
Citation: Wang, X.; Zhao, H.;

Chen, H. Improved Skip-Gram Based

on Graph Structure Information.

Sensors 2023, 23, 6527. https://

doi.org/10.3390/s23146527

Academic Editor: Giovanni Betta

Received: 22 June 2023

Revised: 16 July 2023

Accepted: 17 July 2023

Published: 19 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Improved Skip-Gram Based on Graph Structure Information
Xiaojie Wang , Haijun Zhao * and Huayue Chen

School of Computer Science, China West Normal University, Nanchong 637002, China
* Correspondence: zhaohai_jun@163.com

Abstract: Applying the Skip-gram to graph representation learning has become a widely researched
topic in recent years. Prior works usually focus on the migration application of the Skip-gram
model, while Skip-gram in graph representation learning, initially applied to word embedding, is
left insufficiently explored. To compensate for the shortcoming, we analyze the difference between
word embedding and graph embedding and reveal the principle of graph representation learning
through a case study to explain the essential idea of graph embedding intuitively. Through the case
study and in-depth understanding of graph embeddings, we propose Graph Skip-gram, an extension
of the Skip-gram model using graph structure information. Graph Skip-gram can be combined
with a variety of algorithms for excellent adaptability. Inspired by word embeddings in natural
language processing, we design a novel feature fusion algorithm to fuse node vectors based on node
vector similarity. We fully articulate the ideas of our approach on a small network and provide
extensive experimental comparisons, including multiple classification tasks and link prediction tasks,
demonstrating that our proposed approach is more applicable to graph representation learning.

Keywords: graph embedding; interpretability; graph structure; Skip-gram; node feature fusion

1. Introduction

As the application of graph representation learning in the real world continues, an
increasing number of networks without node labels/attributes are emerging. However,
these networks are challenging to configure node labels/attributes, such as online shop-
ping platform networks and wireless sensor networks for interpersonal communication
involving personal private information. Learning node features in networks with only node
link information are receiving increasing attention.

Word2vec [1] is a language model in natural language processing (NLP), including
the CBOW (Continuous Bag of Words) [1] model and the Skip-gram [1] model, learning
two sets of vector representations of each word from the corpus by unsupervised learning.
Inspired by word vector representations, Skip-gram has gained widespread attention for
migrating applications in graph representation learning. With the publication of repre-
sentative research results, such as DeepWalk and node2vec, researchers have developed
dozens of models based on Skip-gram with different architectures in just a few years. These
creative studies demonstrate that word2vec is a landmark work.

However, despite so much relevant work in graph embedding, existing studies based
on the Skip-gram model do not consider the differences between graph embedding and
word embedding. In word embedding, the words around the central word (within the
window) are sampled, forming a training pair with the central word. Similar to word
embedding, graph embedding generates training node pairs through random walks be-
tween nodes. However, in the generation of the training set by random walks and the
migration application of the Skip-gram model, the degree of nodes and the shortest path
length between nodes are not considered. In large corpora, the most common words (e.g.,
“in”, “the”, and “a”) often do not provide as much information value as the rare words [2].
However, the most common nodes in the network are those containing more connected
edges (expressed by node degree), are located at the center of the network, and are crucial

Sensors 2023, 23, 6527. https://doi.org/10.3390/s23146527 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23146527
https://doi.org/10.3390/s23146527
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0002-0128-1687
https://doi.org/10.3390/s23146527
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23146527?type=check_update&version=1

Sensors 2023, 23, 6527 2 of 23

for learning node feature representations, as we show in the subsequent application section.
For example, the nodes around the hub nodes are more likely to belong to the same class.
In generating training node pairs by random walks, the location information between node
pairs is ambiguous and does not fully reflect the location relationship between nodes. The
existence of these differences means the Skip-gram model only partially uses the structural
information implied in the network.

Compared with word embedding in NLP, graph embedding has more application sce-
narios, such as the Internet of Things (IoT) [3], social networks [4], and traffic forecasting [5].
In recent years, many application scenarios have required machine learning algorithms to
assist in decision-making, it is an urgent need to “explain” why they obtained this result
and how they proceed, leading to an increased focus on graph representation learning in
interpretability studies. Therefore, interpretability studies on the Skip-gram model are very
popular, such as word2vec Explained [6], NetMF [7], MCNS [8], and other related works
that have theoretically investigated Skip-gram models in depth.

Although there are many works for learning node feature representation based on the
Skip-gram model, no work intuitively explains the reasons for high-quality node feature
generation. Visualizing the workflow of an algorithm through a case study can be very
helpful in understanding the nature of the algorithmic idea [9]. It is essential to deepen
researchers’ understanding of Skip-gram through a simple case study.

In the NLP field, the difference between input and output embedding of words has
gained a deeper understanding. By default, word2vec discards output embeddings at the end
of the training, leaving only input embeddings. In word representation learning using the
Skip-gram model, the input embedding is slightly better than the output embedding [10], and
the input and output embedding are similar. By visual analysis of the feature representation
in the cases and the experimental results, DESM [11] shows that combining input and output
embeddings in an information retrieval task outperforms using input embeddings alone.

Inspired by research on input–output embeddings of the word, we consider whether
graph embedding have similar properties and whether higher-quality node features can be
gained after training.

To alleviate these problems, we first provide an in-depth study of the principle for
learning node feature representations based on the Skip-gram model. Through a case study,
we show the process of learning node feature representations by the Skip-gram model,
explaining the reasons for learning high-quality node feature representations. Benefit from
the structural properties of the graph and the scalability of the Skip-gram model, we
propose a Graph Skip-gram model more suitable for graph embedding; inspired by the
research related to word embedding, we design a feature fusion algorithm to obtain higher
quality node feature representations based on the existing two sets of node embeddings.

Specifically, our contributions are the following:

• We use our insights in combination with Skip-gram to propose Graph Skip-gram for
graph embedding, which can capture the local and global information of the graph.

• We propose a novel node feature fusion algorithm: selectively fuse the two sets of
feature representations generated by the graph embedding.

• Through case studies, we explore the principle of graph embedding and then visualize,
analyze, and evaluate our proposed algorithm.

• We evaluate our model on multi-label classification tasks and link prediction tasks
with multiple methods and datasets. Experimental results demonstrate that Graph
Skip-gram learns the structural properties of the network, and our proposed feature
fusion algorithm can effectively improve the quality of node embedding.

The rest of the paper is organized as follows. In Section 2, we discuss related work. In
Section 3, we explain the definitions commonly used in this paper. In Section 4, we propose
the Graph Skip-gram model and a new feature fusion algorithm. In Section 5, we introduce
the application of the algorithm in real-world networks. Firstly, we analyze the process
of generating node feature representations via graph embedding; secondly, we briefly
describe the idea of our algorithm. In Section 6, we evaluate the Graph Skip-gram model

Sensors 2023, 23, 6527 3 of 23

through experiments with multiple methods on multiple datasets. Finally, we conclude our
work in Section 7.

2. Related Work
2.1. Graph Embedding and Sensor Networks

Ref. [12] proposes a graph embedding method for solving sensor localization problems
using signal strength. GEPM [13] proposes a polynomial mapping-based graph embedding
method for localizing unknown nodes in wireless sensor networks. ESTNet [14] proposes
an embedded spatial-temporal network using captured sensor information and stack-
ing multiple three-dimensional convolutional units for modeling. GDN [15] proposes a
combined structural learning and graph neural network approach to capture inter-sensor
relationships for abnormal event detection. G-HAM [16] proposes a hierarchical atten-
tion model for human intention recognition, using graph structure to represent spatial
information from electroencephalographic (EEG)-based sensors. MOAGE [17] proposes a
combined outlook attention and graph embedding approach for traffic prediction tasks.

Graph embedding is widely used in sensor networks and has been used in practical
applications in IoT, such as traffic signal control.

2.2. Graph Embedding Based on Skip-Gram Model

DeepWalk [18] uses random walks strategy to sample the target nodes, using the
sequence of generated nodes as input to the Skip-gram model. Node2vec [19] designs a
flexible and biased random walks strategy based on DeepWalk, integrating BFS (breadth-
first search) and DFS (depth-first search) into the random walks process. Walklets [20]
optimize DeepWalk’s sampling strategy on large graphs to capture multiple hierarchical
relationships of nodes in the network. DP-Worker [21] proposed a degree penalty principle,
relating the probability of random walks to the node degree. This category of methods
focuses on the study of random walks strategies.

Struct2vec [22] defines vertex similarity in terms of spatial structural similarity. LINE [23]
can be viewed as an algorithm for building neighborhoods using BFS. Using the Skip-gram
model, Splitter [24] generates multiple vector representations for each node, representing
a distinct hierarchical relationship within the community network. SPINE [25] proposed a
biased Skip-gram negative sampling method, exploiting the structural similarity between
nodes to guide a new positive sampling strategy. Edge2vec [26] embeds the edges in the
network by combining deep self-encoders and the Skip-gram model through deep neural
networks. CENA [27] proposes a framework for both link prediction and network align-
ment, utilizing the Skip-gram model and negative sampling techniques to optimize the
objective function.

All the above works use the Skip-gram model to learn node feature representations.
However, they are insufficiently aware difference between graph and word embedding.
We recognize the differences between the two application scenarios and propose Graph
Skip-gram for graph embedding.

2.3. Graph Embedding with Matrix Factorization

NetSMF [28] proposes a sparse matrix factorization algorithm for large-scale network
embedding, improving the efficiency of graph embedding learning. GraRep [29] uses
matrix factorization to solve the network embedding problem, integrating global network
structure information while learning the network representation. TADW [30] proves that
DeepWalk can be represented through matrix decomposition and proposes a network
learning method combining textual information. Implicit SVD [31] devises a framework for
computing singular value decomposition of implicitly defined matrices. AGNMF-AN [32]
proposed an enhanced graph regularized non-negative matrix factorization method based
on attribute networks for community detection.

However, they suffer from high computing power requirements and low performance
and are difficult to implement on large networks.

Sensors 2023, 23, 6527 4 of 23

2.4. Theoretical Analysis—Interpretability

Many works have theoretically explained Skip-gram-based graph embedding. For ex-
ample, SPPMI [33] analyzes the Skip-gram model with negative sampling and shows that
it implicitly factorizes a word-context matrix. Watch Your Step [34] proposes a method
for automatically selecting parameters for graph embedding models to suit different net-
works, proving that the DeepWalk learning process is equivalent to matrix decomposition.
NetMF [35] proved all negative sampling based [18,19,23,36] can be unified into a matrix
factorization framework with closed forms. MCNS [8] theoretically proves negative sam-
pling is equally significant to positive sampling in optimizing the objective function and
reducing the variance, proposing a self-contrast approximation to replace the negative
sampling strategy.

Although many works have theoretically investigated the application of Skip-gram to
graph embedding, none have intuitively explained the reason for node feature generation.

2.5. Deep Learning

In graph representation learning, graph convolutional networks, such as GCN [37],
GAT [38], SGC [39], GNN [40], and GraphHeat [41], are widely accepted as mainstream
methods. However, their training process often requires additional node attribute informa-
tion, and training is usually completed under supervised conditions, which is difficult to
use in networks without node attributes/labels.

2.6. Feature Fusion in Sensor Networks

CFA [42] proposes a feature selection method based on performance and diversity be-
tween two features for detecting stress under certain driving conditions. FGF [43] proposes
a feature graph fusion method for robot recognition using RGB and depth information
collected by sensors. Grad-CAM++ [44] proposes a feature fusion technique for tool wear
monitoring using hierarchical neural network by collecting vibration and sound signals.
In [45], Deng et al. proposes a feature selection method based on separability and dissim-
ilarity to enhance odor identification in gas sensor arrays. In [46], Gravina et al. survey
discusses current data fusion techniques in body sensor networks and designs a generalized
framework for comparison.

The above works have used different techniques to fuse sensor network node informa-
tion in different scenarios. In this paper, we propose a new idea of feature fusion, using the
feature similarity of the network nodes to selectively fuse node information.

2.7. Work in Other Directions

ComE [47] learns node embeddings based on DeepWalk and optimizes them for
community detection. GraphSAGE [48] proposes a framework for inductive learning that
generates unknown vertex embeddings using attribute information of vertices. WCN [49]
proposes a link prediction method based on common neighbors and different types of
centrality measures. MS-RPNet [50] proposes a hyperspectral image classification network
that hierarchically extracts different spatial information superimposed into multi-scale
spatial features. SCAE-MT [51] designs a stacked convolutional self-coding network model
to extract deep features of hyperspectral remote sensing images. Some studies, such as
SAE [52], DNR [53], and SDNE [54], use autoencoder to embed the network representation.
However, these works do not resolve our concerns.

3. Preliminaries
3.1. Notations

Let G = (V, E) be a given network, it can be any (un)directed (un)weighted or sen-
sor network, where V represents the members of the network and E their connections,
E ⊆ (V ×V). Let f : V → Rd be the mapping function from nodes to feature representa-
tions. Here, d is a parameter that specifies the dimension of node feature representation. In
practice, f is a matrix of size |V| × d parameters. Let D denote the degree matrix, where

Sensors 2023, 23, 6527 5 of 23

D ∈ Rd, P denote the node distance matrix, where P ∈ Rd×d, Pun is the shortest path
length between node u and node n (Puu = 0). For every source node u ∈ V , we define
Ns(u) ⊂ V as a network neighborhood of node u, generating through a neighborhood
sampling strategy S. Table 1 summarizes the notations and abbreviations frequently used
in this paper.

Table 1. Notations and abbreviations.

Notation Meaning

In Skip-gram Notions in the Skip-gram model.
T Number of training word sequences.
wi The ith training word sequence.
c The size of the training context.

vw, v
′
w The “input” and “output” vector representation of word w.

W The number of words in the vocabulary.
k Negative sampling frequency.

Pn(w) Noise distribution.

In Graph Skip-gram Notions in the Graph Skip-gram model.
f (u), f

′
(u) The “input” and “output” vector representation of node u.

V The members of the graph.
Ns(u) Network neighborhood of node u.

Lu
v Whether node u can reach node n.

w, w
′

Hyperparameter.
D Node degree matrix.
P Distance matrix between nodes.
a Parameters adjusted according to P matrix.

W Weighted graph weight matrix
k Negative sampling frequency.

Pn(u) Noise distribution.

Abbreviation

NLP Natural language processing.
CH Calinski–Harabasz.

WGSS Within-group cluster sum of squares.
Fioepn Fusing the input and output embeddings of part nodes.

3.2. Skip-Gram Model

Given a sequence of words to be used for model training w1, w2, w3 . . . wT . The
objectives of the Skip-gram model is as follows

1
T

T

∑
t=1

∑
−c≤j≤c,j 6=0

log p
(
wt+j | wt

)
. (1)

where w is the word in the given sentence, c is the size of the training context. The basic
Skip-gram formulation defines p

(
wt+j | wt

)
using the softmax function:

p(wO|wI) =
exp(v

′
wO

>
vwI)

∑W
w=1 exp(v′w

>vwI)
. (2)

Optimizing the above equation using the negative sampling technique, the objective
in Equation (2) simplifies as

log P(wO|wI) = logσ
(

v′wO

>vwI

)
+

k

∑
i=1

Ewi∼Pn(w)

[
log σ

(
−v′wi

>vwI

)]
. (3)

Sensors 2023, 23, 6527 6 of 23

where vw and v
′
w are the “input” and “output” vector representations of w, set the initial value

by random initialization. Negative sampling k times per node, where σ(x) = 1/(1 + exp(−x)),
Pn(w) is noise distribution.

4. The Proposed Methed

Graph embedding is defined as end-to-end learning [34]—first random sampling, then
representation learning. We focus on representation learning. In Section 4.1, we propose
the Graph Skip-gram model, a graph embedding method for learning graph structural
information, capturing local and global information among nodes during graph represen-
tation learning, and that can be extended to weighted graphs. In Section 4.2, we propose
an algorithm for selectively fusing node features based on the similarity of node vector
representations. In Section 4.3, we discuss the complexity of the algorithm.

4.1. Graph Skip-Gram Model

In networks (graphs) without node features, structural information on the graph
plays a crucial role in unsupervised learning of node feature representations. Despite the
many models proposed, the question remains how to effectively incorporate the structural
information of the graph into graph embedding. In this section, we use our insights in
combination with Skip-gram to construct a model more appropriate to graph embedding,
which we call Graph Skip-gram.

The framework of Graph Skip-gram is shown in Figure 1. In a given graph G, we define
the objective of the Graph Skip-gram, which maximizes the log-probability of observing a
network neighborhood NS(u) for a node u conditioned on its feature representation, given
by f :

max
f

∑
u∈V

log Pr(Ns(u)| f (u)). (4)

In order to make the optimization problem tractable on the graph, we refer [19] to
make two standard assumptions:

• Conditional independence. We factorize the likelihood by assuming that the likeli-
hood of sampling to a neighborhood node is independent of sampling to any other
neighborhood node, given the feature representation of the source:

Pr(Ns(u)| f (u)) = ∏
ni∈Ns(u)

Pr(ni| f (u)). (5)

• Symmetry in feature space. In the feature space, a source and neighborhood node have
a symmetric influence on each other. Therefore, we model the conditional likelihood
of each source-adjacent node pair as the dot product of the softmax unit and the graph
structure information function:

Pr(ni| f (u)) =
exp(f

′
(ni) · f (u)) ·W(ni, u)

∑v∈V exp(f ′(v) · f (u)) · [W(v, u)]L
u
v

. (6)

The dot product of node features parametrizes the softmax unit. We define W(n, u) as
the graph structure information function representing the closeness between nodes n, u:

W(n,u) =w · Du

Dn
+ (1− w) ·

[
(2− 2 · Pun

p
)

]a
. (7)

D (node degree matrix) and P (distance matrix between nodes) can both be obtained
on the graph. For example, solve the D matrix by counting the concatenated edges of
the nodes, and solve the P matrix using the Dijkstra algorithm. Through the distance
information between nodes and the difference in nodes’ degree, the Graph Skip-gram
can capture the local and global information of the graph.

Sensors 2023, 23, 6527 7 of 23

0

INPUT PROJECTION OUTPUTNetwork

n(H)

1
n(H)

2
n(H)

3
n(H)

4
n(H)

5
n(H)

inf(H)

Graph Skip-gram Based on Sensor Networks

Figure 1. The framework of the Graph Skip-gram. The Graph Skip-gram predicts surrounding nodes
given the current node. The graph structure information around node H is extracted on the graph as
inf(H), in sensor networks is available by reading node information, inf(H), and node H as inputs to
the model, and the output is the prediction of node H on the surrounding nodes Hi.

As shown in Figure 2a, nodes located at the center of the network (node 1) have
more links relative to the edge nodes of the network (nodes 13, 18, 22, 12). We wish to
capture this relationship through the difference in node degree and improve the quality of
node embedding. Let Du and Dn be the degrees of node u and node n. We usually define
1 ≤ Du/Dn ≤ 1.1, increase the co-occurrence probability of nodes at different levels of
the network and, thus, reduce the intra-class spacing. We define that the co-occurrence
probability between two nodes increases with decreasing node spacing, and the value of p
is determined by the distance distribution between nodes.

Setting of parameters p, a: The distribution of distances between nodes in the PPI [55]
network is shown in Figure 2b. By observing the distribution of distances between nodes
against the Gaussian distribution, setting p = 7, make Pun ≤ 6. When the distance distribu-
tion is unknown, predict it by random sampling. In general, setting a = 1, but when the
distribution of numerical terms in the p matrix is not uniform, adjusting a to alleviate the
problem of concentrated distribution of distances between nodes; furthermore, we discuss
the parameter a in the subsequent experimental section.

The w is a hyperparameter (0 < w < 1) that adjusts the weight between node degree
and node distance. In addition, the Graph Skip-gram can be extended to a weighted graph,
and the graph structure information is defined as follows:

W(n,u) =w · Du

Dn
+ (1− w) ·

[
(2− 2 · Pun

p
)

]a
+ w

′ ·Wun. (8)

The w
′

is a hyperparameter used to adjust the weight proportion of edges in the
weighted graph. Wun denotes the weight of the edge connecting node u to node n.

Sensors 2023, 23, 6527 8 of 23

(a)

� � � � � � 	

���

�������

�������

�������

�������

�������

�������

�������

�������

�������

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
	
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�����	��������	�	
���

(b)

Figure 2. (a) Take part of the network in karate as an example, the nodes are distributed at different
levels. (b) Distance distribution between PPI network nodes.

Define Lu
v to indicate whether the nodes are reachable:

Lu
v =

{
0
1

Puv = 0
Puv > 0

. (9)

If Puv = 0, node u is not reachable to node n, let Lu
v = 0; if Puv > 0, node u is reachable to

node n, let Lu
v = 1; if node u is positively sampled (random walks) to node n, then Lu

n = 1
(n 6= u).

Optimizing Equation (6) using the negative sampling technique simplifies to:

log Pr(n|u) = log A(f
′
(n), f (u)) +

k

∑
i=1

Eni∼Pn(u)

[
log A(− f

′
(ni), f (u))

]
. (10)

A(f (n), f (u)) = σ
(

f (n)> f (u)
)
· [W(n, u)]L

u
n . (11)

In addition, restrict the range of values of A(a, b):

A(a, b) =

1 A(a, b) > 1

A(a, b) − 1 ≤ A(a, b) ≤ 1
−1 A(a, b) < −1

. (12)

4.2. Exploring Two Sets of Node Vector Representations

In the graph embedding approach based on the Skip-gram model, training yields two
sets of node vector representations for each node-input and output embedding. Unlike
previous work that used one set of embeddings or combined two sets of embeddings,
we consider fusing the input and output embeddings of part nodes (Fioepn). Inspired by
the similarity of word vectors, we calculate the cosine similarity between the two sets of
embeddings for each node, then fuse the embeddings of the nodes with the lowest similarity.
In Section 5.2, we introduce this algorithm in a practical application.

The pseudocode for Fioepn is given in Algorithm 1. First, calculate the similarity scores
of the input embedding and output embedding of each node (lines 1–3); then sort the
similarity scores to obtain the sorted similarity scores (line 4, the scores do not change before
and after sorting); then obtain the minimum similarity scores according to the node feature
update rate (sim, line 5); perform feature fusion on partial nodes in lines 6–12; lastly, return
the optimized input embedding (line 13).

Sensors 2023, 23, 6527 9 of 23

Algorithm 1 Embedding Fusion (f , f
′
, p).

Input: input embedding f , output embedding f
′
, Fioepn ratio p;

Output: optimal input embedding f ∗

1: for v ∈ V do
2: scorev ← fv • f

′
v;

3: end for
4: sortscore← Sort(score); . No change to the score
5: sim← sortscorep∗|V|;
6: for v ∈ V do
7: if scorev < sim then
8: f ∗v ← (fv + f

′
v)/2;

9: else
10: f ∗v ← fv;
11: end if
12: end for
13: return f ∗;

4.3. Complexity Analysis

Solving the implicit information matrix on the graph, the time complexity of the D
(degree Matrix) is O(|V|); we use the Dijkstra algorithm to solve the matrix P, and the time
complexity of solving the matrix P is O(|E| log(|V|)), the implementation of the Dijkstra
algorithm is based on a heap implementation of the priority queue data structure.

Similar to the Skip-gram model, the Graph Skip-gram can use negative sampling and
stochastic gradient descent (SGD) for optimization. The time complexity of Equation (10) is
O(k), k is the number of negative samples. The time complexity of Fioepn is O(|V|). The
time complexity of Graph Skip-gram is malx(O(|E| log |V|), O(mdk|V|)), m is the window
size of the Graph Skip-gram model, d is the dimension of embedding.

5. Application of the Method

In this section, we first explain the principle of the Skip-gram model for learning node
feature representation through a case study; and then introduce our proposed algorithm
analytically through a small network. In sensor networks, the distribution of sensor nodes
can be quickly perceived by visualizing the target network with the Graph Skip-gram model.

5.1. Understanding the Node Embedding Process Intuitively

In this section, we use DeepWalk to learn the node features of the Karate network.
We refer to the word2vec and DeepWalk code implementations given in [2,56] to give a
simplified graph embedding pseudo-code implementation, Algorithms 2 and 3. Referring
to the paper [18], we set embedding dimension d = 2, windows size m = 5, walks per node
r = 40, walk length t = 40, and negative sampling k = 1 for training.

We counted the number of times each node used as a central word (PosV), surrounding
word (PosC), and negative sample word (Neg) during the whole training process. We use
the statistical sampling information of each node with the node number (Node) and node
degree (Degree) to create a heat map, as shown in Figure 3a; Figure 3b shows the node degree
distribution in the karate network. The heat map shows that PosV, PosC, Neg, and Degree
are highly correlated, demonstrating sampling frequency of the node is related to the node
degree, as introduced in the Section 1, nodes containing more connected edges are critical in
learning node feature representation. Figure 4 shows the node features learned at different
stages. For example, input embedding in red, output embedding in green, and we highlight
the example nodes by deepening the node color.

Completing the above preparations, let us next explore how Skip-gram works.

Sensors 2023, 23, 6527 10 of 23

In the initial stage of learning, as shown in line 1 of Algorithm 2, it randomly initializes
the input embedding parameters while setting all parameters of the output embeddings to
zero; as shown in Figure 4a, the input embedding is randomly distributed on the coordinate
axes, input embedding overlaps centrally at the coordinate origin. Since the final learned in-
put and output embeddings are similar, initializing the input embeddings by randomization
and the output embedding parameters to zero helps to accelerate the training.

We use node 1 as an example node for subsequent study and discussion. When node 1
is the central word (u), used as the sampled node to sample its surrounding nodes (n, node 4,
Algorithm 2, line 6). Then invoke Algorithm 3 to update the node feature representation. In
Algorithm 3, first, calculate the similarity between the node u’s input embedding and the node
n’s output embedding (line 1). Then calculate the gradient according to its positive/negative
sample and learning rate (line 2); take positive sampling as an example (label = 1; u = 1,
n = 4), the gradient increases as the similarity decreases, gradient value affects the calculated
error term. Then update the cumulative error term (line 3). In line 4, update the output
embedding. At last, return the cumulative error term (line 5).

Viewing the node feature update process from the perspective of geometric repre-
sentation, which can be intuitively understood as positively sampled nodes approaching
the central node (input embedding) along the direction of the approximate central node.
As shown in Figure 3c, the output embedding corresponding to node 4 moves along the
direction approximating the input embedding of node 1; therefore, the similarity between
nodes increases (distance: B < A).

After completing the positive sampling node feature update, perform negative sam-
pling (Algorithm 2, line 8), updating the node features based on the nodes obtained by
negative sampling in the same way as the above analysis. In the final stage of completing a
round of node sampling updates (Algorithm 2, line 12), the input embedding of the central
node (node 1) is updated based on the error term; in the process of calculating the error
term, the output embedding of the surrounding nodes and the negative sampling nodes
are updated (negative sampling updated along the opposite direction).

Algorithm 2 Learn Node Feature Repreaution (G, m, d, t, l, k).

Input: graph G(V, E), window size m, embedding size d, walk length t, walks per vertex r,
negative sampling k;

Output: Output f ;

1: Initialization: Random init f , init f
′
= 0, TotalSteps = |V| ∗ r, Sampling(lable);

2: while step<TotalSteps do
3: for i = 1 to t do
4: for j = 1 to RandFunuction(m) do
5: neule = 0; . neule ∈ Rd Error accumulation term
6: (n, u)← Sampling(1) . Positive sampling
7: neule← UpdateFeatures(f

′
n, fu, 1);

8: NegSample(neg, u)← Sampling(0) . Negative sampling
9: for (neg, u) ∈ NegSample(neg, u) do

10: neule← neule + UpdateFeatures(f
′
neg, fu, 0);

11: end for
12: fu ← fu + neule;
13: end for
14: end for
15: step++;
16: end while
17: Save f ;

Sensors 2023, 23, 6527 11 of 23

Algorithm 3 UpdateFeatures(fn, fu, lable).

Input: output embedding fn, input embedding fu, Lable: PosSam(1), NegSam(0) ;
Output: Output f ;

1: score← fn • fu;
2: g← (lable− sigmod(score)) · α;
3: catch← catch + fni · g; . catch ∈ Rd

4: fn ← fn + fu · g;
5: return catch;

Node Degree PosV PosC Neg

N
od

e
D

eg
re

e
Po

sV
Po

sC
N

eg

1 -0.33 -0.35 -0.41 -0.29

-0.33 1 0.99 0.94 0.98

-0.35 0.99 1 0.95 0.97

-0.41 0.94 0.95 1 0.95

-0.29 0.98 0.97 0.95 1
0.4

0.2

0.0

0.2

0.4

0.6

0.8

(a) Correlation between sampling and node
degree in random walks.

� �� �� �� �� ��
�

�

�

�

�

��

��

��

��

��

�
�
�
�
�
�
�
�
�
�
�

������	����

(b) Karate network node degree distribution.

𝑓4
′

𝑓1

𝑓1 ⋅ 𝑔

𝑓4
′ + 𝑓1 ⋅ 𝑔

A

B

(c) Geometric representation of node embed-
ding updates.

Figure 3. Sampling analysis: (a,b); visual nodes represent the update process: (c).

0.2 0.1 0.0 0.1 0.2

0.2

0.1

0.0

0.1

0.2

12345678910111213141516171819202122232425262728293031323334

1

2
3

4

5

6

7

8

9

10
1112

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30 31

32

33

34

(a) l = 0, t = 0.

0.2 0.1 0.0 0.1 0.2

0.2

0.1

0.0

0.1

0.2

1

2

3
4

5

6

7
89

10
11

12

13 14

15 1617
18

19

20
21

22
23

24 25
26

27

282930
31

3233
34

1

2
3

4

5

6

7

8

9

10
1112

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30 31

32

33

34

(b) l = 40, t = 1.

0.4 0.2 0.0 0.2 0.4

0.3

0.2

0.1

0.0

0.1

0.2

1

2
3

4

5

6

7

8

9

10 11

12

13
14

15 16

17

18

19

20

21

22

23
24

25

2627 2829
30

31

32

33

34

1

2 3

4

5

6

7

8

9

10
11

12
13

14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

(c) l = 40, t = 5.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

0.6

0.4

0.2

0.0

0.2

0.4

0.6

1

2

3 4

5

67

8

910

11

12

1314

15
16

17

18

19

20

21

22

23

24
2526

27 28

29

30

31

32

3334

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

(d) l = 40, t = 15.

1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1

2

3
4

5
6

7

8

9
10 11

12

13

14

1516

17

18

19

20

21

22

23

24

2526

27

28

29
30

31

32

33

34

1

2

3

4

5

6
7

8

9

10 1112

1314

15

16

17

18

19

20

21

22

23

24 25

26

27

28

29

30

31

32

33

34

(e) l = 40, t = 25.

1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1

2

3

4

5 6
7

8

9
10

11

12

13
14

1516

17

18

19

20

21

22

23

24

2526

27 28

29

30

31

32

33
34

1

2

3

4

5 6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

2526

27

28

29

30

31

32

33

34

(f) l = 40, t = 40.

Figure 4. Visualization of node distribution at different training phases.

Figure 4c shows the node representation after five rounds of training; it is clear that the
hub nodes (node 1, node 33, node 34) are further away from the origin relative to their initial
positions (both input and output embeddings) because the sampling frequency is related to
the node degree; at this stage, the output embedding changes more obviously, they move
towards their respective input embedding and away from the origin. Figure 4d shows
the node features obtained after 15 training rounds, the hub nodes reach the most edge
position of the network. In the next stage, the more significant change in the training node
features is the aggregation of the network edge nodes towards the central node (Figure 4e),
eventually learning a high-quality node feature representation (Figure 4f or Figure 5b).

Sensors 2023, 23, 6527 12 of 23

Above, we discussed the case of two-dimensional graph embedding. Likewise, it can
be extended to the case of three-dimensional or even higher-dimensional.

In brief, the essence of the above process is as follows. The sampled node obtains its
surrounding nodes by random sampling, then calculates the gradient based on the simi-
larity of the vector representation between the nodes to update the sampled node’s input
embedding and the surrounding node’s output embedding. Analyzing this phenomenon
at a geometric level is shown in Figure 3c, which makes the output embeddings of the
surrounding nodes closer to the input embeddings of the sampled nodes (distance: B < A);
the opposite is true for the node feature update process with negative sampling. Then,
obtain two vector representations of each node by multiple sampling updates.

5.2. Graph Skip-Gram and Fioepn

As shown in Figure 5a, we visualized the Karate network using force-directed layouts,
classifying the nodes into four classes using modularity-based clustering [57]. We numbered
the nodes according to categories for subsequent studies.

31

2

4

(a) Input: Karate Graph. (b) Output: Skip-gram.

(c) Output: Graph Skip-gram.

3

4

(d) Output: Partial embedding fusion.

Figure 5. Different methods node embedding visualization.

We use the DeepWalk method based on Skip-gram (Figure 5b) and Graph Skip-gram
(Figure 5c) to learn the node feature representation of the Karate network, we use the same
parameter settings as Section 5.1, in the Graph Skip-gram model, setting the parameter
w = 0.8, p = 5, a = 1. We use Calinski–Harabasz (CH) [58] and within-group cluster sum
of squares (WGSS) [58] to evaluate the clustering performance of node features learned
from different models.

As shown in Table 2 (first four lines), compared to the Skip-gram, the Graph Skip-gram
has a 5% improvement in CH score, and the WGSS scores indicate the effect of intra-class
clustering achieves performance gains in three of the four classes. The light-colored points
in Figure 5b are input embeddings, and the dark-colored points are output embeddings. In
Figure 5d, we show the node feature representation after updating 50% of the nodes using
the Fioepn algorithm; obviously, the third and fourth-class clustering effect is improved.
Table 2 (bottom six lines) compares the WGSS scores between the different categories; using
the Fioepn algorithm, the WGSS(3) score improves by 69%.

The above node visualization and experimental analysis of the clustering effect clarify
the idea of Graph Skip-gram and Fioepn: more effective use of graph structure information
and input and output embeddings. It also demonstrates the effectiveness of Graph Skip-
gram and Fioepn.

Sensors 2023, 23, 6527 13 of 23

Table 2. The clustering performance of Graph Skip-gram model and Fioepn algorithm.

Basic Model CH WGSS(1) WGSS(2) WGSS(3) WGSS(4)

Skip-Gram 45.116 1.652 3.699 0.073 1.999
Graph Skip-Gram 47.409 2.310 3.597 0.069 1.757

Gain over Skip-Gram[%] 5.082 — 2.758 5.48 12.10

Embedding CH WGSS(1) WGSS(2) WGSS(3) WGSS(4)

f (Input Embedding) 45.116 1.652 3.699 0.073 1.999
f
′

(Output Embedding) 37.840 2.170 5.026 0.056 2.115
f ∗ (Fioepn) 42.807 1.896 3.970 0.022 1.681

Gain over f [%] — — — 69.863 18.917
Gain over f

′
[%] 13.126 12.627 21.011 60.714 20.520

6. Experiments
6.1. Experimental Setup
6.1.1. Environment

We completed all experiments on a desktop PC with a hexa-core Intel i5 3.00 GHz
processor and 32GB of RAM. The operating system is Ubuntu 16.04 and Windows 10.
Training of the DeepWalk, node2vec, Walklets, and TADW was run in Ubuntu 16.04, and
the training of other models and related experimental evaluations was run in Windows 10.

6.1.2. Datasets

We use four datasets to evaluate the performance of Graph Skip-gram and Fioepn,
and Table 3 gives the relevant statistics about the datasets.

Table 3. Statistics of the datasets.

Dataset BlogCatalog Wikipedia PPI Flickr

#nodes 10,312 4777 3890 7575
#edges 333,983 184,812 76,584 239,738
#labels 39 40 50 9

• BlogCatalog [59]: this dataset is a social network that consists of the blogger and their
social connections (e.g., friends).

• Wikipedia [60]: this is a co-occurrence network of words.
• PPI [55]: this is a subgraph of the protein–protein interaction network for Homo Sapiens.
• Flickr [61]: this is a social network where nodes represent users and edges correspond

to user friendships.

Note that, like the datasets used for the experiments in paper [18,19], the above four
datasets do not contain node attribute information, and some of the nodes have multiple la-
bels. These conditions are unfavorable for training neural network-based graph embedding
methods, and we give the solution in the following method introduction.

6.1.3. Method

Eight graph representations learning methods are used as baselines in the experiments.

• TADW [30]: a matrix factorization-based method that uses semantic information to
improve the quality of node embedding.

• GCN [37]: a convolutional neural network that applies directly on graphs and uses
their structural information.

• GAT [38]: to alleviate the two drawbacks of GCNs, proposing to incorporate attention
mechanisms into spatial GCNs to provide differentiated weights for neighborhoods.

• GraphSAGE [48]: it proposes a generalized induction framework that uses node
feature information to generate node embeddings on the graph.

Sensors 2023, 23, 6527 14 of 23

• ACMP [62]: it introduces the Allen–Cahn message passing mechanism in GNN, a
deep GNN model that avoids the oversmoothing problem of GNN.

• DeepWalk [18]: it is based on Skip-gram and uses random walks to generate node
pairs for training node feature representation.

• Node2vec [19]: based on DeepWalk, it proposes a biased random walks strategy that
combines the search strategies of BFS and DFS properties.

• Walklets [20]: it optimizes DeepWalk’s sampling strategy on large graphs, capturing
multiple hierarchical relationships of nodes in the network.

We refer to the code implementation of DeepWalk and node2vec in [56]. The source
code for the other six approaches can be found in the relevant Github projects.

Since the dataset used in this experiment has no node features, the node feature matrix
used in the TADW, GCN, GAT, GraphSAGE, and ACMP uses the degree matrix instead;
among the four methods, only the TADW method performs training in an unsupervised
manner. Following the principle of randomness, we extract single-label nodes from the
above four datasets and use them for training the GCN, GAT, GraphSAGE, and ACMP in a
supervised manner. The training, validation, and test sets are divided 6:2:2, respectively,
and save the best performance results for subsequent performance evaluation. The node
vectors obtained from TADW, GCN, GAT, GraphSAGE, and ACMP are evaluated for multi-
label classification and link prediction performance using the same evaluation scheme as
DeepWalk, node2vec, and Walklets.

We use Graph Skip-gram and Skip-gram to learn node feature representations in
standard unsupervised learning tasks. For all methods based on Graph Skip-gram and
Skip-gram, we refer to [18–20], set the embedding dimension d = 128, default learning rate
as 0.025. In the optimization phase, all methods are optimized using negative sampling and
SGD, learning the feature representation with four threads. For DeepWalk and node2vec,
we refer to the experimental setup in [19], set windows size m = 10, walks per node r = 80,
walk length t = 10, negative sampling k = 5; p and q in node2vec are searched over
{0.25, 0.50, 1, 2, 4}. Walklets focus on capturing information at different scales in the graph;
we refer to the experimental setup from [20], set walks per node r = 1000, walk length

t = 11, negative sampling k = 5, k
′

(skip factor) in Ak
′

are searched over {1, 2, 3}.

6.2. Multi-Label Classification

Section 6.2.1 evaluates Graph Skip-gram’s performance by adjusting the walk length
t and comparing it with Skip-gram. Section 6.2.2 analyzes the performance of Graph
Skip-gram by comparing multiple methods.

We use the same experimental procedure listed in [18] to evaluate the performance
of the methods. We use different proportions of randomly selected nodes for training the
linear classifier and use the rest for testing. We repeated the experiment 10 times, randomly
sampling the training and test nodes each time and reporting the average Micro-F1 for all
methods. We do not include results for other evaluation metrics, such as precision and
recall, because they all follow the same trend. We use BlogCatalog, Wikipedia, PPI, and
Flickr datasets for the multi-label classification task. Referring to the performance in [18],
we treat all the datasets as undirected graphs.

The settings of the different methods in the experimental results are as follows. For
example, DeepWalk uses Skip-gram as the base model for feature representation learning;
DeepWalk* uses Graph Skip-gram as the base model for feature representation learning;
DeepWalk** uses Graph Skip-gram as the base model for feature representation learning,
using Fioepn optimized input embedding. Set all datasets input–output embedding vector
fusion ratio p = 10%.

6.2.1. Performance Comparison between Graph Skip-Gram and Skip-Gram

Because of the different training methods of DeepWalk, node2vec and Walklets, and
the readability of the experimental results, the experimental results in this subsection are

Sensors 2023, 23, 6527 15 of 23

presented and analyzed in two groups. Figures 6 and 7 shows the performance comparison
of Graph Skip-gram and Skip-gram at different walk lengths t.

As shown in Figures 6a and 7a, the method based on Graph Skip-gram shows perfor-
mance advantages as the walk length t increases (t > 2), consistently outperforming the
method based on Skip-gram during the training process, demonstrating the Graph Skip-
gram model captures the graph structure information and improves the quality of node
feature representation. As shown in Figures 6b and 7b, the performance of the methods
based on Graph Skip-gram and Fiopen steadily improves with increasing t and consistently
outperforms the methods based on Skip-gram, demonstrating that fusing some of the
node features helps to obtain higher-quality node features. As shown in Figure 6c, as the
walk length t increases, the performance of all of the methods rise first and then fall, but
the methods based on Graph Skip-gram and Fiopen consistently outperform those based
on Skip-gram.

� � �
 � ��
����

���	

����

���	

����

���	

����

���	

�
�
�
�
�
�
�
�

��������	���

��������
���������
����������
���������
����������
�����������

(a) BlogCatalog.

� � � � 	 ��
����

����

����

����

����

�
�
�
�
�
�
�
�

��������	���

(b) Wikipedia.

� � � � � � 	
 � ��
����

����

����

����

�
�
�
�
�
�
�
�

��������	���

(c) PPI.

� � � � 	 ��
����

����

����

����

����

����

����

����

����

����

����

�
�
�
�
�
�
�
�

��������	���

(d) Flickr.

Figure 6. Graph Skip-gram vs. Skip-gram based on DeepWalk and node2vec.

Sensors 2023, 23, 6527 16 of 23

� � �
 � �� ��
���	

����

���	

����

���	

�
�
�
�
�
�
�
�

��������	���

��������
���������
�����������

(a) BlogCatalog.

� � � � � �� ��

����

����

����

����

�
�
�
�
�
�
�
�

��������	���

(b) Wikipedia.

� � � � � �� ��

����

����

�
�
�
�
�
�
�
�

��������	���

(c) PPI.

� � � � � �� ��
����

����

����

����
�
�
�
�
�
�
�
�

��������	���

(d) Flickr.

Figure 7. Graph Skip-gram vs. Skip-gram based on Walklets.

Figures 6d and 7c show similar performance trends. The methods based on Graph
Skip-gram have weak performance when the walk length t is small. This is because Graph
Skip-gram captures the graph structure properties when the number of training rounds
(t) is small, which makes the node vector update less frequently (Figure 3c) and the same
class of nodes is poorly aggregated; as the walk length t increases, the ability of Graph
Skip-gram to capture the characteristics of graph structure begins to manifest, making the
node vector representation more differentiated across categories, gained an advantage at
walk length t ≥ 6 (Figure 6d) and staying ahead.

We observe in each dataset that node2vec has improved performance compared to
DeepWalk when using different search strategies (node2vec: p, q ∈ {0.25, 0.50, 1, 2, 4};
DeepWalk: p = 1, q = 1). Similarly, experiments demonstrate that our proposed Graph
Skip-gram compensates for the defects of random walks, and DeepWalk* using the Graph
Skip-gram achieves performance not inferior to node2vec. This conclusion also holds for
the Walklets (Figure 7) method.

Sensors 2023, 23, 6527 17 of 23

6.2.2. Graph Skip-Gram versus Multiple Methods

In this section, we explore the performance of Graph Skip-gram by comparing multiple
methods. We summarize the results of the experiment in Table 4. We increase the training
rate of each network from 10% to 90%. The hyperparameter settings for Graph Skip-gram
in each dataset are indicated in Table 4.

Table 4. Multi-label classification results in terms of Micro-F1 (%).

Method BlogCatalog w = 0.6, p = 5, a = 1 Wikipedia w = 0.8, p = 4, a = 0.5

Training Rate 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

TADW 16.17 16.22 16.77 16.95 17.13 40.70 40.97 41.25 41.40 41.17
GCN 21.68 22.85 23.31 23.54 23.61 41.15 41.48 41.67 41.72 41.90
GAT 16.68 16.92 17.06 17.27 17.70 40.79 40.91 41.01 41.15 41.25
GraphSAGE 22.54 23.56 23.82 23.94 24.55 40.98 41.38 41.43 41.60 41.90
ACMP 19.13 21.18 22.17 22.68 22.73 41.11 41.49 41.54 41.72 41.98

DeepWalk 34.44 36.72 37.76 38.22 38.71 44.85 47.61 48.70 49.28 49.92
DeepWalk* 34.73 37.31 38.21 38.98 39.11 46.03 48.31 49.36 49.92 50.56
DeepWalk** 34.62 37.01 38.27 38.77 39.27 45.9 48.65 49.71 50.37 51.10

node2vec 35.18 37.86 38.82 39.45 39.78 45.54 48.10 49.12 49.53 50.52
node2vec* 35.39 37.98 39.1 39.93 40.23 46.37 49.20 50.31 51.20 51.64
node2vec** 35.22 37.84 39.11 39.62 40.34 46.64 49.31 50.26 50.58 51.51

Walklets 36.90 39.38 40.12 40.48 41.03 42.48 47.13 49.09 50.22 50.75
Walklets* 37.29 39.32 40.39 40.94 42.23 43.58 47.92 49.59 50.65 51.73
Walklets** 37.22 39.49 40.49 40.89 42.13 43.11 47.76 49.16 50.24 51.13

Method PPI w = 0.2, p = 7, a = 1 Flickr w = 0.9, p = 5, a = 0.1

Training Rate 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

TADW 6.51 6.74 6.48 6.73 7.93 11.28 11.31 11.35 11.41 11.44
GCN 23.38 27.29 28.28 29.10 29.48 38.71 40.10 40.84 41.30 42.06
GAT 7.03 7.88 9.61 10.89 12.05 17.29 26.19 29.21 30.51 32.60
GraphSAGE 12.66 16.58 18.24 18.76 19.12 11.08 11.14 11.16 11.31 11.43
ACMP 8.19 9.89 10.25 10.34 10.61 12.80 13.19 13.31 13.30 13.56

DeepWalk 15.88 19.34 20.64 21.56 22.30 49.22 53.55 54.67 55.21 56.14
DeepWalk* 15.90 19.29 20.55 21.32 22.58 51.75 55.33 56.23 57.02 57.12
DeepWalk** 16.29 19.42 20.75 21.52 22.92 52.76 55.80 57.15 57.42 57.52

node2vec 16.28 19.29 20.41 21.60 22.26 52.05 55.84 57.13 58.6 59.01
node2vec* 16.44 19.33 20.57 21.64 22.26 53.46 56.95 57.42 59.22 60.16
node2vec** 16.05 19.43 20.55 21.44 22.95 55.02 58.00 58.58 60.10 60.50

Walklets 17.15 20.04 21.66 22.34 22.81 45.75 51.46 53.64 54.60 55.11
Walklets* 17.25 20.39 21.89 22.72 23.59 46.27 52.46 54.47 55.57 56.33
Walklets** 17.20 20.20 21.81 22.96 23.92 45.91 52.29 54.55 56.13 56.65

Figure 8 shows the distribution of P matrix values in the Wikipedia and Flickr datasets.
In the Wikipedia dataset (Figure 8a), the distribution of values in the P matrix is concen-
trated, with Pun = 2 accounting for 95.7% and Pun = 3 for 3.5%; we set a = 0.5 to adjust the
distance information function between nodes so that Graph Skip-gram can better capture
the structural information of the graph. A similar situation occurs in the Flickr dataset
(Figure 8b), where we adjust a = 0.1.

Sensors 2023, 23, 6527 18 of 23

����

�����

���� 1
 2
 3

(a) Wikipedia.

����

�����

���
�

��	� 1
 2
 3
 4

(b) Flickr.

Figure 8. Distribution of numerical entries in the P matrix for the Wikipedia and Flickr datasets.

From the results shown in Table 4, it is clear that the combination of Graph Skip-gram
and Fioepn outperforms Skip-gram and TADW on each dataset. GCN, GAT, GraphSAGE,
and ACMP are trained in a supervised manner, and only GCN achieves a performance
advantage in the PPI dataset where Graph Skip-gram performs poorly, but Graph Skip-
gram is trained in an unsupervised manner. The performance of TADW, GCN, GAT,
GraphSAGE, and ACMP failed to achieve satisfactory prediction performance in networks
without node features, and the performance gap between them and Graph Skip-gram
methods is large.

The results of evaluation experiments on the BlogCatalog dataset show that
GraphSAGE—the best performing of the five methods (TADW, GCN, GAT, GraphSAGE,
and ACMP)—has a 17% performance gap compared to Walklets* (training rate: 0.9).

In the Wikipedia dataset, the performance of the above five methods is similar, but
lower performance than Walklets*. In the Flickr dataset, the performance difference between
GCN and node2vec** is as high as 18.44% (training rate: 0.9). This phenomenon is broken
by GCN in the PPI dataset, where the Graph Skip-gram model performs poorly, but the
performance of the other three methods is still inferior to Graph Skip-gram. Obviously, it
is difficult for models based on graph neural networks to gain an advantage in networks
without node attributes. In contrast, Graph Skip-gram model do not use node attributes,
and training is unsupervised. Our proposed Graph Skip-gram and Fioepn show surprising
results on the Flickr dataset with DeepWalk and node2vec algorithms, achieving 3.54%
(DeepWalk**) and 2.97% (node2vec**) improvement at a training rate of 0.1, and ahead of
GCN by 14.05% and 16.31%, respectively. On the Wikipedia dataset, the Graph Skip-gram
model-based method (node2vec*, Walklets*) improves by 1.12% and 0.98% compared to
node2vec and Walklets at a training rate of 0.9, and significantly better than the above
five methods. These experimental results demonstrate that Graph Skip-gram learns graph
structure information and is more suitable for graph embedding than Skip-gram; the Fioepn
algorithm can improve the quality of node embedding.

6.3. Parameter Sensitivity

We analyze the sensitivity of parameters w, p, and a on the Flickr and Wikipedia
datasets (training rates are 30% and 90%, respectively), using node2vec as the base method.
We do not show sensitivity analysis of parameters based on other models and datasets, such
as DeepWalk* and DeepWalk** on different datasets, because they all follow similar trends.

Figure 9 shows the sensitivity of the parameters based on the Flickr and Wikipedia
datasets. Figure 9a,d show the effect of the parameter w on the Micro-F1 score, and both
datasets’ optimal w values exist. Referring to Equation (7) demonstrates that adjusting
the co-occurrence probability of nodes at different levels can improve the quality of node
embedding. The problem of uneven distribution of P matrix data items in Figure 8a
can be alleviated by adjusting the parameter a, as shown in Figure 9e, obtaining the best
performance when a = 0.5. Figure 9f shows the performance obtained by adjusting the node

Sensors 2023, 23, 6527 19 of 23

vector fusion rate in the Wikipedia dataset fluctuates as the fusion rate changes. Figure 9c
shows how the value of p affects the performance; a 2% performance improvement can be
gained by properly setting the parameter p, demonstrating the effectiveness of the Fioepn
algorithm in optimizing node embedding.

��� ��� ��� ��� ��	 ���

�����

�����

�����

�����

�����

�
�
�
�
�
�
�
�

(a) Flickr; parameters w.

��� ��� ��� ��� ��	 ���

����

����

����

����

���	

�
�
�
�
�
�
�
�

(b) Flickr; parameters a.

���� ���� ���	 ���� ���� ����
�����

�����

�����

���	�

���	�

���
�

�
�
�
�
�
�
�
�

(c) Flickr; Fioepn ratio: p.

��� ��� ��� ��� ��� ���

���	�

�����

�����

�����

�����

�����

�
�
�
�
�
�
�
�

(d) Wikipedia; parameters w.

��� ��� ��� ��� ��� ���
���	�

�����

�����

�����

�����

�����

�
�
�
�
�
�
�
�

(e) Wikipedia; parameters a.

���� ���� ���	 ���� ���� ����

�����

�����

�����

�����

�����

�����

�����

�
�
�
�
�
�
�
�

(f) Wikipedia; Fioepn ratio: p.

Figure 9. Impact of hyperparameters and Fioepn ratio on the performance of the proposed method.

Through the experimental analysis, we can see that the parameter settings have an
impact on the performance of our model, and proper setting of parameters helps to gain
better performance.

6.4. Link Prediction

Determining if a link exists between two network nodes is known as link prediction.
We used the same experimental procedures listed in [19] to evaluate the link prediction
performance of the different methods. We randomly remove some edges from the network
and ensure the remaining network is still connected. We sample positive and negative
training samples in the network according to the following rules. We randomly sample pairs
of nodes with connected edges in the network as positive samples; we randomly generate
pairs of nodes and ensure that they have no connected edges as negative samples.

We test the performance of the Graph Skip-gram against the link prediction task using
the Flickr, Wikipedia, and PPI datasets introduced in the Section 6.1.2. We train a logistic
regression classifier on the edgewise features obtained with the method shown in Table 5.
For example, for a pair of nodes u and vs., the average operator generates a vector as the
link between that pair of nodes.

Table 5. Vector operators used for link-prediction task for each u, v ∈ V.

Operator Result

Average (f (u) + f (v))
/

2
Hadamard [f1(u) ∗ f1(v), . . . , fd(u) ∗ fd(v)]

Weighted L1 [| f1(u)− f1(v)|, . . . , | fd(u)− fd(v)|]
Weighted L1

[
(f1(u)− f1(v))

2, . . . , (fd(u)− fd(v))
2
]

Sensors 2023, 23, 6527 20 of 23

6.5. Experimental Results

We summarize the results for link prediction in Table 6. We use the node feature
representations generated in the previous section for this task, which fully demonstrates
the adaptability and scalability of our method.

Table 6. Link prediction results (%).

Method Wikipedia PPI Flickr
Ave Had L1 L2 Ave Had L1 L2 Ave Had L1 L2

TADW 36.0 35.9 64.8 54.8 47.4 35.3 58.7 62.7 35.8 36.1 60.1 60.9
GCN 64.0 80.3 69.3 70.0 35.2 71.5 80.1 77.8 36.0 72.3 65.9 63.6
GAT 64.0 84.6 83.5 78.3 35.3 67.9 78.8 58.1 36.0 62.1 67.0 57.5
GraphSAGE 41.1 68.5 56.6 55.6 43.9 67.2 66.1 63.6 36.0 36.1 50.1 36.0
ACMP 36.1 70.4 70.5 64.0 64.2 64.0 52.1 51.6 64.0 85.5 78.6 78.0

DeepWalk 65.1 85.1 71.4 72.9 56.3 86.9 74.1 74.7 64.0 87.9 73.8 74.9
DeepWalk* 64.5 82.1 76.1 77.7 65.0 84.9 76.8 77.2 53.1 83.7 75.7 76.7
DeepWalk** 64.8 82.2 73.9 75.5 64.8 85.6 82.2 82.4 59.7 83.9 75.7 76.8

node2vec 64.4 87.0 75.0 76.7 51.4 85.7 72.6 72.7 64.0 87.3 73.1 74.1
node2vec* 64.5 81.5 78.1 79.7 61.1 85.9 74.1 74.8 64.8 82.7 75.5 76.5
node2vec** 64.8 81.8 77.5 78.9 62.0 85.4 81.2 81.7 63.6 82.7 75.6 76.5

Walklets 59.0 76.5 95.7 96.5 43.4 77.0 90.7 90.8 51.1 74.2 93.9 93.3
Walklets* 60.3 73.9 96.1 97.0 55.2 77.9 90.8 90.8 48.0 75.0 93.1 93.6
Walklets** 56.3 74.1 96.5 97.4 48.8 74.5 91.5 91.7 42.1 74.7 94.2 93.8

As shown in Table 6, TADW, GCN, GAT, and GraphSAGE have no advantage in the
link prediction task if the network is without node attributes. For example, in the Wikipedia
dataset, GAT has the best performance among the four methods, with an accuracy of 83.5%
under the Weighted L1 operator, but still has a 13% performance gap compared to Walklets**.

The ACMP approach outperforms the previous four approaches on the Flickr dataset,
achieving optimal performance for link prediction under all four operations, outperforming
the method based on Graph Skip-gram in link prediction under the Hadamard operation;
however, there is a 15.6% and 15.8% performance gap with Walklets** under Weighted L1
and Weighted L2 operator.

In the Wikipedia dataset, node2vec* gains 3.1% performance gains over node2vec
under the Weighted L1 operator; node2vec* gains 3.0% performance gains over node2vec
under the Weighted L2 operator. Similar performance gains are observed on the PPI and
Flickr datasets, demonstrating that Graph Skip-gram learns graph structure information.

What is interesting is the performance of the Fioepn algorithm. For example, in the PPI
dataset, DeepWalk** gains 5.4% and 8.1% performance gains over DeepWalk* and DeepWalk
under the Weighted L1 operator; node2vec** gains 6.9% and 9% performance gains over
node2vec* and node2vec under the Weighted L2 operator. There are similar results in the
Wikipedia and Flickr datasets. In conclusion, our proposed Graph Skip-gram and Fioepn
outperform Skip-gram on the Weighted L1 and Weighted L2 operators. This demonstrates
that the fusion of partial node features helps to improve the link prediction accuracy.

7. Conclusions

Through an in-depth analysis of the differences between word embeddings and graph
embeddings, we propose Graph Skip-gram, capturing local and global information of
graphs through graph structure information functions, making Skip-gram more appropri-
ate for graph embedding; inspired by word vector similarity, we devise a new input–output
fusion embedding mechanism, Fioepn, which determines whether to use feature represen-
tation fusion by calculating the cosine similarity between the input–output embeddings.
Through the case study, we give an intuitive understanding of graph embedding, which fa-
cilitates the understanding of the nature of graph embedding; we give a visualization of the
node features learned by Graph Skip-gram and Fioepn, it is advantageous for quickly per-

Sensors 2023, 23, 6527 21 of 23

ceiving the distribution of nodes in a sensor network; by evaluating the effect of clustering,
the ideas of the algorithm are further clarified.

Experimental results on multi-label classification and link prediction with multiple
models and datasets demonstrate that Graph Skip-gram, which learns node features unsu-
pervised, has significant advantages in networks without node attributes, and our proposed
Graph Skip-gram and Fioepn are more suitable for graph embedding compared to Skip-
gram. Our method uses the position information between nodes during training, which
will increase the training time; we preprocess the node information needed for model
training before model training, avoiding the repeated solving of node information and
improving the training efficiency.

Our future work will focus on two directions: (1) Graph Skip-gram models are trained
in an unsupervised manner, whereas methods based on graph neural networks often
require partially labeled data for training; whether it is possible to devise an approach
to establish a link between the both so that methods based on graph neural networks
can be trained in an unsupervised manner. (2) Graph neural network models are usually
trained using the node feature matrix for training, whether better model performance can
be obtained using the inter-node distance matrix.

Author Contributions: X.W.: Conceptualization, methodology, software, investigation, resources,
data curation, validation, visualization, writing—original draft preparation; H.Z. and H.C.: writing—
review and editing, supervision, project administration, funding acquisition; All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by: the Natural Science Foundation of Sichuan Province under
Grant 2022NSFSC0536.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013, arXiv:1301.3781.
2. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their

compositionality. Adv. Neural Inf. Process. Syst. 2013, 26, 3111–3119.
3. Dong, G.; Tang, M.; Wang, Z.; Gao, J.; Guo, S.; Cai, L.; Gutierrez, R.; Campbel, B.; Barnes, L.E.; Boukhechba, M. Graph neural

networks in IoT: A survey. ACM Trans. Sens. Netw. 2023, 19, 1–50. [CrossRef]
4. Zhou, J.; Liu, L.; Wei, W.; Fan, J. Network representation learning: from preprocessing, feature extraction to node embedding.

ACM Comput. Surv. (CSUR) 2022, 55, 1–35. [CrossRef]
5. Jiang, W.; Luo, J. Graph neural network for traffic forecasting: A survey. Expert Syst. Appl. 2022, 207, 117921. [CrossRef]
6. Goldberg, Y.; Levy, O. word2vec Explained: deriving Mikolov et al.’s negative-sampling word-embedding method. arXiv

2014, arXiv:1402.3722.
7. Qiu, J.; Dong, Y.; Ma, H.; Li, J.; Wang, K.; Tang, J. Network embedding as matrix factorization: Unifying deepwalk, line, pte, and

node2vec. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, Los Angeles, CA, USA,
9 February 2018; pp. 459–467.

8. Yang, Z.; Ding, M.; Zhou, C.; Yang, H.; Zhou, J.; Tang, J. Understanding negative sampling in graph representation learn-
ing. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtually,
23–27 August 2020; pp. 1666–1676.

9. Futschek, G. Algorithmic thinking: the key for understanding computer science. In Proceedings of the International Conference on
Informatics in Secondary Schools-Evolution and Perspectives, Vilnius, Lithuania, 7–11 November 2006; Springer: Berlin/Heidelberg,
Germany, pp. 159–168.

10. Press, O.; Wolf, L. Using the Output Embedding to Improve Language Models. EACL (2). arXiv 2017, arXiv:1608.05859.
11. Mitra, B.; Nalisnick, E.; Craswell, N.; Caruana, R. A dual embedding space model for document ranking. arXiv 2016, arXiv:1602.01137.
12. Wang, C.; Chen, J.; Sun, Y.; Shen, X. A graph embedding method for wireless sensor networks localization. In Proceedings of the

GLOBECOM 2009-2009 IEEE Global Telecommunications Conference, IEEE, Honolulu, HI, USA, 30 November–4 December 2009;
pp. 1–6.

http://doi.org/10.1145/3565973
http://dx.doi.org/10.1145/3433000
http://dx.doi.org/10.1016/j.eswa.2022.117921

Sensors 2023, 23, 6527 22 of 23

13. Xu, H.; Sun, H.; Cheng, Y.; Liu, H. Wireless sensor networks localization based on graph embedding with polynomial mapping.
Comput. Netw. 2016, 106, 151–160. [CrossRef]

14. Luo, G.; Zhang, H.; Yuan, Q.; Li, J.; Wang, F.Y. ESTNet: embedded spatial-temporal network for modeling traffic flow dynamics.
IEEE Trans. Intell. Transp. Syst. 2022, 23, 19201–19212. [CrossRef]

15. Deng, A.; Hooi, B. Graph neural network-based anomaly detection in multivariate time series. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vancouver, Canada, 2–9 February 2021; Volume 35, pp. 4027–4035.

16. Zhang, D.; Yao, L.; Chen, K.; Wang, S.; Haghighi, P.D.; Sullivan, C. A graph-based hierarchical attention model for movement
intention detection from EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 2247–2253. [CrossRef] [PubMed]

17. Zhang, J.; Liu, Y.; Gui, Y.; Ruan, C. An Improved Model Combining Outlook Attention and Graph Embedding for Traffic Forecasting.
Symmetry 2023, 15, 312. [CrossRef]

18. Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710.

19. Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864.

20. Perozzi, B.; Kulkarni, V.; Chen, H.; Skiena, S. Do not walk, skip! online learning of multi-scale network embeddings. In
Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Sydney,
Australia, 31 July–3 August 2017; pp. 258–265.

21. Feng, R.; Yang, Y.; Hu, W.; Wu, F.; Zhang, Y. Representation Learning for Scale-Free Networks. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

22. Ribeiro, L.F.; Saverese, P.H.; Figueiredo, D.R. struc2vec: Learning node representations from structural identity. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017;
pp. 385–394.

23. Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 1067–1077.

24. Epasto, A.; Perozzi, B. Is a single embedding enough? learning node representations that capture multiple social contexts. In
Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 394–404.

25. Guo, J.; Xu, L.; Liu, J. SPINE: Structural Identity Preserved Inductive Network Embedding. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; pp. 2399–2405.

26. Wang, C.; Wang, C.; Wang, Z.; Ye, X.; Yu, P.S. Edge2vec: Edge-based social network embedding. ACM Trans. Knowl. Discov. Data
(TKDD) 2020, 14, 1–24. [CrossRef]

27. Du, X.; Yan, J.; Zha, H. Joint Link Prediction and Network Alignment via Cross-graph Embedding. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; pp. 2251–2257.

28. Qiu, J.; Dong, Y.; Ma, H.; Li, J.; Wang, C.; Wang, K.; Tang, J. Netsmf: Large-scale network embedding as sparse matrix factorization.
In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 1509–1520.

29. Cao, S.; Lu, W.; Xu, Q. Grarep: Learning graph representations with global structural information. In Proceedings of the 24th
ACM International on Conference on Information and Knowledge Management, Melbourne, Australia, 19–23 October 2015;
pp. 891–900.

30. Yang, C.; Liu, Z.; Zhao, D.; Sun, M.; Chang, E. Network representation learning with rich text information. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015.

31. Abu-El-Haija, S.; Mostafa, H.; Nassar, M.; Crespi, V.; Ver Steeg, G.; Galstyan, A. Implicit SVD for Graph Representation Learning.
Adv. Neural Inf. Process. Syst. 2021, 34, 8419–8431.

32. Berahmand, K.; Mohammadi, M.; Saberi-Movahed, F.; Li, Y.; Xu, Y. Graph regularized nonnegative matrix factorization for
community detection in attributed networks. IEEE Trans. Netw. Sci. Eng. 2022, 33, 1548–1560. [CrossRef]

33. Levy, O.; Goldberg, Y. Neural word embedding as implicit matrix factorization. Adv. Neural Inf. Process. Syst. 2014, 27, 2177–2185.
34. Abu-El-Haija, S.; Perozzi, B.; Al-Rfou, R.; Alemi, A.A. Watch your step: Learning node embeddings via graph attention. Adv.

Neural Inf. Process. Syst. 2018, 31, 9198–9208.
35. Qu, M.; Tang, J.; Shang, J.; Ren, X.; Zhang, M.; Han, J. An attention-based collaboration framework for multi-view network

representation learning. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore,
6–10 November 2017; pp. 1767–1776.

36. Tang, J.; Qu, M.; Mei, Q. Pte: Predictive text embedding through large-scale heterogeneous text networks. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 10–13 August 2015;
pp. 1165–1174.

37. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
38. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
39. Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying graph convolutional networks. In Proceedings of the

International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6861–6871.
40. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw.

2008, 20, 61–80. [CrossRef]

http://dx.doi.org/10.1016/j.comnet.2016.06.032
http://dx.doi.org/10.1109/TITS.2022.3167019
http://dx.doi.org/10.1109/TNSRE.2019.2943362
http://www.ncbi.nlm.nih.gov/pubmed/31562095
http://dx.doi.org/10.3390/sym15020312
http://dx.doi.org/10.1145/3391298
http://dx.doi.org/10.1109/TNSE.2022.3210233
http://dx.doi.org/10.1109/TNN.2008.2005605

Sensors 2023, 23, 6527 23 of 23

41. Xu, B.; Shen, H.; Cao, Q.; Cen, K.; Cheng, X. Graph convolutional networks using heat kernel for semi-supervised learning. arXiv
2020, arXiv:2007.16002.

42. Deng, Y.; Wu, Z.; Chu, C.H.; Zhang, Q.; Hsu, D.F. Sensor feature selection and combination for stress identification using
combinatorial fusion. Int. J. Adv. Robot. Syst. 2013, 10, 306. [CrossRef]

43. Liu, S.; Sun, M.; Huang, X.; Wang, W.; Wang, F. Feature fusion using Extended Jaccard Graph and word embedding for robot.
Assem. Autom. 2017, 37, 278–284. [CrossRef]

44. Lin, Y.R.; Lee, C.H.; Lu, M.C. Robust tool wear monitoring system development by sensors and feature fusion. Asian J. Control.
2022, 24, 1005–1021. [CrossRef]

45. Deng, C.; Lv, K.; Shi, D.; Yang, B.; Yu, S.; He, Z.; Yan, J. Enhancing the discrimination ability of a gas sensor array based on a
novel feature selection and fusion framework. Sensors 2018, 18, 1909. [CrossRef] [PubMed]

46. Gravina, R.; Alinia, P.; Ghasemzadeh, H.; Fortino, G. Multi-sensor fusion in body sensor networks: State-of-the-art and research
challenges. Inf. Fusion 2017, 35, 68–80. [CrossRef]

47. Cavallari, S.; Zheng, V.W.; Cai, H.; Chang, K.C.C.; Cambria, E. Learning community embedding with community detection
and node embedding on graphs. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management,
Singapore, 6–10 November 2017; pp. 377–386.

48. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 2017,
30, 1025–1035.

49. Nasiri, E.; Berahmand, K.; Samei, Z.; Li, Y. Impact of centrality measures on the common neighbors in link prediction for multiplex
networks. Big Data 2022, 10, 138–150. [CrossRef]

50. Chen, H.; Wang, T.; Chen, T.; Deng, W. Hyperspectral Image Classification Based on Fusing S3-PCA, 2D-SSA and Random Patch
Network. Remote Sens. 2023, 15, 3402. [CrossRef]

51. Chen, H.; Chen, Y.; Wang, Q.; Chen, T.; Zhao, H. A New SCAE-MT Classification Model for Hyperspectral Remote Sensing Images.
Sensors 2022, 22, 8881. [CrossRef]

52. Tian, F.; Gao, B.; Cui, Q.; Chen, E.; Liu, T.Y. Learning deep representations for graph clustering. In Proceedings of the AAAI
Conference on Artificial Intelligence, Quebec City, QC, Canada, 27–31 July 2014; Volume 28.

53. Yang, L.; Cao, X.; He, D.; Wang, C.; Wang, X.; Zhang, W. Modularity based community detection with deep learning. In
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, New York, NY, USA, 9–15 July 2016;
Volume 16, pp. 2252–2258.

54. Wang, D.; Cui, P.; Zhu, W. Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1225–1234.

55. Breitkreutz, B.J.; Stark, C.; Reguly, T.; Boucher, L.; Breitkreutz, A.; Livstone, M.; Oughtred, R.; Lackner, D.H.; Bähler, J.; Wood, V.;
et al. The BioGRID interaction database: 2008 update. Nucleic Acids Res. 2007, 36, D637–D640. [CrossRef] [PubMed]

56. Tsitsulin, A.; Mottin, D.; Karras, P.; Müller, E. Verse: Versatile graph embeddings from similarity measures. In Proceedings of the 2018
World Wide Web Conference, Lyon, France, 23–27 April 2018; pp. 539–548.

57. Brandes, U.; Delling, D.; Gaertler, M.; Gorke, R.; Hoefer, M.; Nikoloski, Z.; Wagner, D. On modularity clustering. IEEE Trans.
Knowl. Data Eng. 2007, 20, 172–188. [CrossRef]

58. Caliński, T.; Harabasz, J. A dendrite method for cluster analysis. Commun.-Stat.-Theory Methods 1974, 3, 1–27. [CrossRef]
59. Zafarani, R.; Liu, H. Social computing data repository at ASU. 2009.
60. Mahoney, M. Large Text Compression Benchmark, 2011. Available online: www.mattmahoney.net/dc/textdata (accessed on

3 March 2022).
61. Huang, X.; Li, J.; Hu, X. Label informed attributed network embedding. In Proceedings of the Tenth ACM International Conference

on Web Search and Data Mining, Cambridge, UK, 6–10 February 2017; pp. 731–739.
62. Wang, Y.; Yi, K.; Liu, X.; Wang, Y.G.; Jin, S. ACMP: Allen-cahn message passing with attractive and repulsive forces for graph neural

networks. In Proceedings of the Eleventh International Conference on Learning Representations, Virtual Event, 25–29 April 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.5772/56344
http://dx.doi.org/10.1108/AA-01-2017-005
http://dx.doi.org/10.1002/asjc.2741
http://dx.doi.org/10.3390/s18061909
http://www.ncbi.nlm.nih.gov/pubmed/29895771
http://dx.doi.org/10.1016/j.inffus.2016.09.005
http://dx.doi.org/10.1089/big.2021.0254
http://dx.doi.org/10.3390/rs15133402
http://dx.doi.org/10.3390/s22228881
http://dx.doi.org/10.1093/nar/gkm1001
http://www.ncbi.nlm.nih.gov/pubmed/18000002
http://dx.doi.org/10.1109/TKDE.2007.190689
http://dx.doi.org/10.1080/03610927408827101
www.mattmahoney.net/dc/textdata

	Introduction
	Related Work
	Graph Embedding and Sensor Networks
	Graph Embedding Based on Skip-Gram Model
	Graph Embedding with Matrix Factorization
	Theoretical Analysis—Interpretability
	Deep Learning
	Feature Fusion in Sensor Networks
	Work in Other Directions

	Preliminaries
	Notations
	Skip-Gram Model

	The Proposed Methed
	Graph Skip-Gram Model
	Exploring Two Sets of Node Vector Representations
	Complexity Analysis

	Application of the Method
	Understanding the Node Embedding Process Intuitively
	Graph Skip-Gram and Fioepn

	Experiments
	Experimental Setup
	Environment
	Datasets
	Method

	Multi-Label Classification
	Performance Comparison between Graph Skip-Gram and Skip-Gram
	Graph Skip-Gram versus Multiple Methods

	Parameter Sensitivity
	Link Prediction
	Experimental Results

	Conclusions
	References

