̇ + v = 0,

as described in [35], which is known as the Van der Pol equation. Within the above equation,

ς =
√

L
C , v̇ = dv

dι =
√

CL dv
dt , v̈ = d2v

dι2
= CL d2v

dt2 , where ι = 1√
CL

. By using the Van der Pol
oscillator as a simplified representation, we can concentrate on the fundamental principles
and methods of our proposed algorithm, which can then be applied to more complex actual
nonlinear systems.

Figure 5. Oscillation circuit consisting of a double-tunnel diode negative-resistance circuit.

Consider a sensor that monitors the voltage of the Van der Pol oscillator and sends
its measurements to an event trigger. The event trigger determines whether to send the
data to a remote robust state estimator through a wireless communication network. We
take into account the effects of transmission delays and DoS attacks during communication.
The entire process is shown in Figure 1. We choose the state vector x = [x1, x2]

T = [v, v̇]T ,
the measurement vector y = x1 = v, and the system parameter ς = 0.6. The state equation
and the measurement equation are shown below:
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ẋ1 = x2,

ẋ2 = ς
(

1− x2
1

)
x2 − x1, ς = 0.6,

y = x1.

By employing the forward Euler method with a sampling interval of T = 0.2 to
discretize the above state-space equation and introducing the process noise wt, the mea-
surement noise ϑt, the packet-arrival parameter ψt and the number of measurement delays
d, we derive the following discrete state-space model:

xt+1 = f (xt) + ωt =

[
xt,1 + Txt,2

xt,2 + ςT
(

1− x2
t,1

)
xt,2 − Txt,1

]
+ ωt,

yt = ψt[1, 0]xt−d + ϑt.

By expanding the state equation using first-order Taylor linearization at x̂t|t, ignoring
higher-order terms, and introducing error parameters εt, we can obtain

xt+1 = Atxt(ε1
t ) + at + wt,

yt = ψt[1, 0]xt−d + ϑt,

where At =
∂ f (x)

∂x |x=x̂t|t and at = f (x̂t|t)−At x̂t|t. We assign a value of 10−2 to the covariance
of the process noise and a value of 1 to the covariance of the measurement noise. The
initial pseudo-covariance matrix of the state is set to P0 = I2, and the initial state is set to
x0 = [0.5, 0]T . We set the number of measurement delays d = 2, which means that there is a
delay of two sampling intervals from when the measurement value is sent from the event
trigger to when it is received by the remote robust state estimator. More precisely, when
utilizing timestamp technology, the number of measurement-delay frames is 2.

The variance of the ensemble-average estimation errors at each sampling instant
is calculated through 6× 102 random numerical simulations. The temporal variable, t,
is varied from 0 to 2× 102 in the numerical simulations conducted. By evaluating the
estimation error using the Euclidean distance between the actual and predicted values, the
performance of the two estimation algorithms is compared. The variance of the ensemble-
average estimation errors for these 6× 102 random simulations at each sampling instant is
computed as follows:

E‖xt − x̂t|t||2 ≈
1

600 ∑600
j=1 ‖xt − x̂j

t|t||
2,

where j represents the serial number of the random simulations. The root mean square error

of the k-th state component at each time instant is calculated as

√
1

600 ∑600
j=1

(
xt,k − x̂j

t|t,k

)2
.

The measurement-dropping parameter γt is represented by a stationary Bernoulli
process with an expected rate of ρ = 0.6. We set the packet transmission rate to a value
of 0.85. The design parameter µt is assigned a value of 0.86. In Figure 6a, the variance
of the ensemble-average estimation errors with respect to the time variation for the two
state estimation algorithms is demonstrated. In order to clarify the differences between
the curves, they are partially re-plotted in Figure 6b. It is evident that the overall variance
of the estimation errors for both the voltage and its derivative, as obtained by the robust
state estimator based on sensitivity penalization, is significantly superior to that of the
EKF-based method that utilizes nominal parameter values. This indicates that the remote
robust state estimator based on sensitivity penalization can effectively handle linearization
errors to some extent. The root mean square error of the states is also shown in Figure 6c,d.
For a more intuitive presentation of the results, Figure 6e illustrates the inversion of the
packet-sending parameter, with “0” representing packet transmission and “1” denoting
no packet transmission. Figure 6f shows the resulting packet-dropping parameter when
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the transmission network experiences DoS attacks, where “0” indicates packet loss and “1”
represents normal packet transmission. This aligns with the characteristics of DoS attacks,
specifically that the attack duration is bounded and the packet loss changes over time due
to the energy restrictions of the attacker. In Table 1, we quantitatively compare the variance
of the estimation errors and the root mean square error for the two different algorithms. By
calculating the averages of the variance of the estimation errors and root mean square error in
Figure 6 for 200 moments and 600 experiments, we obtain the EEV and RMSE values listed in
Table 1. As shown in Table 1, the robust state estimator has a lower variance of the estimation
errors of 0.0984 compared to that of the EKF-based method, and the root mean square error of
the two state components estimated by the robust state estimator is also lower than that of the
EKF-based method. It is obvious that at the same packet-dropping rate, the performance of
the robust state estimator designed in this paper is better than that of the EKF-based method.
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Figure 6. State estimation with packet transmission rate α = 0.85 and packet-dropping rate ρ = 0.6.
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Table 1. Comparison of the variance of the estimation errors and root mean square error.

EEV RMSE of x1 RMSE of x2

EKF-based method 0.9585 0.6891 0.6814
Robust state estimator 0.8601 0.6336 0.6556

The variance of the ensemble-average estimation errors of the robust state estimator
under two different transmission rates, α = 0.85 and α = 0.55, is depicted in Figure 7. The
analysis of the data reveals that higher transmission rates lead to improved estimation
accuracy, although this comes with an associated increase in the transmission burden.
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Figure 7. Variance of estimation errors with different transmission rates α.

5. Conclusions

In this paper, the problem of event-triggered robust state estimation for nonlinear
networked systems with a constant measurement delay against DoS attacks is investigated.
We utilize a state augmentation method to transform the measurement-delay model into
a formally non-delayed model. Two Bernoulli distributions are employed in the packet-
sending and packet-loss processes, respectively, to explicitly indicate whether a packet is
sent or lost. A robust state estimator is derived with an explicit packet-arrival parameter
by penalizing the sensitivity of estimation errors with respect to linearization errors. For
this new robust estimator, an analytical solution akin to the EKF is developed, enabling
recursive implementation. Simulation results demonstrate that our proposed method offers
appreciably improved estimation accuracy compared to the EKF-based approach. Although
our robust state estimation algorithm can improve estimation performance, further studies
are required to systematically determine the optimal value for the design parameter µ.
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