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Abstract: With the rapid development of the autonomous driving industry, there is increasing
research on related perception tasks. However, research on road surface traffic sign detection tasks is
still limited. There are two main challenges to this task. First, when the target object’s pixel ratio is
small, the detection accuracy often decreases. Second, the existing publicly available road surface
traffic sign datasets have limited image data. To address these issues, this paper proposes a new
instance segmentation network, RTS R-CNN, for road surface traffic sign detection tasks based on
Mask R-CNN. The network can accurately perceive road surface traffic signs and provide important
information for the autonomous driving decision-making system. Specifically, CSPDarkNet53_ECA is
proposed in the feature extraction stage to enhance the performance of deep convolutional networks
by increasing inter-channel interactions. Second, to improve the network’s detection accuracy for
small target objects, GR-PAFPN is proposed in the feature fusion part, which uses a residual feature
enhancement module (RFA) and atrous spatial pyramid pooling (ASPP) to optimize PAFPN and
introduces a balanced feature pyramid module (BFP) to handle the imbalanced feature information
at different resolutions. Finally, data augmentation is used to generate more data and prevent
overfitting in specific scenarios. The proposed method has been tested on the open-source dataset
Ceymo, achieving a Macro F1-score of 87.56%, which is 2.3% higher than the baseline method, while
the inference speed reaches 23.5 FPS.

Keywords: deep learning; autonomous driving; instance segmentation; road traffic sign detection

1. Introduction

In recent years, with the rapid development of parallel computing technology based
on image data and the rapid iteration of sensors, research on autonomous driving per-
ception algorithms has been greatly promoted. The information that the environmental
perception system of the smart car needs to extract is the dynamic and static obstacles and
the road surface environment. Dynamic obstacles mainly refer to other vehicles around
the vehicle, pedestrians, and dynamic or static objects on the ground that may affect the
safe driving of the vehicle; road pavement environment mainly refers to the geographical
environment around the vehicle and road traffic information, such as lane lines, road
traffic signs, etc. Among them is the accurate detection of traffic signs on the road surface,
especially the accurate perception of straight arrows, left arrows, right arrows, straight-left
arrows, straight-right arrows, pedestrian crossings, and slow signs, which is beneficial for
intelligent vehicles to make normative braking during driving and, when combined with
high-precision maps, can assist in path planning.

Research on traffic sign detection on road surfaces can be roughly divided into two cat-
egories: one is manual feature methods and object detection methods based on deep
learning. Most of the traditional methods for road traffic sign detection manually extract
the basic features of the target object, such as color, edge, and texture, which largely rely on
the method designed by the authors. For example, Tang et al. [1] utilized histograms of
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oriented gradients (HOG) [2] and support vector machines (SVM) [3] with region of interest
(ROI) constraints, which demonstrated good performance on the dataset. Compared with
manual methods, deep learning-based methods show better results and stability in the
feature extraction of road signs.

In deep learning-based computer vision, classification can be defined as predicting
the class of an object in an image or providing a list of classes of objects in an image based
on its classification score. Object detection or localization is a gradual process from coarse
inference to fine inference, which not only provides the category of the image object but
also gives the location of the classified image object in the form of a bounding box or
center. The purpose of semantic segmentation is to obtain accurate inference results by
predicting the label of each pixel in the image. Each pixel is classified and labeled according
to the object or region in which it is located. Instance segmentation is essentially a more
fine-grained visual perception task that combines two classic computer vision environment
understanding subtasks: object detection and semantic segmentation. Therefore, instance
segmentation can not only distinguish pixel categories but also accurately segment different
instance objects belonging to the same semantic category, thereby providing rich perceptual
information for downstream decision planning and other tasks. In the actual autonomous
driving scene, for the detection task of road traffic sign the autonomous driving perception
system not only needs to accurately identify the position of each type of road traffic signs,
but also needs to accurately classify each pixel on the road traffic sign area. Therefore,
using the instance segmentation method to detect road traffic signs can not only obtain the
positions of different traffic signs but also classify each type of traffic sign at the pixel level.

However, the pixel ratio of road traffic signs in traffic scenes is relatively small, and
their features are relatively sparse, which greatly limits the accuracy of instance segmenta-
tion algorithms. In addition, the public data for the road traffic sign detection task is very
scarce, and most of the public data sets are small data sets, and the instance segmentation
algorithm needs a lot of training to have better robustness. Based on these two challenges,
this paper proposes the RTS R-CNN instance segmentation network, which is improved
on the basis of Mask R-CNN [4]. The feature extraction network used by Mask R-CNN is
ResNet [5]. Although the network stacks many convolutional layers, its effective depth
is low, which easily leads to poor detection performance of small target objects, so we
use efficient channel attention. The module ECA [6] further optimizes CSPDarknet53 and
proposes CSPDarkNet53_ECA to replace the feature extraction module in the original
network. At the same time, in order to improve the defects of FPN [7] and further improve
the detection accuracy of the network for small target objects, we propose GR-PAFPN on
the basis of PAFPN [8] and use the residual feature augmentation module (RFA) [9] to
improve the top-down first-level features. Indicates that atrous spatial pyramid pooling
(ASPP) [10] is introduced to obtain multi-scale feature information, and the balanced feature
pyramid module (BFP) is used to enhance the expressive ability of each level of feature
maps. Aiming at the small amount of road traffic sign data, we flipped and adjusted the
color space on the training set pictures to increase the number of images from the small
data set and changed the pixel coordinates of the flipped pictures.

In summary, the main contributions of this paper are as follows: Firstly, we proposed
CSPDarkNet53_ECA to replace the original feature extraction module in the network. It
enhances the channel features of the input feature map and improves the performance of
deep convolutional networks by adding cross-channel interactions. Secondly, we proposed
GR-PAFPN, which optimizes PAFPN using Residual Feature Aggregation (RFA) modules
and Atrous Spatial Pyramid Pooling (ASPP) and introduces the Balanced Feature Pyramid
(BFP) module to handle imbalanced information in different resolutions, thus improving
the detection accuracy of small objects in the network. Finally, we increased the number of
images from a small dataset by using data augmentation techniques such as flipping and
color space adjustment, which helps to avoid overfitting specific scenarios.
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2. Related Works

In this part, we review the road traffic sign detection algorithm based on deep learning
and the instance segmentation algorithm, respectively.

2.1. Road Traffic Sign Detection

With the further development of deep learning, CNN-based object detection signif-
icantly improves the performance of road traffic sign detection. A convolutional neural
network model is used in [11] that combines ResNet-101 [5] and pyramid pooling ensem-
bles to obtain lane and road sign semantic segmentation output. Their architecture achieves
average results on the TRoM [11] dataset, which can be considered a performance baseline.
VPGNet [12] is an end-to-end model based on CNN architecture for simultaneous detection
of lanes and road traffic signs. They regard pavement traffic sign detection as a grid regres-
sion task and then use grid sampling and box clustering as post-processing techniques to
merge grid cells. However, they focus more on lane detection and vanishing point predic-
tion tasks and only provide experimental results for four pavement traffic sign categories.
It is worth mentioning that the authors released a new dataset that was publicly collected
under various weather conditions in Korea. Hoang et al. [13] detected and classified arrow
and bicycle markings on the road based on adaptive ROI and RetinaNet [14]. The results
show that Adaptive ROI outperforms other methods. In pursuit of real-time detection,
Zhang et al. [15] propose a method consisting of three modules: preprocessing, road traffic
sign detection, and segmentation. In the second stage, a lightweight network combined
with a Siamese attention mechanism is employed to improve accuracy and enhance sensi-
tivity to road traffic signs. For the segmentation module, the segmented objects can achieve
pixel-level accuracy at a lower computational cost. Ye et al. [16] proposed a two-stage
model combining YOLOv2 [17] with a spatial transformation network (STN) [18] to address
the distortion of road markings. Even for two-stage models, the proposed method achieves
good performance with less computation. In conclusion, deep learning-based methods are
more robust and stable than traditional feature extraction methods and can be applied to
different scenarios with higher accuracy.

2.2. Instance Segmentation Algorithm

Instance segmentation algorithms based on deep learning can be mainly divided into
four mainstream technical routes [19]: bottom-up methods based on semantic segmentation,
detection-based methods, direct instance segmentation methods, and query-based methods.
Semantic segmentation-based methods include SGN [20], which first generates segmenta-
tion masks with fixed semantic categories by pixel-by-pixel classification and then groups
pixels into individual instances by means of clustering, metric learning, etc. This method
can better retain the shallow, fine-grained features and geometric shape information, but
its post-processing operation is more cumbersome, and the accuracy rate is low in complex
working conditions with large objects and many categories. In order not to rely on methods
such as bounding boxes or pixel embeddings, the direct instance segmentation method
uses PolarMask [21] by directly predicting instance masks and semantic categories. Based
on the intuition that the center position and size of the instance object are different, the
SOLO series [22,23] divides the mask according to the image position. Specifically, the
input image is divided into several grids, and the grid unit where the center of the instance
is located is responsible for assigning a category to each pixel of the instance. Although this
method effectively improves the detection speed, when the centers of multiple objects fall
on the same grid, the predicted mask and category will be confused, which will affect the
driving safety of autonomous vehicles. Detection-based methods first locate prior instances
via powerful detectors [24–26] and then perform segmentation within the resulting regions
of interest [27–30]. Thanks to the development of object detection, such methods are usu-
ally more accurate. The query-based approach utilizes the Transformer mechanism and
expresses the object of interest through a query. ISTR [31] is the first end-to-end instance
segmentation using low-dimensional mask embeddings.
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According to the required order of object localization and mask generation, current
detection-based instance segmentation methods can be divided into two types: single-
stage methods and two-stage methods. The two-stage algorithm based on the region
candidate network has high accuracy, but the small batch training of the model consumes
a lot of memory resources and takes a long time for reasoning, such as Cascade Mask
R-CNN [32]. A single-stage algorithm such as YoLACT++ [33], which performs localization
and segmentation at the same time, has a faster inference speed, but its detection accuracy
is obviously lacking.

3. Methodology

The instance segmentation network Mask R-CNN is mainly composed of the feature
extraction module, the feature fusion module, the region candidate module RPN, and the
prediction module. The road traffic sign detection algorithm model RST R-CNN proposed
in this paper is based on Mask R-CNN. The feature extraction module and the feature fusion
module are optimized separately. Specifically, the feature extraction network ResNet50 of
the original model is replaced by the CSPDarkNet53, and on this basis, an Efficient Channel
Attention module (ECA) is integrated. Considering that road traffic signs account for fewer
pixels in the original image problem, we improve the Channel Enhanced Feature Pyramid
Network PAFPN by enhancing the information flow and propose the GR-PAFPN module
to replace the feature extraction network FPN in the original model. As shown in Figure 1,
the network framework diagram of RTS R-CNN.
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Figure 1. The network framework diagram of RTS R-CNN. 

3.1. Backbone 
CSPDarknet53 has demonstrated excellent feature extraction capabilities in YOLOv4. 

It mainly includes 5 CSP_Res modules combined with a cross-stage partial network (CSP) 
and a residual network. It uses its large residual edge to expand the receptive field and 
Integrating local context information can improve the feature extraction ability of the con-
volutional network without losing detection accuracy, improve detection accuracy, and at 
the same time reduce the calculation loss of the entire model. Since road traffic signs are 
small targets, this puts high demands on the detection accuracy of the network model, so 
we use the efficient channel attention module ECA to further optimize CSPDarknet53. As 
shown in Figure 2, the structure diagram of CSPDarknet53_ECA. We add four high-effi-
ciency channel attention modules ECA between the input and output of five CSP_Res 
modules and strengthen the channel features of the input feature map by increasing cross-
channel interaction. Improving the performance of deep convolutional networks. 

Figure 1. The network framework diagram of RTS R-CNN.

3.1. Backbone

CSPDarknet53 has demonstrated excellent feature extraction capabilities in YOLOv4.
It mainly includes 5 CSP_Res modules combined with a cross-stage partial network (CSP)
and a residual network. It uses its large residual edge to expand the receptive field and
Integrating local context information can improve the feature extraction ability of the
convolutional network without losing detection accuracy, improve detection accuracy, and
at the same time reduce the calculation loss of the entire model. Since road traffic signs
are small targets, this puts high demands on the detection accuracy of the network model,
so we use the efficient channel attention module ECA to further optimize CSPDarknet53.
As shown in Figure 2, the structure diagram of CSPDarknet53_ECA. We add four high-
efficiency channel attention modules ECA between the input and output of five CSP_Res
modules and strengthen the channel features of the input feature map by increasing cross-
channel interaction. Improving the performance of deep convolutional networks.
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ECA removes the fully connected layer on the basis of the Squeeze-and-Excitation
Network (SENet) and uses a 1 × 1 convolutional layer directly after the global average
pooling layer so as to avoid learning channel attention information. The time channel
dimension is reduced, and the number of parameters is reduced. In the conventional
convolution operation, the size of the convolution kernel will affect the size of the receptive
field. In order to extract different ranges of features from different input feature maps,
ECA uses a dynamic convolution kernel to do 1 × 1 convolution to learn between different
channels. importance. The term dynamic convolution kernel means that the size of the
convolution kernel is adaptively changed through a function. In a layer with a large number
of channels, a larger convolution kernel is used to perform 1× 1 convolution, which enables
more cross-channel interaction. In the layer with a small number of channels, a smaller
convolution kernel is used to perform 1 × 1 convolution, so that there is less cross-channel
interaction. The convolution kernel adaptive function is defined as follows:

k = Φ(C) =
∣∣∣∣ log2(C)

γ
+

b
γ

∣∣∣∣
odd

(1)

where, k indicates the size of the convolution kernel; C indicates the number of channels;
‖ _odd indicates that k can only take odd numbers; γ, b = 1.

A schematic diagram of the structure of the ECA attention module is shown in Figure 3.
The specific implementation process is: (1) first input the feature map, and its dimension
is H ×W × C; (2) perform spatial feature compression on the input feature map and use
the global average pooling GAP in the spatial dimension to obtain 1 × 1 × C feature map;
(3) Convolve the compressed feature map through 1 × 1 to learn the importance between
different channels. At this time, the output dimension is still 1 × 1 × C; (4) Finally, the
channel Attention combination, the feature map 1 × 1 × C of channel attention, and the
original input feature map H ×W × C are multiplied channel by channel, and finally the
feature map with channel attention is output.
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3.2. Feature Fusion Module

Mask R-CNN uses FPN as a feature extraction network. FPN has the following
problems with the fusion of information features: (1) The information on the feature
map is lost. FPN is a top-down propagation method. From the low-level feature map to
the highest feature map, it must go through multiple network layers, and the network
increases the difficulty of obtaining the initial image. (2) Multi-scale information is lost.
FPN does not fully consider the difference in semantic information between different
layers. Direct fusion between different features will reduce the ability for multi-scale
feature representation. (3) The semantic information of non-adjacent layers cannot be fused.
In FPN, only the semantic information of adjacent layers can be directly fused, and the
semantic information of non-adjacent layers is diluted, which easily leads to the problem
of imbalanced semantic features.

As shown in Figure 4, since a high response to object edges or instance parts is a
strong indicator for accurately locating instances, PAFPN enhances the overall feature
layer by constructing a bottom-up feature fusion network that reduces the propagation
path of the main feature layer. Positioning ability: the red dotted line indicates that in
the FPN network, the main feature map passes through multiple network layers from
top to bottom, and the information of the main feature map is seriously lost. The purple
dashed line represents the bottom-up feature fusion. Shallow features are connected to
P2 by fusing the raw FPN at the bottom layer and then transferred from P2 to the top
layer with bottom-up feature fusion. The number of layers is less than 10, which can better
preserve shallow feature information. Although PAFPN improves the problem of loss of
main feature information, it does not solve the problem of multi-scale information loss in
FPN, and non-adjacent layer semantic information cannot be directly fused. To solve the
problem of multi-scale information loss, we use Residual Feature Augmentation (RFA) and
Atrous Spatial Pyramid Pooling (ASPP) to optimize PAFPN; in order to balance semantic
features, we introduce the balanced feature pyramid Module (BFP) to deal with unbalanced
information in each resolution.
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3.2.1. Residual Feature Augmentation Module

In FPN, the dimensionality reduction operation is performed when the low-level
features are fused from the highest layer to reduce the channel features, resulting in the
loss of multi-scale information. To make up for this shortcoming, we use RFA to improve
the top-down, one-level feature representation and fuse the feature information without
information loss in CSP_Res5 into P5. As shown in Figure 5, firstly, the feature map output
by CSP_Res5 is divided into three feature layers of different scales using Ratio-invariant
Adaptive Pooling (RAP), and the scales are 0.1 times, 0.2 times, and 0.3 times that of the
input feature map. Each feature map is then passed through a 1 × 1 convolutional layer,
the number of channels C is reduced to 256, and finally bilinear interpolation is used
for upsampling to restore the feature map to the scale size of the original input feature
map. Considering the aliasing effect caused by interpolation, Adaptive Spatial Fusion
(ASF) is used to adaptively combine the generated spatial weight probability map and
the upsampled hierarchical feature map so that the output feature map has multi-scale
feature information.
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of multi-scale information. To make up for this shortcoming, we use RFA to improve the 
top-down, one-level feature representation and fuse the feature information without in-
formation loss in CSP_Res5 into P5. As shown in Figure 5, firstly, the feature map output 
by CSP_Res5 is divided into three feature layers of different scales using Ratio-invariant 
Adaptive Pooling (RAP), and the scales are 0.1 times, 0.2 times, and 0.3 times that of the 
input feature map. Each feature map is then passed through a 1 × 1 convolutional layer, 
the number of channels C is reduced to 256, and finally bilinear interpolation is used for 
upsampling to restore the feature map to the scale size of the original input feature map. 
Considering the aliasing effect caused by interpolation, Adaptive Spatial Fusion (ASF) is 
used to adaptively combine the generated spatial weight probability map and the upsam-
pled hierarchical feature map so that the output feature map has multi-scale feature infor-
mation. 
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3.2.2. Atrous Spatial Pyramid Pooling

FPN reduces the number of channels of the feature map through a 1 × 1 convolution
operation, which also suppresses the representation of multi-scale features, so we introduce
ASPP to obtain multi-scale feature information. As shown in Figure 6, the four parallel
branches of ASPP generate images of different scales through atrous convolution [34], using
different atrous convolution rates and convolution kernels, where the convolution rates are
1, 3, and 6, respectively, and the convolution kernels sizes are 1 × 1 and 3 × 3, respectively.
Using the ASPP module to improve the model’s performance in the fusion stage of each
branch effectively expands the receptive field of feature images and improves the network’s
ability to extract abstract information.
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3.2.3. Balance Feature Pyramid Module

High-level semantic information and shallow detail information can complement
each other to improve the target detection effect, and the fused features need to deal with
unbalanced information at each resolution. Therefore, we introduce the BFP module to
scale, integrate, and refine the four-level feature maps and use the feature map information
of multiple levels to enhance the expressive ability of each level of feature maps and
realize the ability to deal with unbalanced information. As shown in Figure 7, in order
to aggregate multi-level features, upsampling interpolation is used for small-size feature
layers, adaptive maximum pooling is used for large-size feature maps, and multi-level
features {C2, C3, C4, C5} are adjusted To C4 size, a balanced semantic is obtained by simple
integrating, which can be expressed as:

Integrate =
1
L

lmax

∑
l=lmin

Cl (2)

where, L represents the total number of layers of the predicted feature layer, and the level
of the predicted feature layer is defined as Cl .
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Then the non-local network [35] is used to further optimize the balance semantics to
enhance the fusion features. As shown in Figure 8, first linearly map the input feature map
to obtain the three features θ, ∅, g after channel compression; then perform feature merging
through the reshape operation; then perform matrix point multiplication on θ and ∅ and
use the activation function Get the weight, that is, the attention coefficient; then multiply
it with the feature g to expand the number of channels; finally, sum the residual with the
input feature map and output it.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 16 
 

 

Upsample

Upsample

Adaptive Max Pool

Adaptive Max Pool

Integrate

Adaptive Max Pool

Adaptive Max Pool

Upsample

Upsample

No
n_

Lo
ca

l

CSP_Res2

CSP_Res3

CSP_Res4

CSP_Res5 P5

P4

P3

P2

C5

C4

C3

C2

 
Figure 7. The structure of BFP. 

Then the non-local network [35] is used to further optimize the balance semantics to 
enhance the fusion features. As shown in Figure 8, first linearly map the input feature map 
to obtain the three features 𝜃 , ∅ , 𝑔  after channel compression; then perform feature 
merging through the reshape operation; then perform matrix point multiplication on 𝜃 
and ∅ and use the activation function Get the weight, that is, the attention coefficient; 
then multiply it with the feature g to expand the number of channels; finally, sum the 
residual with the input feature map and output it. 

θ: 1×1×1 ɸ: 1×1×1 g: 1×1×1

1×1×1

B×H×W×C

BHW×C/2
B×H×W×C/2

BHW×C/2
B×H×W×C/2

C/2×BHW
B×H×W×C/2

BHW×BHW

B×H×W×C/2
BHW×C/2

B×H×W×C

Softmax

 
Figure 8. The structure of non-local module. 

After the non-Local module, we rescale the obtained features using the same but re-
versed process of semantic balancing to enhance the original features. During this process, 
each predictive feature layer obtains the same information from the other predictive fea-
ture layers. 

3.3. Data Augmentation 
Data augmentation is a common method for deep learning models that aims to in-

crease the number of images from small datasets to avoid overfitting specific scenarios. 
This section will detail data augmentation on images. Data augmentation on labels due to 
changes in pixel coordinates will also be addressed in this section. 

3.3.1. Data Augmentation on Image 
Deep learning networks usually require a large amount of training data to achieve 

better results. In the case of limited data acquisition, data augmentation techniques are 
used to generate more data from existing datasets, thereby increasing the diversity of orig-
inal images and making up for the lack of data. Common techniques for data augmenta-
tion include: (1) geometric transformation: randomly flip, crop, rotate, shear, or translate 
the image, (2) color space transformation: change the color channel space or try to map 
RGB to other color spaces, (3) Noise injection: A matrix of random values sampled from a 
Gaussian distribution is added to the pixels of the image; (4) Kernel filter: A kernel filter 

Figure 8. The structure of non-local module.

After the non-Local module, we rescale the obtained features using the same but
reversed process of semantic balancing to enhance the original features. During this
process, each predictive feature layer obtains the same information from the other predictive
feature layers.

3.3. Data Augmentation

Data augmentation is a common method for deep learning models that aims to increase
the number of images from small datasets to avoid overfitting specific scenarios. This
section will detail data augmentation on images. Data augmentation on labels due to
changes in pixel coordinates will also be addressed in this section.

3.3.1. Data Augmentation on Image

Deep learning networks usually require a large amount of training data to achieve
better results. In the case of limited data acquisition, data augmentation techniques are used
to generate more data from existing datasets, thereby increasing the diversity of original
images and making up for the lack of data. Common techniques for data augmentation
include: (1) geometric transformation: randomly flip, crop, rotate, shear, or translate the
image, (2) color space transformation: change the color channel space or try to map RGB to
other color spaces, (3) Noise injection: A matrix of random values sampled from a Gaussian
distribution is added to the pixels of the image; (4) Kernel filter: A kernel filter on the image
for convolution operations such as sharpening and blurring. After data augmentation,
what people see with their eyes is still easily recognizable as the same image, but to the
deep learning model, these processed images are completely new images.

Considering the simple features and monotonous colors of road traffic signs, they
do not contain diverse structural features for object detection models. Therefore, this
paper uses flipped and color space-adjusted (brightness and contrast) training datasets.
Flipping is an effective approach and has been shown to be useful for improving the
performance of deep learning models. Furthermore, color space adjustments are the easiest
and most common technique for changing the brightness of an image. In the road surface
environment, the diversity of lighting conditions and weather conditions has an impact
on the accuracy of the model, so data augmentation is an important technique to change
the image through color space adjustment. Flipping the image horizontally and vertically
is a common method in geometric transformation. Additionally, brightness adjustment is
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implemented on the training data to transform brightness-related channels according to
value settings. Therefore, it can make the image slightly brighter or darker to enhance the
lighting conditions of the image. Contrast adjustment is also one of the data augmentation
techniques used to rescale the range of intensity values in an image. Contrast is the ratio
between the lightest and darkest areas of an image. The larger the ratio, the more shades of
gray there are from black to white, which makes objects or boundaries in the image more
distinguishable. As a result, the contrast of white road markings on black asphalt roads
is enhanced, improving visual perception. Finally, quadruple image copies are generated
using data augmentation techniques that increase the amount of data from the original
image without adding additional time cost.

3.3.2. Data Augmentation on Label

The ground-truth labels of target objects are crucial for supervised learning networks.
Before training the model, it is necessary to label the target object labels of the dataset
as ground truth. However, changing more original images through data augmentation
requires a new labeling of the labels of the original images, which is a very time-consuming
task. Therefore, this study increases the amount of data by performing data augmentation
and homography transformation on images in a limited dataset. After data augmentation
and homography transformation, annotations do not need to be manually labeled again.
In view of the change in pixel coordinates, some labels of the augmented data need to be
modified. After data augmentation such as brightness and contrast adjustments, the labels
are the same as the original annotation files, while the pixel coordinates of flipped images
need to be flipped horizontally. The pixel coordinates of the flipped image are transformed
from the left part to the right part.

3.4. Loss Function during Training

The loss function used in this article mainly continues the loss function in Mask
R-CNN, namely:

L = Lcls + Lbox + Lmask (3)

They are the classification loss Lcls, the regression box loss Lbox and the mask loss
Lmask. The first two losses are consistent with the object detection network Fast-RCNN [36].
The calculation formula of Lmask is as follows:

Lmask =
1

m2

k

∑
i

(
1k
) m2

∑
1
[−y log sigmoid(x)− (1− y) log(1− sigmoid(x))] (4)

where, 1k means that when the kth channel corresponds to the true category of the target, it
is 1, otherwise it is 0; y means the label value of the mask at the current position; the output
value of the current position of x, sigmoid(x) means that the output x has passed through
sigmoid The result after the function transformation; m2 represents the dimension.

4. Experiments and Results
4.1. Introduction to Public Dataset

The public dataset used in this experiment is Ceymo [37], a dataset for road traffic
sign detection, which consists of 2887 images, of which 4706 road sign instances belong
to 11 categories. The images have a high resolution of 1920 × 1080 and capture a wide
range of traffic, lighting, and weather conditions. This dataset uses the labelme annotation
tool [38] to manually annotate road markings belonging to 11 categories into polygons.
Each image has a JSON file that contains the coordinates of the polygons that enclose the
road markings in that image. In addition to polygon annotations in JSON format, bounding
box annotations in XML format and pixel-level segmentation masks in PNG format are
provided to facilitate different road marking detection methods.

This dataset uses F1-score and Macro F1-score as rating indicators. Calculate the
IoU between the prediction and the road truth. When the IoU is greater than 0.3, the
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corresponding prediction is regarded as the real prediction. The total number of true
positives (TP), false positives (FP), and false negatives (FN) is used to calculate precision,
recall and F1-score as follows:

precision =
TP

TP + FP
(5)

recall =
TP

TP + FN
(6)

The Macro F1-score is calculated as the average of the individual F1-score of the 7
categories in the dataset, as follows:

Macro F1−score =
1
C

C

∑
i=1

F1−scorei (7)

where, C represents different classes in the dataset, and the Macro F1-score has the same
importance for all classes, no matter how frequently they appear in the dataset.

4.2. Experimental Details

Instance segmentation models perform a lot of complex matrix operations and floating-
point operations during training to find the optimal solution. The instance segmentation
model proposed in this paper for road traffic sign detection uses the Pytorch1.13.1 deep
learning framework for distributed data parallel training and synchronous batch normaliza-
tion based on 64-bit NVIDIA (NVIDIA Co., Ltd., Santa Clara, CA, USA) and Ubuntu20.04
(Canonical Co., Ltd., London, UK), with two GTX3090 graphics cards (NVIDIA Co., Ltd.).
We use stochastic gradient descent (SGD) as the optimizer, with the weight decay rate set
to 4× 10−4 and the momentum set to 0.9.

The choice of learning rate, batch size, and loss function affects the training speed of
the segmentation model and the final segmentation accuracy. A higher learning rate will
lead to a sharp increase in the loss while increasing the training speed, so it is more suitable
to use a higher learning rate in the initial stage of training. If the learning rate is set too low,
the convergence speed of the model will be slower, and it will be easier to find the optimal
solution of the model, but the model will appear overfitting, so setting a smaller learning
rate in the later stages of training will be more suitable. Considering the appeal factor, we
use a multi-adaptive learning rate, that is, the learning rate will continue to decrease as the
number of iterations increases, which is expressed as follows:

lr = ln lr

(
1− epoch

epochmax

)power
(8)

where, lnlr represents the initial learning rate, which is set to 0.1; epoch represents the
number of current epochs; epochmax represents the maximum number of epochs, which is
set to 150; and power represents exponential decay, which is set to 1. Similarly, the size of
the batch setting will also affect the training speed and segmentation accuracy; if the batch
size is too large, the training speed will be significantly improved, but the utilization of
GPU memory will be affected, resulting in a decrease in segmentation accuracy. In this
paper, we will set the batch size to 6.

4.3. Experimental Results

In this section, we compare the results of the proposed model on the dataset Ceymo
with some of the current advanced methods, including MaskLab [39], Cascade Mask R-
CNN, RetinaNet, and YoLACT++. This paper chooses Mask R-CNN as the baseline model
(Baseline). The first two grids are instance segmentation methods based on a two-stage
framework, and the quality of their position mask generation is highly dependent on the
object localization network. The latter two networks are instance segmentation methods



Sensors 2023, 23, 6543 12 of 16

based on a single-stage framework. Using the global mask does not require the processes of
clipping and RoI Align, but directly predicts an instance from the entire feature map. The
model proposed in this paper is based on a two-stage framework. For the reliability of the
experimental comparison, we use networks based on different frameworks for comparison.
The inference speeds of all the above algorithms follow the default configuration, and the
comparison results are shown in Table 1.

Table 1. Comparison results with mainstream schemes on the Ceymo dataset.

Category Masklab
Cascade

Mask
R-CNN

RetinaNet YoLACT++ Ours

Straight Arrow 87.51 87.39 86.98 87.23 89.31
Left Arrow 74.27 73.97 72.11 71.06 75.36

Right Arrow 90.64 91.93 90.21 89.47 91.32
Straight-Left Arrow 80.21 81.92 79.39 80.11 82.69

Straight-Right Arrow 82.51 79.06 78.72 81.49 80.11
Slow 95.56 95.70 96.01 93.38 94.34

Pedestrian Crossing 94.95 95.44 93.56 92.61 96.86
FPS 14.2 13.3 23.6 24.0 23.5

Params(M) 75.32 77.1 37.74 35.29 36.85
Macro F1-score 86.52 86.49 85.28 85.05 87.56

It is observed that the instance segmentation model based on the two-stage framework
has an overall better instance segmentation effect than the single-stage method, but the
network reasoning speed is significantly slower. Compared with the compared network,
the instance segmentation performance of the method proposed in this paper is excellent
overall, and the Macro F1-score can reach 87.14%, especially in targets with relatively
small proportions of pixels, such as going straight, turning left, and decelerating signs.
F1-score reached 89.31%, 75.36%, and 94.34%, respectively. It is obvious that our network
model has more advantages, for instance, for the segmentation effect of small targets.
In terms of inference speed, although it is slightly lower than YoLACT++ based on the
single-stage framework, it has a greater advantage compared with the two-stage instance
segmentation network.

In order to further verify the effectiveness of the proposed method, we selected
4 pictures from the verification set for visualization, and the results are shown in Figure 9. It
can be seen that the method proposed in this paper works well in congested, cloudy, rainy,
and dark scenes. A better instance segmentation effect is obtained. At the same time, we
also visually compared our method with the RetinaNet of the single-stage framework and
the Cascade Mask R-CNN of the two-stage framework. The results are shown in Figure 10.
It can be seen intuitively that there are small The problem of missed detection of targets and
false detection of large targets, as well as the target of worn-out ground traffic signs cannot
be accurately identified. Qualitative results show that the proposed method significantly
improves the misdetection of large-sized traffic signs, reduces the misdetection rate of small
traffic signs in the foreground area to a certain extent, and cannot accurately predict the
wear and tear of traffic signs.
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4.4. Ablation Experiment

In order to verify the effectiveness of each component module of the proposed method,
we use Mask R-CNN as the Baseline to add each module in turn and test them on the Ceymo
verification set, respectively. The performance results are shown in Table 2. By replacing the
feature extraction network ResNet in the original network with CSPDarknet53_ECA, the
Macro F1-score of the model increased by 0.81%, which effectively verified that integrating
the ECA attention module into CSPDarknet53 as the backbone network can effectively
improve the detection and segmentation performance of the model. Replace the feature
fusion module FPN in the original network with GR-PAFPN. This feature fusion is designed
and integrated into the original PAFFN to incorporate the residual feature augmentation
module RFA, the atrous spatial pyramid pooling ASPP, and the BFP that can balance
semantic features. The Macro F1-score of the model It has been improved by 0.16%, 0.79%,
and 0.09% in turn, which proves that the feature fusion module we designed improves the
problem that the information of traditional FPN feature maps and multi-scale information
is easily lost and avoids the non-fusion of semantic information in non-adjacent layers.
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Finally, data enhancement was used, and the Macro F1-score of the model was increased by
0.55%, which proved that flipping and color space adjustment on images and labels can
effectively improve the detection and segmentation effects of the model.

Table 2. Ablation experiments on the Ceymo dataset. “
√

” indicates that the current module was
used in the ablation experiment.

Baseline CSPDarknet53_ECARFA ASPP BFP Macro
F1-Score

√
85.26√ √
85.97√ √ √
86.13√ √ √ √
86.92√ √ √ √ √
87.56

5. Conclusions

This paper proposes an instance segmentation framework, RTS R-CNN, based on
the Mask R-CNN algorithm for road traffic sign detection tasks. The CSPDarknet53_ECA
feature extraction network is proposed, which further optimizes CSPDarknet53 using the
efficient channel attention module to strengthen the channel features of the input feature
maps and improve the performance of deep convolutional networks by increasing cross-
channel interaction. To improve the detection accuracy of small targets, GR-PAFPN is
proposed in the feature fusion part, which optimizes PAFPN using the Residual Feature
Aggregation module (RFA) and the Atrous Spatial Pyramid Pooling (ASPP) and introduces
a Balanced Feature Pyramid module (BFP) to handle the imbalanced feature information
in various resolutions. To address the issue of small road traffic sign image datasets,
data augmentation techniques such as flipping and color space adjustment are used to
increase the number of images from small datasets and prevent overfitting of algorithms
to specific scenarios. The results on the publicly available Ceymo dataset demonstrate
that the proposed algorithm is significantly better than the original method, with a Macro
F1-score of 87.56%, which is 2.3% higher than the baseline method. Moreover, compared
with other advanced instance segmentation networks, our proposed method significantly
improves the false detection of large traffic signs and reduces the under-detection rate of
small traffic signs in the far-field area to some extent. However, accurate predictions cannot
be made for traffic signs that are heavily worn out. Future work will focus on improving
the detection accuracy of these signs. Moreover, the issue of insufficient publicly available
datasets for road traffic sign detection can be addressed by collecting a large number
of images using onboard cameras on real transport vehicles and annotating them using
professional annotation software. Since road traffic signs are small objects with a low pixel
ratio, attention mechanisms can be designed in the future to improve the segmentation
performance of small targets. This would help to further enhance the detection accuracy of
small road traffic signs.
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