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1 Experimental Clinical Psychology, Department of Psychology, Julius-Maximilians-University of Würzburg,
97070 Würzburg, Germany; sabrina.gado@uni-wuerzburg.de

2 Applied Neurocognitive Systems, Fraunhofer Institute for Industrial Engineering IAO,
70569 Stuttgart, Germany; mathias.vukelic@iao.fraunhofer.de

3 Applied Neurocognitive Psychology Lab, Department of Psychology, Carl von Ossietzky University,
26129 Oldenburg, Germany

4 Department of Teaching and Learning with Intelligent Systems, University of Stuttgart,
70174 Stuttgart, Germany; maria.wirzberger@iris.uni-stuttgart.de

5 LEAD Graduate School & Research Network, University of Tübingen, 72072 Tübingen, Germany
* Correspondence: katharina.lingelbach@iao.fraunhofer.de
† These authors contributed equally to this work.

Abstract: Humans’ performance varies due to the mental resources that are available to successfully
pursue a task. To monitor users’ current cognitive resources in naturalistic scenarios, it is essential to
not only measure demands induced by the task itself but also consider situational and environmental
influences. We conducted a multimodal study with 18 participants (nine female, M = 25.9 with
SD = 3.8 years). In this study, we recorded respiratory, ocular, cardiac, and brain activity using
functional near-infrared spectroscopy (fNIRS) while participants performed an adapted version of
the warship commander task with concurrent emotional speech distraction. We tested the feasibility
of decoding the experienced mental effort with a multimodal machine learning architecture. The
architecture comprised feature engineering, model optimisation, and model selection to combine
multimodal measurements in a cross-subject classification. Our approach reduces possible overfitting
and reliably distinguishes two different levels of mental effort. These findings contribute to the
prediction of different states of mental effort and pave the way toward generalised state monitoring
across individuals in realistic applications.

Keywords: mental effort; machine learning; multimodal physiological signals; sensor fusion;
neuroergonomics; human–machine interaction

1. Introduction

In everyday life, we constantly face situations demanding high stakes for maximum
gains; for instance, to succeed in rapidly acquiring complex cognitive skills or making deci-
sions under high pressure. Thereby, a fit between personal skills and the task’s requirements
determines the quality of outcomes. This fit is vital, especially in performance-oriented
contexts such as learning and training, safety-critical monitoring, or high-risk decision-
making. A person’s performance can be affected by several factors: (1) level of experience
and skills, (2) current physical conditions (e.g., illness or fatigue), (3) current psychological
conditions (e.g., stress, motivation, or emotions), or (4) external circumstances (e.g., noise,
temperature, or distractions; Hart and Staveland [1], Young et al. [2]).

To reliably quantify the mental effort during a particular task, different measures can
be used: (1) behavioural (i.e., performance-based), (2) subjective, and (3) neurophysiological
measures [3–5]. While performance can be inspected by tracking the user’s task-related
progress, the actual pattern of invested cognitive resources can only be derived by mea-
suring brain activity with neuroimaging techniques. Coupled with sophisticated signal
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processing and machine learning (ML), advances in portable neuroimaging techniques have
paved the way for studying mental effort and its possible influences from a neuroergonomic
perspective [6,7]. Recently, functional near-infrared spectroscopy (fNIRS) has been used
to study cognitive and emotional processes with high ecological validity [6,8–10]. fNIRS
is an optical imaging technology allowing researchers to measure local oxy-haemoglobin
(HbO) and deoxy-haemoglobin (HbR) changes in cortical regions. Higher mental effort
is associated with an increase in HbO and a decrease in HbR in the prefrontal cortex
(PFC) [11–13]. The PFC is crucial for executive functions like maintaining goal-directed
behaviour and suppressing goal-irrelevant distractions [14,15]. In addition to changes in
the central nervous system, an increased mental effort also leads to changes in the auto-
nomic nervous system. The autonomic nervous system, as part of the peripheral nervous
system, regulates automatic physiological processes to maintain homeostasis in bodily
functioning [16,17]. Increased mental effort is associated with decreased parasympathetic
nervous system activity and increased sympathetic nervous system activity [18–20]. Typ-
ical correlates of the autonomic nervous system for cognitive demands, engagement or
mental effort are cardiac activity (e.g., heart rate and heart rate variability), respiration
(rate, airflow, and volume), electrodermal activity (skin conductance level and response),
blood pressure, body temperature, and ocular measures like pupil dilation, blinks, and eye
movements [7,19,21–24].

Not surprisingly, all these measures are, thus, often used as a stand-alone indicator for
mental effort (i.e., in a unimodal approach). However, a multimodal approach has several ad-
vantages over using only one measure. It can compensate for specific weaknesses and profit
from the strengths of the different complementary measurement methods (performance,
subjective experience as well as neuro- and peripheral physiological measures) [25–27].
For instance, (neuro-)physiological measures can be obtained without imposing an ad-
ditional task [16] and allow for capturing cognitive subprocesses involved in executing
the primary task [28]. A multimodal approach, hence, provides a more comprehensive
view of (neuro-)physiological processes related to mental effort [4,5,25,29], as it can capture
both central and peripheral nervous system processes [21,27]. However, fusing data from
different sources remains a major challenge for multimodal approaches. ML methods
provide solutions to compare and combine data streams from different measurements. ML
algorithms are becoming increasingly popular in computational neuroscience [30,31]. The
rationale behind these algorithms is that the relationship between several input data streams
and a particular outcome variable, e.g., mental effort, can be estimated from the data by
iteratively fitting and adapting the respective models. This allows for data-driven analyses
and provides ways to exploratorily identify patterns in the data that are informative [32].

Data-driven approaches can also be advantageous in bridging the disparity between
laboratory research and real-world applications. For instance, when specific temporal
events (such as a stimulus onset) or the brain correlates of interest, are not precisely known.
In contrast to traditional laboratory studies that typically rely on simplified and artificial
stimuli and tasks, a naturalistic approach seeks to emulate, to some extent, the intricacy
of real-world situations. Hence, these studies can provide insights into how the brain
processes information and responds to complex stimuli in the real world [33].

Real-world settings are usually characterised by multiple situational characteristics,
including concurrent distractions that affect the allocation of attentional and cognitive
resources [34]. According to the working memory model by Baddeley and Hitch [35],
performance is notably diminished when distractions deplete resources from the same
modality as the primary task. However, Soerqvist et al. [36] propose the involvement of
cognitive control mechanisms that result in reduced processing of task-irrelevant informa-
tion under higher mental effort. To uphold task-relevant cognitive processes, high-level
cortical areas, particularly the PFC, which govern top-down regulation and executive func-
tioning, suppress task- or stimulus-irrelevant neural activities by inhibiting the processing
of distractions [28]. Consequently, the effects of distractors are mitigated. In light of these
considerations, understanding the capacity of a stimulus to capture attention in a bottom-up
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manner, known as salience, emerges as a crucial aspect. A salient stimulus has the potential
to disrupt top-down goal-oriented and intentional attention processes [37] and to impair
performance in a primary task [38–40]. Previous studies found that irrelevant, yet intelligi-
ble speech exerts such disruptive effects on participants’ performance in complex cognitive
tasks [41,42]. Consequently, intelligible speech might heighten the salience of a distracting
stimulus. Moreover, further studies revealed that the emotional intensity and valence of
a stimulus also play a role in influencing its salience [37,43]. Despite their detrimental
impact on performance, people frequently experience such salient distractions (such as
verbal utterances from colleagues) at work, even in highly demanding safety-relevant tasks.
Therefore, gaining an understanding of the underlying cognitive processes in naturalistic
scenarios and identifying critical moments that lead to performance decreases in real-world
settings are crucial research topics in the field of neuroergonomics.

To decode and predict cognitive states, most research so far focused on subject-
dependent classification. These approaches face the challenge of high inter-individual
variability in physiological signals when generalising the model to others [44]. Recently,
pioneering efforts have been made to develop cross-subject models that overcome the
need for subject-specific information during training [45,46]. Solutions to address the chal-
lenge of inter-individual variability [47] are crucial for the development of “plug and play”
real-time state recognition systems [48] as well as the resource-conserving exploitation of
already available large datasets without time-consuming individual calibration sessions.
Taking into account the aforementioned considerations and research agenda concerning
the decoding of mental effort in naturalistic scenarios, we conducted a feasibility study and
developed an ML architecture to decode mental effort across subjects from multimodal
physiological and behavioural signals. We used a monitoring task simulating typical work
tasks of air traffic controllers. This adapted version of the warship commander task induces
mental effort based on a combination of attentional and cognitive processes, such as object
perception, object discrimination, rule application, and decision-making [49]. To create
a complex close-to-naturalistic scenario, three emotional types of auditory speech-based
stimuli with neutrally, positively, and negatively connotated prosody were presented dur-
ing the task as concurrent distractions [50]. Concurrently, performance-based, brain-related
as well as peripheral physiological signals associated with mental effort were recorded.

We hypothesised that a well-designed multimodal voting ML architecture is preferable
compared to a classifier based on (a) only one modality (unimodal approach) and (b) a
combined, unbalanced feature set of all modalities. We expected that a multimodal voting
ML model is capable of predicting subjectively experienced mental effort induced by the
task itself but also by the suppression of situational auditory distractions in a complex
close-to-realistic environment. Thus, we first investigated whether a combined prediction
of various ML models is superior to the prediction of a single model (RQ1) and, second,
we explored whether a multimodal classification that combines and prioritises the pre-
dictions of different modalities is superior to a unimodal prediction (RQ2). Furthermore,
our approach enables a systematic evaluation of the unimodal and multimodal models,
assessing their suitability and informativeness of each modality in decoding mental effort.
This knowledge provides researchers in the fields of Human Activity Recognition and
Behaviour Recognition with references for selecting suitable sensors, as well as a validated
multimodal experimental design and ML processing pipeline [51].

2. Materials and Methods
2.1. Participants

Interested volunteers filled in a screening questionnaire that checked eligibility for
study participation and collected demographic characteristics. Participants between the
ages of 18 and 35 and with normal or corrected-to-normal vision were included in the study.
Interested volunteers were excluded if they had insufficient knowledge of the German
language or limited colour vision, as these factors could impede their ability to perform
the tasks. Additionally, pregnant women, individuals indicating precarious alcohol or
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drug consumption, and those reporting mental, neurological, or cardiovascular diseases
were not included. Due to the data collection period in June 2021 coinciding with the
COVID-19 pandemic, individuals belonging to the risk group for severe COVID-19 disease,
as defined by the Robert Koch Institute, were also not invited to the laboratory. The final
sample consisted of 18 participants (nine female, three left-handed, mean age of 25.9 years,
SD = 3.8, range = 21–35 years) who were all tested individually. Before their participation,
they signed an informed consent according to the recommendations of the Declaration
of Helsinki and received monetary compensation for their voluntary participation. The
study was approved by the ethics committee of the Medical Faculty of the University of
Tübingen, Germany (ID: 827/2020BO1).

2.2. Experimental Task

Participants performed an adapted version of a warship commander task (WCT [52];
adapted by Becker et al. [49]). The WCT is a quasi-realistic navy command and control task
designed as a basic analogue to a Navy air warfare task [53]. It is suitable to investigate
various cognitive processes of human decision-making and action execution [53]. Here, we
used a non-military safety-critical task, where participants had to identify two different
flying objects on a simulated radar screen around an airport. Objects included either
registered drones (neutral, non-critical objects), or non-registered (critical) drones. They
had to prevent the non-registered drones, potentially being a safety issue, from entering
the airport’s airspace. Non-registered drones entering pre-defined ranges close to the
airport had to be first warned and then repelled in the next step. A performance score
was computed based on participants’ accuracy and reaction time. See Becker et al. [49],
for a more detailed description of the scoring system, and see Figure 1 for an overview of
the interface.

Figure 1. Elements of the WCT interface. Left side of the screen (map): Participants had to monitor
the aerial space of the airport. When an unregistered drone entered the yellow area (outer circle),
participants had to warn that drone; when an unregistered drone entered the red area (inner circle),
participants had to repel it. Right side of the screen (graphical user interface): Participants had to
request codes and pictures of unknown flying objects and then classify them as birds, registered
drones, or unregistered drones.
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During the task, we presented vocal utterances, either spoken in a happy, angry, or
neutral way from the Berlin Database of Emotional Speech (Emo-DB [50]). These utterances
were combined into different audio files, each one minute long, with speakers and phrases
randomly selected and as little repetition as possible within each file. We also included
a control condition where no auditory distraction was presented. The task load was
manipulated by implementing two difficulty levels in the WCT (low and high). This
resulted in a 2 × 4 design with eight experimental conditions. Participants completed
two rounds of all conditions in the experiment. Before the respective round, a resting
state measurement was conducted (30 s). Each round then consisted of eight blocks, each
comprising three 60-s trials of the same experimental condition. The task load condition
(operationalised with the difficulty level) was alternated across blocks. Half of the subjects
started with a high task load and the other half with a low task load block. Similarly, the
concurrent emotional condition (operationalised with different auditory distractions) was
randomised and sampled without replacement. Before each block, except for the first,
participants completed a baseline condition trial with a very low difficulty level where they
had to track six objects, of which three were non-registered drones. In the low task load
condition, participants had to track 12 objects, of which six were non-registered drones. In
the high task load condition, they had to track 36 objects, of which 17 were non-registered
drones. We used different emotional audio files for the trials in one block. Before and
after the whole experiment, as well as after each experimental block, participants filled
in questionnaires. See Figure 2 for a schematic representation of the whole experimental
procedure. Overall, the experiment lasted approximately 120 min, including 30 min of
preparation time of the used measurement devices and calibration procedures.

Figure 2. Procedure of the experiment. The presented procedure is exemplary as the task load condi-
tion was alternating, and the concurrent emotional condition was pseudo-randomised throughout
the different blocks.

2.3. Data Collection
2.3.1. Questionnaires

Subjectively perceived mental effort and affective states were assessed after each exper-
imental block. We used the NASA TLX effort and frustration subscales [1], EmojiGrid [54],
and categorical Circumplex Affect Assessment Tool (CAAT [55]). After the experiment,
participants answered questionnaires regarding personal traits that might have influenced
their performance and behaviour during the study. These questionnaires comprised the
short version of the German Big Five Inventory (BFI-K [56]), the German State-Trait-Anxiety
Inventory (STAI [57]), the Attention and Performance Self-Assessment (APSA [58]) and the
German language version of the Barratt Impulsiveness Scale-11 (BIS [59]). Here, we only
used the NASA TLX ratings of mental effort for labelling the (neuro-)physiological data in
the ML classification. The other subjective measures were not of interest in this analysis.

2.3.2. Eye-Tracking, Physiology, and Brain Activity

The ocular activity was recorded with the screen-based Tobii Pro Spectrum eye-
tracking system, which provides gaze position and pupil dilation data at a sampling
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rate of 60 Hz. To capture changes in physiological responses, participants were wearing a
Zephyr BioHarness™ 3 belt recording electrocardiographic (ECG), respiration, and temper-
ature signals at a sampling rate of 1 Hz. Here, we used automatically computed, aggregated
scores for the heart rate, heart rate variability, and respiration rate and amplitude from the
device. Physiological as well as behavioural measures were recorded using the iMotions
Biometric Research Platform software. Participants’ brain activity was recorded with a
NIRx NIRSport2 system, which emits light at two wavelengths, 760 and 850 nm. Data
were collected with the Aurora fNIRS recording software at a sampling rate of 5.8 Hz. To
capture regions associated with mental effort, 14 source optodes and 14 detector optodes
were placed over the prefrontal cortex [12,60] using the fNIRS Optodes’ Location Decider
(fOLD) toolbox [61] (Figure 3, for the montage). Event triggers from the experimental task
were sent to iMotions and Aurora using TCP protocols and Lab Streaming Layer (LSL).
Signals from the different recording and presentation systems were temporally aligned
offline after the data collection.

Figure 3. Location of fNIRS optodes. Montage of optodes on fNIRS cap on a standard 10–20 EEG
system, red optodes: sources, blue optodes: detectors, green lines: long channels, dark blue circles:
short channels. Setup with 41 (source–detector pairs) × 2 (wavelengths) = 82 optical channels
of interest.

2.4. Data Preprocessing and Machine Learning

Data preprocessing and ML analyses were performed with custom-written scripts in
R (version 4.1.1) and Python™ (version 3.8). Continuous raw data streams were cut into
non-overlapping 60-s intervals starting at the onset of each experimental trial (Figure 2).
Before feeding the data into the classification pipeline, we applied the following data
cleaning and preprocessing steps per modality.

2.4.1. Preprocessing of Eye-Tracking Data

Continuous eye tracker data were preprocessed using the eyetrackingR package in
R [62]. Missing values were linearly interpolated and 855 trials with a length of 60 s (on
average 47.5 trials per subject, SD = 0.9) were extracted. Next, we used the validity index
to remove non-consistent data segments from further analysis. The index is provided by
the eye tracker and indicates samples in which the eye tracker did not recognise both pupils
correctly (“track loss”). A total of 17 trials (1.99%) with a track loss proportion greater
than 25% were removed, and 838 trials were left to extract fixations and pupil dilation (on
average 46.6 trials per subject, SD = 2.4). For the preprocessing of the pupil dilation data,
we used the PupillometryR R-package [63]. First, we calculated a simple linear regression
of one pupil against the other and vice versa, per subject and trial to smooth out small
artefacts [64]. Afterwards, we computed the mean of both pupils and filtered the data
using the median of a rolling window with a size of 11 samples. To control for the variance
of pupil sizes between participants, we applied a subject-wise z-score normalisation of
pupil dilation. For the computation of fixations, we used the saccades R-package [65]. We
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obtained fixations for 565 trials (on average 31.4 trials per subject, SD = 1.2). To control
for the variance between participants, we also computed z-scores of the number and the
duration of fixations separately for each subject.

2.4.2. Preprocessing of Physiological Data

Epoching in non-overlapping 60-s time windows from the electrocardiographic raw
data resulted in 832 trials (on average 46.2 trials per subject, SD = 1.3). We applied
a correction for the between-participant variance identical to the one described for the
eye-tracking data using z-score normalisation.

2.4.3. Preprocessing of fNIRS Data

We used the libraries MNE-Python [66] and its extension MNE-NIRS [67] and guide-
lines from Yücel et al. [68] to preprocess the fNIRS data. First, we converted the raw data
into an optical density measure. A channel pruning was applied using the scalp-coupling
index for each channel which is an indicator of the quality of the connection between the
optodes and the scalp and looks for the presence of a prominent synchronous signal in the
frequency range of cardiac signals across the photo-detected signals [69]. Channels with a
scalp-coupling index below 0.5 were marked as bad channels. We further applied a tem-
poral derivative distribution repair accounting for a baseline shift and spike artefacts [70].
Channels marked as bad were interpolated, with the nearest channel providing good data
quality. Afterwards, a short-separation regression was used, subtracting short-channel data
from the standard long-channel signal to correct for systemic signals contaminating the
brain activity measured in the long-channel [68,71]. Next, the modified Beer–Lambert Law
was applied to transform optical density into HbO and HbR concentration changes [72]
with a partial pathlength factor of 6 [66]. Data were filtered using a fourth-order zero-phase
Butterworth bandpass filter to remove instrumental and physiological noise (such as heart-
beat and respiration; cut-off frequencies: 0.05 and 0.7 Hz; transition bandwidth: 0.02 and
0.2 Hz). HbO and HbR data was cut into epochs with a length of 60 s and channel-wise
z-scored normalised. In total, 730 trials were obtained for the analysis (on average 40.6 trials
per subject, SD = 9.6).

2.4.4. Feature Extraction

Our feature space comprised brain activity, physiological, ocular and performance-
related measures. Table 1 gives an overview of the included features per subject and trial
for each modality. We extracted the features of the fNIRS data using the mne-features
package [73].

Figure S24 in the supplementary material provide exploratory analyses of the distri-
bution and relationship between behavioural, heart activity, respiration, ocular measures,
and the NASA TLX questionnaire scale effort during low and high subjective load. The
Supplementary Figures S25 and S26 compare the grand average of the behavioural and
physiological measures as well as single fNIRS channels of the prefrontal cortex using
bootstrapping with 5000 iterations and 95% confidence intervals (CI) during low and high
subjective load.

2.4.5. Ground Truth for Machine Learning

Our main goal was to predict the mental effort experienced by an individual using ML
and training data from other subjects (e.g., [74,75]). Since the experimentally manipulated
task load was further influenced by situational demands (e.g., inhibiting task-irrelevant
auditory emotional distraction), the perceived mental effort might not be fully captured
by the experimental condition. Therefore, we explored two approaches to operationalise
mental effort as a two-class classification problem: First, based on self-reports using the
NASA TLX effort subscale, and second, based on the experimental task load condition.
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Table 1. Included features per modality.

Modality Features

Brain Activity Mean, standard deviation, peak-to-peak (PTP) amplitude, skewness, and
kurtosis of the 82 optical channels

Physiology

Heart Rate Mean, standard deviation, skewness, and kurtosis of heart rate
Mean, standard deviation, skewness, and kurtosis of heart rate variability

Respiration Mean, standard deviation, skewness, and kurtosis of respiration rate
Mean, standard deviation, skewness, and kurtosis of respiration amplitude

Temperature Mean, standard deviation, skewness, and kurtosis of body temperature
Ocular Measures
Fixations Number of fixations, total duration and average duration of fixations, and

standard deviation of the duration of fixations
Pupillometry Mean, standard deviation, skewness, and kurtosis of pupil dilation
Performance Average reaction time and cumulative accuracy

For the mental effort prediction based on subjective perception, we performed a
subject-wise median split and categorised values above the threshold as “high mental
effort” and below as “low mental effort”. Across all subjects, we had a mean median-based
threshold of 3.8 (SD = 3.2, scale range = 0–20) leading to an average of 23.8 trials per
subject with low mental effort (SD = 6.6, range = 12–39) and 14.5 trials per subject with
high mental effort (SD = 6.2, range = 3–21; see Supplementary Figure S1 for a subject-wise
distribution of the classes).

In addition, we performed a subject-wise split at the upper quartile of the NASA TLX
effort subscale. The upper (or third) quartile is the point below which 75% of the data lies.
We introduced this data split to also investigate the prediction and informative features
of extremely high perceived mental effort, which may indicate cognitive overload. By
performing a quartile split, we had a mean threshold of 6.1 (SD = 4.3, scale range = 0–20)
across all relevant subjects (excluding subjects 5 and 9 which did not show enough variation
to identify these two classes) with an average number of 30.9 low mental effort trials per
subject (SD = 8.0, range = 16–39) and 6.6 high mental effort trials per subject (SD = 2.3,
range = 3–9; see Supplementary Figure S2 for a subject-wise distribution of the classes).

At last, we compared the prediction of subjectively perceived mental effort with a
prediction of the mental effort induced by the task, that is the experimental condition
(“high task load” vs. “low task load”; see Supplementary Figure S15 for a subject-wise
comparison of perceived mental effort dependent on the experimental load condition). The
comparison allows to further control for confounding effects that are typical for self-reports,
e.g., consistency effects or social desirability effects.

2.4.6. Model Evaluation

We fitted six ML approaches: (1) Logistic Regression (LR), (2) Linear Discriminant
Analysis (LDA), (3) Gaussian Naïve Bayes Classifier (GNB), (4) K-Nearest Neighbour
Classifier (KNN), (5) Random Forest Classifier (RFC), and (6) Support Vector Machine
(SVM). They were implemented using the scikit-learn package (version 1.0.1; [76]). Figure 4
shows a schematic representation of our multimodal classification scheme and cross-subject
validation procedure using multiple randomised grid search operations.

For the cross-subject classification, we used a leave-one-out (LOO) approach where
each subject served as a test subject once (leading to 18 “outer” folds). With this 18-fold
cross-subject approach, we simulate a scenario where a possible future system can predict
an operator’s current mental effort during a task without having seen any data (e.g.,
collected in a calibration phase) from this person before. This has the advantage that
the model learns to generalise across individuals and allows the exploitation of already
collected datasets from a similar context as training sets.
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Figure 4. Classification procedure with cross-validated randomised grid searches (maximum number
of 100 iterations) and a validation set consisting of one or two subjects. The first grid search optimises
the hyperparameters for the different individual and unimodal classifiers. The second grid search
optimises the weights as well as voting procedure (soft or hard) for the unimodal voting classifier.
The third grid search optimises the weights as well as the voting procedure (soft or hard) for the
multimodal voting classifier.

Our multidimensional feature space consisted of four modalities: (1) brain activity,
(2) physiological activity, (3) ocular measures, and (4) performance measures. All features
were z-standardised (Figure 4). This scaling ensured, that for each feature the mean is zero
and the standard deviation is one, thereby, bringing all features to the same magnitude.
We then trained the six classifiers (LR, LDA, GNB, KNN, RFC, and SVM) separately
for each modality. Hyperparameters for each classifier were optimised by means of a
cross-validated randomised grid search with a maximum number of 100 iterations and a
validation set consisting of either one or two subjects. We tested both sizes of the validation
set to find an optimal compromise between the robustness of the model and the required
computing power. While cross-validation with two subjects counteracts the problem that
the models highly adapt to an individual’s unique characteristics, cross-validation with
only one subject leads to a lower number of necessary iterations and a computationally
more efficient approach. Due to our cross-subject approach, the selected hyperparameters
varied for each predicted test subject.

Afterwards, we combined these classifiers using a voting classifier implemented in
the mlxtend package (version 0.19.0 [77]). The ensemble classifier makes predictions based
on aggregating the predictions of the previously trained classifiers by assigning weights to
each of them. Here, we are interested in whether an ensemble approach achieves higher
prediction accuracy than the best individual classifier in the ensemble. An ensemble
approach has the advantage that, even if each classifier is a weak learner (meaning it does
only slightly better than random prediction), the ensemble could still be a strong learner
(achieving high accuracy). The voting either follows a “soft” or a “hard” voting strategy.
While hard voting is based on a majority vote combining the predicted classes, soft voting
considers the predicted probabilities and selects the class with the highest probability across
all classifiers. The weights, as well as the voting procedure (soft or hard voting), were
optimised using a third cross-validated randomised grid search with a maximum number
of 100 iterations. We restricted the weights to a maximum value of 2 (range = 0–2).

With this procedure, we were able to compare the predictions of the single unimodal
classifiers to a weighted combination of all classifiers of one modality.

For the multimodal approach, the voting predictions of each modality were combined
into a final multimodal prediction of mental effort using a second voting classifier. This
second voting classifier also assigned weights to the different modality-specific classifiers
and was optimised in the same manner as the unimodal approach. We report the average
F1 score and a confusion matrix of the training set and the test subject to evaluate model
performance. The F1 score can be interpreted as a weighted average or “harmonic mean”
of precision and recall (1—good to 0—bad performance). Precision refers to the number
of samples predicted as positive that are positive (true positives). Recall measures how
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many of the actual positive samples are captured by the positive predictions (also called
sensitivity). The F1 score balances both aspects – identifying all positive, i.e., “high mental
effort” cases, but also minimising false positives.

To compare the classification performance of different models, we calculated the boot-
strapped mean and its CI over cross-validation folds with 5000 iterations per classification
model. We corrected the 95% CI for multiple comparisons using the Bonferroni Method.
Significant differences can be derived from non-overlapping notches of the respective
boxes, which mark the upper and lower boundaries of bootstrapped 95% CI of the mean
F1 score. The upper CI limit of a dummy classifier represents an empirical chance level
estimate (dashed grey line in all subplots of Figure 5). A dummy classifier considers only
the distribution of the outcome classes for its prediction. For a prediction to be better than
chance (at a significance level below 0.05), the bootstrapped mean of a classifier must not
overlap with this grey line [78]. For a significance level below 0.01, the lower CI boundary
of a classifier’s mean must not overlap with this grey line [78]. This criterion can also be
applied when statistically comparing different models, regardless of the chance level.

3. Results

We compare the results for a mental effort prediction based on a subject-wise (1a) me-
dian and (1b) upper quartile split of the Nasa TLX effort scale as well as based on the
(2) experimentally induced task load. Further, we compare two sizes of the validation set
(one subject and two subjects).

3.1. Unimodal Predictions

The performance of the different modalities and classifiers is visualised in Figure 5.
We do not see substantially better performance when using a larger validation set of two
subjects, neither for the median split (compare Figure 5 and Supplementary Figure S3) nor
for the upper quartile split (compare Supplementary Figures S7 and S11) or the prediction
of the experimentally induced task load (Supplementary Figures S16 and S20). We will,
therefore, focus on the models fitted with a validation set of one subject, as this is more
time- and resource-efficient. In this case, we estimated the CI’s upper boundary of the
mean empirical chance level for predicting subjectively perceived mental effort to be 0.444
(M = 0.368, 95% CI [0.284; 0.444]). This estimate now serves as a reference for determining
significant performance above the chance level.

Figure 5 and Table 2 show the performance in a median-split-based unimodal approach
(Figure 5A,B,D,E) as well as for the multimodal approach (Figure 5C; elaborated on in
Section Multimodal Predictions). Regarding the unimodal classifications, we see the highest
predictions of the subjectively perceived mental effort for performance data (Figure 5E
compared with ocular, physiological, or brain activity measures; Figure 5A,B,D; see Table 2).
Except for the performance-based model, we observe overfitting indicated by the large
deviation between training and test performance (Figure 5A,B,D). None of the brain activity-
based models performs significantly better than the estimated chance level in the test data
set (Figure 5A,G, Table 2). When examining the single classification models within each
modality, the KNN, RFC, and SVM were more likely to be overfitted, as seen by the good
performance in the training set but a significantly worse performance for the test subject.
We combined the different classifiers using a voting classifier, of which we ascertained the
voting procedure (soft vs. hard voting) and the weights with a randomised grid search.
See Figure 6 for an overview of the selected voting procedures and the allocated weights
per modality.
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Figure 5. Prediction of the subjectively perceived mental effort based on a median split; validation
set: N = 1. Classifiers’ performance based on (A) fNIRS data, (B) physiological data (heart rate,
respiration, and body temperature, (C) a combined, weighted feature set, (D) visual data, (E) per-
formance data (accuracy and response time), (F) a combined, but unweighted feature set, and (G) a
dummy classifier that considers only the distribution of the outcome classes for its prediction and
represents an empirical chance level. Bootstrapped Bonferroni-corrected 95% confidence intervals
(CI; 5000 iterations) of the mean F1 scores for the training set (left, orange) and the test set (right,
blue) of the different unimodal and multimodal models. Notches in the boxes of the plot visualise
the upper and lower boundary of the CI with the solid line representing the mean and the dashed
grey line representing the median. The box comprises 50% of the distribution from the 25th to the
75th quartile. The ends of the whiskers represent the 5th and 95th quartile of the distribution. The
continuous grey dashed line shows the upper boundary of the CI of the dummy classifier at 0.444.

Table 2. Bootstrapped Bonferroni-corrected means and 95% CIs of F1 scores.

Training Set Test Set

Chance Level

Dummy Classifier 0.351, 95% CI [0.320; 0.379] 0.368, 95% CI [0.284; 0.444]

Unimodal Predictions Based on fNIRS

LR 0.924, 95% CI [0.889; 0.962] 0.392, 95% CI [0.278; 0.500]
LDA 0.845, 95% CI [0.840; 0.850] 0.387, 95% CI [0.271; 0.495]
GNB 0.532, 95% CI [0.469; 0.577] 0.366, 95% CI [0.275; 0.457]
KNN 1.0, 95% CI [1.0; 1.0] 0.348, 95% CI [0.248; 0.451]
RFC 0.721, 95% CI [0.667; 0.786] 0.308, 95% CI [0.235; 0.387]
SVM 0.756, 95% CI [0.644; 0.862] 0.386, 95% CI [0.287; 0.473]
Unimodal Voting 0.911, 95% CI [0.848; 0.954] 0.401, 95% CI [0.314; 0.489]

Unimodal Predictions Based on Physiology

LR 0.441, 95% CI [0.426; 0.454] 0.354, 95% CI [0.246; 0.464]
LDA 0.441, 95% CI [0.424; 0.456] 0.341, 95% CI [0.226; 0.448]
GNB 0.279, 95% CI [0.269; 0.297] 0.231, 95% CI [0.141; 0.318]
KNN 0.966, 95% CI [0.962; 0.973] 0.377, 95% CI [0.309; 0.439]
RFC 0.648, 95% CI [0.585; 0.708] 0.327, 95% CI [0.217; 0.425]
SVM 0.532, 95% CI [0.379; 0.715] 0.366, 95% CI [0.262; 0.455]
Unimodal Voting 0.767, 95% CI [0.691; 0.848] 0.305, 95% CI [0.212; 0.396]
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Table 2. Cont.

Training Set Test Set

Unimodal Predictions Based on Visual Measures

LR 0.318, 95% CI [0.287; 0.355] 0.201, 95% CI [0.080; 0.354]
LDA 0.314, 95% CI [0.285; 0.345] 0.198, 95% CI [0.087; 0.346]
GNB 0.492, 95% CI [0.472; 0.506] 0.390, 95% CI [0.294; 0.485]
KNN 1.0, 95% CI [1.0; 1.0] 0.386, 95% CI [0.291; 0.485]
RFC 0.690, 95% CI [0.658; 0.728] 0.322, 95% CI [0.237; 0.415]
SVM 0.517, 95% CI [0.422; 0.630] 0.301, 95% CI [0.198; 0.401]
Unimodal Voting 0.751, 95% CI [0.589; 0.915] 0.354, 95% CI [0.262; 0.442]

Unimodal Predictions Based on Performance Measures

LR 0.586, 95% CI [0.549; 0.624] 0.543, 95% CI [0.399; 0.676] *
LDA 0.584, 95% CI [0.548; 0.618] 0.499, 95% CI [0.325; 0.663] *
GNB 0.667, 95% CI [0.659; 0.677] 0.661, 95% CI [0.514; 0.792] **
KNN 0.919, 95% CI [0.914; 0.924] 0.513, 95% CI [0.367; 0.650] *
RFC 0.696, 95% CI [0.686; 0.707] 0.616, 95% CI [0.472; 0.752] **
SVM 0.679, 95% CI [0.672; 0.689] 0.641, 95% CI [0.467; 0.799] **
Unimodal Voting 0.673, 95% CI [0.662; 0.687] 0.656, 95% CI [0.509; 0.789] **

Multimodal Predictions

LR 0.919, 95% CI [0.892; 0.939] 0.498, 95% CI [0.412; 0.581] *
RFC 0.803, 95% CI [0.784; 0.830] 0.617, 95% CI [0.499; 0.742] **
Multimodal Voting 0.673, 95% CI [0.663; 0.686] 0.658, 95% CI [0.515; 0.797] **
Multimodal Voting (w/o Perf.) 0.930, 95% CI [0.905; 0.957] 0.369, 95% CI [0.276; 0.464]

Note. * p < 0.05 considering the bootstrapped mean, ** p < 0.01 considering the lower CI limit

Figure 6. Weights and procedure of an unimodal voting classifier to predict subjectively perceived
mental effort based on a median split; validation set: N = 1. Allocated weights for an unimodal
voting classifier based on (A) fNIRS data, (B) physiological data (heart rate, respiration, and body
temperature), (C) visual data, and (D) performance data (accuracy and response time). Error bars
represent the standard deviation.

Interestingly, for 8 out of 18 participants, we observed high prediction performances
with F1 scores ranging between 0.7 and 1. However, we also identified several subjects
whose subjectively perceived mental effort was hard to predict based on the training data
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of the other subjects. See Tables S1–S3 in the Supplementary Material for a detailed compar-
ison of the classifiers’ performances in the different test subjects. Concluding, the results
indicate that transfer learning and generalisation over subjects is much more challenging
when using the neurophysiological compared with the performance-based features.

3.2. Unimodal Predictions—Brain Activity

The unimodal voting classifiers for brain activity mainly used hard voting (94.4%)
and gave the highest weights to the LDA classifier (Figure 6A). However, on average
the unimodal voting classifier (M = 0.40, 95% CI [0.31; 0.49], Figure 5A) revealed strong
overfitting and was neither performing better than the single classifiers nor better than the
estimated chance level. We then compared the performance of the classifiers with respect
to the percentage of correctly and falsely classified cases in a confusion matrix (Figure 7).
Therefore, we used the best-performing classifier for each test subject and then summed
over all test subjects. We compared the distribution of the true positives, true negatives,
false positives, and false negatives in these classifiers with the respective distribution of the
voting classifier. Here (Figure 7A), we see that both distributions indicate a high number of
falsely identified “High Mental Effort” cases (False Positives), leading to a recall of 45.6%
and precision of only 39.3% for the voting classifier and a recall of 57.5% and precision of
49.8% for best single classifiers.

Figure 7. Prediction of the subjectively perceived mental effort (confusion matrix of test set) based on
a median split; validation set: N = 1. Percentage of correctly and falsely classified perceived mental
effort per model across all test subjects: TP = True Positives, TN = True Negatives, FP = False Positives,
and FN = False Negatives, with “Positives” representing “High Mental Effort” and “Negatives” rep-
resenting “Low Mental Effort”. For the “Best Performing Single Classifier” we selected the classifier
(LDA, LR, SVM, KNN, RFC, or GNB) with the best F1 score for each subject. Confusion matrices
based on (A) fNIRS data, (B) physiological data (heart rate, respiration, and body temperature), (C) a
combined, weighted feature set, (D) visual data, (E) performance data (accuracy and response time),
(F) a combined, but unweighted feature set, and (G) a dummy classifier representing an empirical
chance level.

3.3. Unimodal Predictions—Physiological Measures

For classifying subjectively perceived mental effort based on physiological measures
such as heart rate, respiration, and body temperature, soft voting was chosen in half of the
test subjects. The weighting of the classifiers varied considerably, with the KNN obtaining
the highest average weights (Figure 6B). The unimodal voting classifier (M = 0.31, 95% CI
[0.21; 0.40]; Figure 5B) showed strong overfitting, and its performance in the test subjects
was neither significantly better than any of the single classifiers nor better than the estimated
chance level. Regarding the percentage of correctly and falsely classified cases (Figure 7B),
we see that the distributions for the best-performing single classifiers seem to be slightly
better than the distributions of the voting classifier. The latter had difficulties in correctly
identifying the conditions with low mental effort as can be seen in the high number of false
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negatives. When comparing the recall and precision of both approaches, we have a recall
of only 29.9% for the voting classifier (precision: 38.6%) and an average recall of 51.0% for
the best single classifiers (precision: 50.2%).

3.4. Unimodal Predictions—Ocular Measures

For subjectively perceived mental effort classification based on ocular measures such
as pupil dilation and fixations, the split of soft vs. hard voting was 5.6% for soft voting and
94.4% for hard voting. KNN and SVM were weighted highest (Figure 6C). The F1 score of
the unimodal voting classifier (M = 0.35, 95% CI [0.26; 0.44]; Figure 5D) did not show a
significant above-chance-level classification performance. The percentage of correctly and
falsely classified cases (Figure 7D) was similar to the brain models, with a recall of 39.1%
for the voting classifier (precision: 35.1%) and an average recall of 57.9% for the best single
classifiers (average precision: 47.6%).

3.5. Unimodal Predictions—Performance

At last, we predicted subjectively perceived mental effort based on performance
(accuracy and speed). 27.8% of the test subjects had voting classifiers using soft voting, and
72.2% used hard voting with SVM being weighted highest (Figure 6D). The models GNB
(M = 0.66, 95% CI [0.51; 0.79]), RFC (M = 0.62, 95% CI [0.47; 0.75]), and SVM (M = 0.64,
95% CI [0.47; 0.80]) showed all a significant above-chance-level performance (p < 0.01).
The other models (LR, LDA, KNN) revealed also above-chance level performances but
with smaller differences (p ≈ 0.05; Table 2). The performance of the unimodal voting
classifier (M = 0.66, 95% CI [0.51; 0.79]) was also significantly better than the estimated
chance level. The percentage of correctly and falsely classified cases (Figure 7E) reveals
superior classification performance compared with the brain-, physiological- and ocular-
based models. However, the voting classifier still had many falsely identified “High Mental
Effort” cases (False Positives), leading to a recall of 78.5% and a precision of 57.6%. The
best-performing single classifiers have an average recall of 82.4% and an average precision
of 62.3%.

3.6. Unimodal Predictions Based on the Upper Quartile Split

To identify informative measures for very high perceived mental effort potentially re-
flecting cognitive overload, we also performed predictions based on the subject-wise split at
the upper quartile. Compared with the median-split-based results, we observed decreased
classifiers’ performance even below dummy classifier performance (Supplementary Figure S7).
This might be explained by the fact that we reframed a binary prediction problem with
evenly distributed classes into an outlier detection problem. Using the upper quartile split,
we created imbalanced classes regarding the number of the respective samples, which
made the reliable identification of the less well-represented class in the training set more
difficult (reflected in the recall; Supplementary Figure S9).

3.7. Unimodal Predictions Based on the Experimental Condition

We further fitted models to predict the experimentally induced task load instead of
the subjectively perceived mental effort. The prediction of mental effort operationalised
by the task load was substantially more successful than the prediction of subjectively
perceived mental effort. All modalities, including brain activity and physiological activity,
revealed at least one classifier that was able to predict the current task load above the
chance level (Supplementary Figure S16). The unimodal voting classifiers (Brain: M = 0.59,
95% CI [0.55; 0.62], Physiology: M = 0.66, 95% CI [0.62; 0.72], Visual: M = 0.69, 95% CI
[0.62; 0.77], Performance: M = 0.97, 95% CI [0.90; 1.0]) were all significantly better than
a dummy classifier (M = 0.51, 95% CI [0.47; 0.55]). Best unimodal voting classifications
were obtained based on performance measures. Interestingly, other classification models
were favoured in the unimodal voting, and the distribution between soft- and hard voting
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differed compared with the subjectively based approach, with soft voting being used more
often (Supplementary Figure S17).

3.8. Multimodal Predictions Based on the Median Split

In the final step, we combined the different modalities into a multimodal prediction.
Figures 5C and 7C show the performance of the multimodal voting classifier, and Figure 8A
the average allocated weights to the different modalities. To compare the rather complex
feature set construction of the multimodal voting with a simpler approach, we also trained
two exemplary classifiers (LR without feature selection and RFC with additional feature
selection) on the whole feature set without a previous splitting into the different modalities
(Figure 5F).

In most test subjects (55.6%), soft voting was selected to combine the predictions for
the different modalities; 44.4% used hard voting. In line with the results outlined above,
the multimodal classifier relied on performance measures to predict subjectively perceived
mental effort (Figure 8A), thereby turning it into a unimodal classifier. The voting classifier
(Figure 5C, M = 0.66, 95% CI [0.52; 0.80]) led to a significantly better classification than
the estimated chance level. The multimodal classifier exhibited an equivalent percentage
of correctly and falsely classified cases (Figure 7C) compared with the performance-based
classifier, demonstrating an average recall of 78.5% and an average precision of 57.6%. On
average, it performed better than the classifiers trained with the combined whole feature
set, which showed substantial overfitting.

Figure 8. Weights and procedure of a multimodal voting classifier to predict subjectively perceived
mental effort based on a median split; validation set: N = 1. (A) shows the allocation of weights
when all modalities are included in the multimodal classification. (B) shows the allocation of weights
when performance measures are not included in the multimodal classification. Error bars represent
the standard deviation.

In order to assess the performance of the multimodal classifier without incorporating
performance-based information such as speed and accuracy, we constrained the classifier to
utilise only (neuro-)physiological and visual measures. This approach is especially relevant
for naturalistic applications where obtaining an accurate assessment of behavioural perfor-
mance is challenging or impossible within the critical time window. For the multimodal
prediction without performance, brain activity was weighted highest (Figure 8B). However,
classifiers revealed strong overfitting during the training, and the average performance
was decreased to chance level (M = 0.37, 95% CI [0.28; 0.46], average recall: 40.6% and
average precision: 38.3%; Figure 5C).

3.9. Multimodal Predictions Based on the Upper Quartile Split

With the upper quartile split, we observed a fundamentally different allocation of
weights. High weights were assigned to brain and ocular activity (Figure 8B), while per-
formance received only minimal weights. Hence, the exclusion of performance-based
measures had minimal impact on the allocation of weights (Supplementary Figure S10B)
and the overall performance of the multimodal classifiers remained largely unaffected
(Supplementary Figure S7C). Among the eighteen test subjects, the multimodal classifica-
tion demonstrated the highest performance in two cases (Supplementary Table S2). How-
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ever, on average, the multimodal classification based on an upper quartile split (M = 0.19,
95% CI [0.08; 0.33]; average recall: 21.9% and average precision: 18.5%) did not demonstrate
superiority over the unimodal classifiers (Brain: M = 0.18, 95% CI [0.08; 0.30], Physiol-
ogy: M = 0.24, 95% CI [0.14; 0.34], Visual: M = 0.16, 95% CI [0.06; 0.28], Performance:
M = 0.20, 95% CI [0.09; 0.34]). It further did not significantly outperform the dummy
classifier (M = 0.20, 95% CI [0.12; 0.28]) or classifiers trained on a feature set of simply
combined modalities without weight assignment (LR: M = 0.26, 95% CI [0.16; 0.36], RFC:
M = 0.28, 95% CI [0.18; 0.39]; Supplementary Figure S7).

3.10. Multimodal Predictions Based on the Experimental Condition

Similar to the multimodal voting classifier based on a subject-wise median split of
perceived mental effort, classifiers predicted the experimentally induced task load solely
using the performance measures. The average prediction performance was exceptionally
high (M = 0.97, 95% CI [0.91; 1.0]; average recall: 99.7% and average precision: 91.3%),
significantly outperforming a dummy classifier (M = 0.51, 95% CI [0.47; 0.55]), and
comparable to the performance of the classifiers trained on the combined feature set
(LR: M = 0.95, 95% CI [0.90; 0.99], RFC: M = 0.96, 95% CI [0.91; 1.0]; Supplementary
Figure S16). When we only allowed (neuro-)physiological and visual measures as features,
visual measures were weighted highest (Supplementary Figure S19B). In this case, the
average performance of the multimodal classifiers (M = 0.69, 95% CI [0.64; 0.74]) was
also significantly above the chance level, with an average recall of 82.7% and precision of
58.7%, indicating a successful identification of mental effort based on neurophysiological,
physiological, and visual measures (Supplementary Figure S16C).

4. Discussion

The purpose of our study was to test the feasibility of multimodal voting in a ML
classification for complex close-to-realistic scenarios. We used both—the subjectively
experienced and experimentally induced mental effort—as ground truths for a cross-
subject classification. Our approach represents a crucial investigation for the practical
application of mental state decoding under real-world conditions. Our study aims to fill
the existing gap in the literature and address the need for online accessible naturalistic
data sets by providing a multimodal voting ML architecture along with the dataset to
decode mental effort across subjects in a quasi-realistic experiment simulating a real-world
monitoring task. This serves as the foundation for enabling the adaptation of systems to
users’ current mental resources and efforts. By incorporating adaptive systems, individuals
can enhance their performance by operating within an optimal level of demand, allowing
them to perform at their best. In tasks involving high-security risks, it is crucial for
system engineers to make every effort to prevent individuals from being overwhelmed or
bored, as such states can increase the likelihood of errors. In our analyses, we employed
multimodal voting cross-subject classification and evaluated the model performance using
a leave-one-out approach. We contribute to the existing body of knowledge on mental
state decoding by systematically evaluating the selection and informativeness of sensors
including neurophysiological, physiological, visual, and behavioural measures for the
classification of subjective and experimentally induced mental effort. Moreover, our results
show which classifier models perform best for each modality. We further observed that
in certain modalities, the combination of ML models outperformed predictions made
by individual ones. For each modality, we found a different set of classifiers that were
better performing in the prediction and, thus, also considered more informative in the
unimodal voting.

4.1. Using Subjectively Perceived Mental Effort as Ground Truth

When predicting subjectively perceived mental effort, LDA and LR performed best
and were weighted highest in the classifications based on brain activity (Figure 5). Whereas,
in physiological activity, the highest weights were assigned to KNN, RFC, and SVM.
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Regarding visual activity, the GNB and KNN revealed high classification performance
among the test subjects. However, these models aiming to predict subjectively perceived
mental effort based on brain activity, physiological activity, and visual measures were still
strongly overfitted, and their performances in the test subjects were not significantly better
than the dummy classifier. In performance-related measures, the GNB, RFC, and SVM
performed significantly better than the dummy classifier when predicting subjective mental
effort based on a median split. Using the upper quartile split for performance-related
measures, the KNN and SVM showed the highest, but still, chance-level-like performances.
Regarding the unimodal voting predictions of subjectively perceived mental effort, we
see that a weighted combination of classifiers (LR, LDA, GNB, KNN, RFC, and SVM) was
not superior to single classifiers neither when using the median nor the upper quartile
split. When we combined the different modalities into a joined prediction of subjectively
perceived mental effort, only the performance modality was considered. Hence, our
multimodal classification might rather be considered a unimodal (performance-based)
prediction. Removing the performance information from the multimodal voting classifier
increases overfitting and drops the average classification performance. However, a more
detailed investigation of the upper quartile split classification revealed that performance
was less predictive in identifying cases of exceptionally high perceived mental effort and
potential “cognitive overload” (Figure 7). In the upper quartile split classification, higher
multimodal voting weights were assigned to neurophysiological and visual measures
compared with performance measures. This seems to imply that subjects were more
heterogeneous in their performance under exceptionally high perceived mental effort, and
classifiers rather exploited correlates from neurophysiological and visual measures than
from performance to predict subjectively perceived mental effort. In summary, our findings
indicate that when utilizing only unimodal voting classification, the best prediction of
subjectively perceived mental effort was achieved through performance-based measures.
Additionally, the inclusion of the performance-based classification model is essential in our
multimodal voting classification approach to address potential overfitting in predicting
mental effort (median-based split). These findings suggest that further research is necessary
to investigate the dependence and variability of mental effort in cross-subject classification.

4.2. Using Experimentally Induced Mental Effort as Ground Truth

For the classification of the experimentally induced task load, all modalities were
able to predict mental effort with high performances already on a single classifier level.
GNB, KNN, and SVM performed above the chance level and were assigned the highest
weights in the unimodal voting based on brain activity (Supplementary Figure S16). For
the physiological activity, all classifiers—except the KNN—reached above-chance level
performance. The highest average weight in the unimodal voting was assigned to the
SVM. For visual and performance measures, we did not see substantial differences between
the classification performance of the single models, with all performing above the chance
level. A unimodal weighted combination of these classifiers was not superior to the single
classifiers in any modality. Performance exhibited the highest predictive capability for task
load (Supplementary Figure S16). As a result, the multimodal classifier transitioned again
back into unimodal voting, as it relied solely on the performance modality. When excluding
the performance-based features, the multimodal prediction based on neurophysiological,
physiological, and ocular activity was still significantly above the chance level estimated
by a dummy classifier. These findings suggest that it is feasible to differentiate between
various mental effort states, represented by experimentally induced task load, by utilizing
neurophysiological, physiological, and visual data obtained in a close-to-realistic envi-
ronment through a cross-subject classification approach. However, it was not possible to
replicate these results for subjectively perceived mental effort. The discrepancies observed
between these two ground truth approaches could potentially be attributed to the retro-
spective nature of self-reports. Self-reports rely on an individual’s perception, reasoning,
and subjective introspection [79]. They are, therefore, vulnerable to various perceptual and
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response biases like social desirability [21,80]. These post hoc evaluation processes might
not be adequately reflected in and could be learned from (neuro-)physiological and visual
measures during the task itself.

4.3. Generalisation across Subjects

For all classification approaches, we observed substantial variation in the performance
of classifiers between the test subjects. Some individuals had F1 scores above 0.8 (Supple-
mentary Table S1). Other individuals demonstrated deviations in their neurophysiological
reactions, diverging significantly from the patterns learned from the subjects included in
the training set. These results are in line with the findings by Causse et al. [81]. The authors
concluded that it is quite challenging to identify mental states based on haemodynamic
activity across individuals because of the major structural and functional inter-individual
differences. For instance, in the context of brain–computer interfaces, a phenomenon called
BCI illiteracy describes the inability to modulate sensorimotor rhythms in order to control
a BCI observed in approximately 20–30% of subjects [82]. Our findings underscore the im-
portance of developing appropriate methods to address two key aspects. First, identifying
subjects who may pose challenges in prediction due to their heterogeneity compared with
the training set. Second, enabling transfer learning for these individuals by implementing
techniques such as standardisation and transformation of correlates into a unified feature
space [83].

4.4. Limitations and Future Research

We acknowledge that certain aspects of this study can be further improved and serve
as opportunities for future advancements. One area for improvement is the complexity of
the measurement setup used in this study, which required a substantial amount of time
for the preparation and calibration of the involved devices. It is important to consider
the potential impact on participants’ intrinsic engagement and explore ways to further
streamline the process during soft- and hardware development. Furthermore, it is worth
noting that our feasibility study sample was relatively small and homogeneous in terms of
socio-demographic characteristics, consisting predominantly of young individuals with a
high level of education. The small sample size likely had a negative impact on the statistical
power of our study. Combined with the homogeneity of the sample, it could also limit the
generalisability of our results to more diverse populations. While it may seem intuitive to
increase the sample size to address the issue of heterogeneity, there is a debate surrounding
the relationship between sample size and its impact on classifier performance. With adding
more and more samples, the dataset is supposedly at some point large enough to enable
the classifier to find more generic and universal predictive patterns and achieve better
performance again. Some argue that it is necessary to train ML models with large training
datasets, including edge cases, to achieve good generalisability and attain good predic-
tion accuracy on an individual-level Bzdok and Meyer-Lindenberg [84], Dwyer et al. [85].
Nevertheless, as emphasised by Cearns et al. [86], it is worth noting that ML classifiers
demonstrate exceptional performance primarily in relatively small datasets. Consequently,
the heterogeneity of a large dataset might present a significant challenge for learning. Thus,
it may be more reasonable to train separate,specialised models for each homogeneous clus-
ter, rather than attempting to construct a single model that explains the entire variance but
yields less accurate predictions. Orrù et al. [87], for example, suggests the use of simple clas-
sifiers or ensemble learning methods instead of complex neural networks. Cearns et al. [86]
highlight the importance of suitable cross-validation methods. Especially in the case of
physiological datasets, one might also identify subjects that are very predictive for the
patterns of a specific subgroup and remove subjects from the training set that show unusual
patterns in neurophysiological reactions [85]. One interesting idea to address this problem
is data augmentation [88,89]. This can be done by artificially generating new samples from
existing samples to extend a dataset. For example, using Generative Adversarial Networks
(GANs), one could simulate data to create more homogeneous and “prototypic” training
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datasets and increase the performance and stability of respective ML models [90]. Another
suggested method to improve generalisability across subjects might be multiway canonical
correlation analysis (MCCA). An approach that allows combining multiple data sets into
a common representation and, thereby, achieves the denoising of data, and dimensional-
ity reduction, based on shared components across subjects [83]. Advancements in these
methods play a crucial role in enhancing the comparability and potential combinability of
datasets, which is a shared objective within the research community [91].

To further increase classification performance, additional artefact analyses [92], or
the implementation of inclusion criteria on a subject-, trial-, and channel-level could be
explored in order to improve poor signal-to-noise ratios. Friedman et al. [93], who used an
XGBoost classifier on EEG data, applied extensive and rigorous trial and subject selection
criteria. For example, they did not include trials where participants failed to solve the task
because they assumed that the mental effort shown by participants answering incorrectly
did not reflect the true level of load (also [94]). Although this bears the risk of a major
data loss, these rigid removal criteria might reflect an efficient solution to ensure that the
measured neurophysiological signals truly reflect the cognitive processes of interest. Future
research is necessary to a) define such exclusion and inclusion criteria depending on the
investigated cognitive processes and b) develop standardised evaluation methods to decide
which preprocessing step is beneficial and adequate.

A final limitation relates to the arrangement of the fNIRS optodes. Based on previous
research (e.g., [12]), we decided to choose a montage solely covering the prefrontal cortex
in order to reduce preparation time and facilitate transfer into close-to-realistic applications.
However, we probably would have profited from a larger brain coverage that also covers
parietal, temporal, and occipital brain areas [94]. Integrating these regions allows identify-
ing features for the classification from larger functional networks that might play a crucial
role in distinguishing mental states and cognitive control mechanisms [36,95]. Increased
activity in the frontoparietal network is, for example, associated with task-related working
memory (WM) processes (e.g., [96,97]), whereas increased connectivity between frontal
and sensory areas are linked to the suppression of distractors [95].

4.5. Feature Selection and Data Fusion in Machine Learning

A crucial aim of this study was the selection and fusion of informative sources for cross-
subject mental effort prediction. We integrated data from different modalities comprising
brain activity as assessed with fNIRS, physiological activity (cardiac activity, respiration,
and body temperature), ocular measures (pupil dilation and fixations), as well as be-
havioural measures of performance (accuracy and speed). However, this selection was
naturally not exhaustive. Other measures, such as electroencephalography or electrodermal
activity [98], could provide useful information about cognitive and physiological processes
related to mental effort. In addition, one could also explore more behaviour-related mea-
sures such as speech [99] or gaze [100]. These measures might also provide the possibility
to detect predictive patterns without significantly interfering with the actual task. When
conducting applied research and incorporating mental state decoding in real-world settings
(e.g., healthcare, entertainment, gaming, industry, and lifestyle; [101]), it is crucial to utilise
sensors that are unobtrusive, seamlessly integrated into the environment, mobile, and user-
friendly. For this purpose, further validation studies are warranted to evaluate the quality
and suitability of smart wearables such as smartwatches or fitness trackers [101,102], mobile neuro-
physiological sensors [103,104], and mobile eye-tracking [105,106]. Our results indicate that
performance-based measures as well as a multimodal approach including neurophysiologi-
cal, physiological, and visual measures are successful in decoding experimentally induced
mental effort. Visual features, followed by physiological measures, were particularly in-
formative in the multimodal approach. This insight enables researchers to optimise their
sensor setup by prioritizing measures and streamlining their data collection process.

To combine the data streams obtained from the different measurement methods, we
implemented data fusion on two levels: (1) the feature level and (2) the classification level.
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First, we aggregated our raw data, mainly time series, into informative features. We used
standard statistical features like the mean, standard deviation, skewness, and kurtosis.
Friedman et al. [93] explored more sophisticated features such as connectivity and complex-
ity metrics, which have the potential to capture additional information about relationships
within and between neuronal networks. Further investigations are required to assess the
predictive quality of these aggregated features. Additionally, future research can explore
the added value of feature selection and wrapping methods, which aim to reduce the com-
plexity of the feature space without compromising the predictive information [107,108].
Such methods, e.g., sequential feature forward selection, might be a way to improve clas-
sifiers’ performance by keeping only the most informative features. Another approach
could be the use of continuous time-series data which provide insights into differences
in the experience and processing of mentally demanding tasks separately for the differ-
ent neurophysiological modalities. Hence, some researchers implemented deep learning
methods like convolutional or recurrent neural networks to derive classifications based
on multidimensional time-series data [45,109,110]. Nevertheless, these algorithms require
that all data streams are complete (no missing data points) and have the same length and
sampling frequency. These requirements are often difficult to fulfil in naturalistic settings
with multimodal measurement methods using different measurement devices.

Once the feature space is defined, the research focus shifts towards developing strate-
gies for selecting, merging, combining, and weighting multiple classifier models and modal-
ities at the classification level. These strategies are still the subject of ongoing research
and exploration. In this context, it is important to strike a balance between computational
power, dataset size, and the benefits of finely tuned combinations of optimally stacked
or voted classifiers. The exploration of early and late fusion approaches, as commonly
employed in the field of robotics, could provide valuable insights. Early fusion involves
the early combination of all data points and the fitting of classifiers to multidimensional
data. On the other hand, late fusion involves a more fine-grained pipeline, where several
classifiers are fitted to different proportions of the dataset and subsequently combined at a
later stage. In this study, we implemented a late-fusion approach where we first combined
different classifiers for each modality. In a subsequent step, we combined classifiers to
create a unified prediction. Exploring early and late fusion strategies is especially impor-
tant when one wants to account for temporal dynamics in the different measures or the
realisation of real-time mental state monitoring. The review of Debie et al. [27] provides
a comprehensive overview of the different fusion stages when identifying mental effort
based on neurophysiological measures.

5. Practical Implications and Conclusions

Our proposed multimodal voting classification approach contributes to the ecologically
valid distinction and identification of different states of mental effort. It paves the way to-
ward generalised state monitoring across individuals in realistic applications. Interestingly,
the choice of ground truth had a fundamental influence on the classification performance.
The prediction of subjectively perceived mental effort operationalised through self-reports,
is most effectively achieved by incorporating performance-based measures. On the other
hand, the experimentally induced task load can be accurately predicted not only from
performance-based measures but also by incorporating neurophysiological, physiological
and visual measures. Our findings provide valuable guidance for researchers and prac-
titioners in selecting appropriate methods based on their specific research questions or
application scenarios, taking into account limited resources or environmental constraints.
The capacity to predict subjectively perceived and experimentally induced mental effort
on an individual level makes this architecture an integral part of future research and
development of user-centred applications such as adaptive assistance systems.
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