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Abstract: The study of Domain Generalization (DG) has gained considerable momentum in the
Machine Learning (ML) field. Human Activity Recognition (HAR) inherently encompasses diverse
domains (e.g., users, devices, or datasets), rendering it an ideal testbed for exploring Domain Gen-
eralization. Building upon recent work, this paper investigates the application of regularization
methods to bridge the generalization gap between traditional models based on handcrafted features
and deep neural networks. We apply various regularizers, including sparse training, Mixup, Distri-
butionally Robust Optimization (DRO), and Sharpness-Aware Minimization (SAM), to deep learning
models and assess their performance in Out-of-Distribution (OOD) settings across multiple domains
using homogenized public datasets. Our results show that Mixup and SAM are the best-performing
regularizers. However, they are unable to match the performance of models based on handcrafted
features. This suggests that while regularization techniques can improve OOD robustness to some
extent, handcrafted features remain superior for domain generalization in HAR tasks.

Keywords: Human Activity Recognition; deep learning; Domain Generalization; regularization;
accelerometer

1. Introduction

Human Activity Recognition (HAR) addresses the problem of identifying specific
kinds of physical activities or movements performed by a person based on data that can
be collected by several types of sensors [1]. It is a critical technology that supports several
applications, including remote patient monitoring, locomotor rehabilitation, security, and
pedestrian navigation [2]. This work focuses on HAR relying on inertial sensors, such as
accelerometers, which measure the acceleration of a body, or gyroscopes, which measure
angular velocity. These sensors are usually combined in Inertial Measurement Units (IMUs),
which are present in most smartphones and smartwatches, and nearly ubiquitous in our
daily life [3]. This translates into an increasing availability of sensor data, which, along
with its importance in several fields, has motivated the growth of HAR in the past years [1].

Despite being a widely studied field, there are still challenges to be faced in HAR, one
of which is the difficulty in developing models that generalize effectively across different
domains [4]. This results in HAR models that perform well when tested on a randomly
selected portion of a meticulously acquired dataset, but exhibit a performance decline when
tested in realistic Out-of-Distribution (OOD) settings. These settings are characterized by a
domain shift (or distribution shift) between the source and target domains [5]. In the HAR
context, this can occur when the models are tested across different users, devices, sensor
positions, or data acquisition setups [6–8].

The problem of distribution shift can be found in most data-related fields. A straight-
forward solution involves collecting data from the target domain and adapting the model,
which was initially trained on source data, using the target data. This approach, known
as domain adaptation, has been extensively explored [5]. However, it presupposes the
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availability of target data, a condition that may not always be met in real-world scenarios.
In order to simultaneously tackle the domain shift and the absence of target data, the
problem of domain generalization originated. Domain Generalization (DG) focuses on
leveraging only source data to develop models that generalize to OOD target domains [5].

In traditional HAR approaches, features are extracted manually through signal process-
ing techniques before being used as input to a machine learning model [9]. More recently,
deep learning has attracted attention as a potential tool for HAR tasks [10]. In this modern
approach, features are automatically extracted during the training process [10]. Given the
large number of learnable parameters associated with deep learning models, they should
be able to learn more complex and discriminative features [11]. This capability is expected
to help deep learning thrive in DG scenarios. Nevertheless, several limitations have been
identified upon deploying deep learning models, such as the convergence to solutions that
rely on spurious correlations [12]. In our previous work, Bento et al. [13] compared the
effectiveness of Handcrafted (HC) features versus deep neural representations for DG in
HAR. Our findings revealed that while deep learning models initially outperformed those
based on HC features, this trend was reversed as the distance from the training distribution
increased, creating a gap between these methods in the OOD regime.

Our work attempts to bridge this gap by using regularization, which primarily fo-
cuses on mitigating overfitting, consequently leading to improved generalization perfor-
mance [14,15]. For that purpose, several regularization methods are compared by following
a methodology introduced in Bento et al. [13], leveraging five public datasets that are
homogenized, so that they can be arranged in different combinations, creating multiple
OOD settings.

The research questions addressed by this work are the following:

1. How do different regularization methods impact the Domain Generalization perfor-
mance of human activity recognition models?

2. Can regularization methods bridge the OOD performance gap between deep neural
networks and models based on HC features?

2. Related Work

Concerning classical machine learning approaches using HC features, several algo-
rithms have been proposed for the recognition of human activities. Despite the considerable
progress made by these algorithms in HAR, they may not capture more complex signal
patterns, which can hinder their generalization performance [10]. To overcome this limita-
tion, research has turned to Deep Learning (DL) models, which can automatically extract
high-level features from raw data [10].

With that in mind, recent work [16–20] has compared traditional Machine Learning
(ML) with DL approaches for HAR. Their findings consistently demonstrate that deep
learning outperforms traditional methods. However, it should be noted that, in these
experiments, the data splits were created by randomly shuffling the datasets. As a result,
the training and test sets contain samples from distinct domains, therefore mitigating the
distribution shift in their evaluations. As such, models optimized for these data splits may
achieve suboptimal results in a real-world environment [21].

In studies where data splits took into account the distribution shift caused by different
domains [13,20,22,23], the ability of DL methods to generalize has been put into question,
as traditional ML models achieved similar or even better results, in some cases.

One of the reasons why DL models may not generalize well is that they are known
to suffer from overfitting since they possess many parameters and their optimization
process is not perfect [14]. One of the ways to prevent overfitting is by using regularization
methods, which can be seen as applying constraints to the training process or the models
in the form of penalties applied to parameter norms (e.g., L2 regularization), elimination
of parameters (e.g., dropout), early stopping, among other techniques [14]. As well as
these popular regularization techniques, recent work has yielded progressively superior
methods [24–27]. Mixup regularization works by performing a linear interpolation between
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input/target pairs and has been shown to outperform previous methods such as dropout
and weight decay [24,25]. The optimization algorithms used for training can also be
considered a form of regularization [28]. Methods that attempt to regularize stochastic
gradient descent include averaging weights over various iterations [29] or actively searching
for flat minima [26]. Sparsity is another form of regularization that can improve both
generalization performance and model efficiency in deep learning by promoting the use of
fewer non-zero parameters, leading to simpler models [30]. Sparse training is an efficient
and effective way to add this type of regularization to a neural network [27,30,31].

Distributionally Robust Optimization (DRO) is a promising approach for address-
ing the need for optimizing models for Domain Generalization [21,32]. These methods
usually regularize the training process by considering the distribution shift between the
existing domains. Invariant Risk Minimization (IRM) [21] and Variance—Risk Extrapo-
lation (V-REx) [33] introduce penalties to the loss function with the objective of learning
representations that are invariant across multiple domains. Ahuja et al. [34] showed
that adding a penalty based on the information bottleneck principle to IRM improves
generalization—IB-IRM.

Some of the aforementioned regularization methods have been investigated as a
potential solution to the OOD generalization problem in HAR. Gagnon et al. [35] included
a HAR dataset in their Domain Generalization benchmark. Their results indicate a 9.07%
drop in accuracy from 93.35% In-Distribution (ID) to 84.28% OOD on a dataset where
different devices worn in different positions characterize the possible domains. IB-IRM [34]
was the best-performing method. However, results did not improve significantly over
empirical risk minimization (ERM), which is still a strong baseline [36]. Lu et al. [37]
introduced a semantic-aware version of Mixup, which outperformed several Domain
Generalization methods in HAR tasks. They presented results across different users,
datasets, and positions. However, handcrafted features were not addressed in their work.
Trabelsi et al. [20] compared three deep learning approaches and a random forest classifier
with handcrafted features as input. Similarly to the experiments in our work, the datasets
were homogenized by including only shared activities and separating the test sets by user.
They concluded that only one of the deep learning approaches outperformed the baseline
model with handcrafted features. Regularization methods were not studied in their work.

Our previous work, Bento et al. [13] showed that while DL methods outperformed
traditional ML approaches when the training and test sets were split randomly, as the
distance between the distributions grows, the tendency inverts, with methods based on
DL usually performing worse in OOD settings. This paper builds on that work, adding
different regularization methods to the models in order to assess if and by how much the
OOD performance gap between HC features and deep representations is reduced. Our
experiments include four Domain Generalization settings with different distances between
training and test sets. To the best of our knowledge, this is the first attempt at comparing
regularization methods for Domain Generalization in HAR.

3. Methodology
3.1. Datasets

The data employed in this study are the same as that used in Bento et al. [13]. Therefore,
the datasets are composed of human activity data collected with smartphones and wearable
IMUs. All the datasets are publicly available, and a comprehensive description of each is
presented in Table 1.

The datasets were selected according to three criteria: (a) a sampling frequency su-
perior or equal to 50 Hz; (b) most of the main human activities in the literature (walking,
sitting, standing, running, upstairs, and downstairs); and (c) at least one common sensor
position with another of the chosen datasets.

For this study, only the accelerometer data were used. In addition to the three ac-
celerometer channels (x, y, and z) produced directly by the sensors, a fourth channel
comprising the accelerometer magnitude was computed and utilized in the classifica-
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tion process. Five-second windows without overlap were then extracted from those four
channels.

Table 1. Description of the datasets, including number of subjects, activities, devices, sample rate,
positions, and sources.

Dataset Subjects Activities Devices Sample
Rate Positions Source

PAMAP2 9
Sitting, lying, standing,
walking, ascending stairs,
descending stairs, running.

3 IMUs 100 Hz Wrist, chest, and ankle. [38,39]

SAD 10
Sitting, standing, walking,
ascending stairs, descending
stairs, running and biking.

5 smartphones 50 Hz Jeans pocket, arm,
wrist, and belt. [40]

DaLiAc 19

Sitting, lying, standing,
walking outside, ascending
stairs, descending stairs,
treadmill running.

4 IMUs 200 Hz Hip, chest, and ankles. [41]

MHEALTH 10

Sitting, lying, standing,
walking,
climbing/descending stairs,
jogging, running.

3 IMUs 50 Hz Chest, wrist, and ankle. [42,43]

RealWorld 15

Sitting, lying, standing,
walking, ascending stairs,
descending stairs,
running/jogging.

6 IMUs 50 Hz
Chest, forearm, head,
shin, thigh, upper arm,
and waist.

[44]

Data homogenization consisted of resampling all the datasets to 50 Hz and mapping
activity labels of all datasets to a shared naming convention: “walking”, “running”, “sit-
ting”, “standing”, and “stairs”. Note that the class “stairs” does not differentiate between
ascending and descending stairs. Given the discrepancy between the number of windows
generated by each dataset, only one-third of the windows from the RealWorld dataset were
randomly sampled and used in the experiments. Table 2 displays the final distribution of
windows and activities for each dataset.

For further details regarding the datasets used and decisions concerning data prepro-
cessing, please refer to Bento et al. [13].

Table 2. Distribution of samples and activity labels per dataset. The # symbol represents the number
of samples. Retrieved from [13].

Activity
Datasets (%) Total

PAMAP2 SAD DaLiAc MHEALTH Real World % #

Run 10.5 16.9 20.0 33.3 19.1 18.3 7975
Sit 19.8 16.9 10.6 16.7 17.0 16.3 7102
Stairs 23.6 32.2 12.3 16.7 30.0 26.3 11,460
Stand 20.4 16.9 10.6 16.7 16.4 16.2 7047
Walk 25.7 16.9 46.5 16.7 17.5 22.8 9927

Total % 12.7 24.4 15.3 4.96 42.6 - -
# 5541 10,620 6644 2160 18,546 - 43,511

3.2. Handcrafted Features

The TSFEL library [45] was used to extract features from the windows produced from
each public dataset. Features including individual coefficients and audio-related features
were excluded to reduce the computation time. This resulted in a total of 192 features
per window.
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The following steps were used to split the samples based on their task (see Section 4)
and perform Z-score normalization with statistical information regarding the training
set. The classification algorithms used were a Logistic Regression (LR) and a Multilayer
Perceptron (MLP).

Additional details regarding feature extraction and preprocessing can be found in
Bento et al. [13].

3.3. Deep Learning

The architectures used in our experiments were different variations of convolutional
neural networks. We chose the two best-performing architectures from [13], which were
CNN-base and ResNet. Refer to the original paper for a detailed explanation of the used
architectures and training process.

For the hybrid models, the HC features are concatenated with the flattened representa-
tions of each model and fed to a fusion layer before entering the final classification layer.
An illustration of the hybrid version of CNN-base is shown in Figure 1.

For all these models, the input windows were scaled by Z-score normalization,
with mean and standard deviation computed across all the windows of the train set.
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Figure 1. Simplified illustration of the hybrid version of CNN-base (excluding the CNN backbone for
ease of visualization) [13].

3.4. Regularization

In this study, several regularization methods are compared:

• Mixup regularization [24,25]: It linearly interpolates input/target pairs to create new
examples, which are used to make decision boundaries smoother and avoid overfitting.

• Sharpness-Aware Minimization (SAM) [26]: Optimization method that actively seeks
flat minima. This type of minima was shown to be less prone to overfitting [46].

• GraNet [27]: It is a state-of-the-art method for sparse training that gradually reduces
the number of non-zero weights during training.

• IRM [21]: It attempts to learn invariant representations by minimizing the sum of the
squared norms of the gradients across multiple environments.

• V-REx [33]: It has the same purpose of IRM, but instead it minimizes the gradient
variance across environments.

• IB-IRM [34]: It introduces a term to the IRM loss corresponding to the variance in the
model parameters, following the information bottleneck principle.

3.5. Evaluation

Various metrics are used in research literature to assess model performance. These
include accuracy, sensitivity, specificity, precision, recall, and f1-score [2]. However, due
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to the frequent occurrence of class imbalance in many public HAR datasets (as indicated
in Table 2), f1-score was chosen as the primary performance metric, as it proved to be
more resilient than accuracy in these types of situations [47]. For the sake of comparing
deep learning models and traditional models using HC features, f1-scores were used as the
comparison metric. This comparison was carried out across multiple OOD scenarios and
took into consideration five public HAR datasets.

4. Experiments and Results

The goal of this study is to assess the improvement brought by using different regular-
ization techniques on Domain Generalization tasks involving models based on HC features
and deep neural networks. To that end, various combinations of model architectures and
regularization methods were implemented and evaluated. A scheme of the full pipeline
used for the experiments is presented in Figure 2.

Public HAR Datasets 

x5

• PAMAP2
• SAD
• DaLiAc
• MHEALTH
• RealWorld

• Resampling to 
50 Hz
• Label 
homogenization
• Window 
splitting
(5 seconds)

Pre-Processing

Feature Extraction

• TSFEL
• Z-score normalization

Deep Learning

• CNN-base
• ResNet

Hybrid

• CNN-base 
• ResNet

HC Models

• MLP
• LR

Regularization

• Mixup
• Sparsity
• SAM
• IRM
• IB-IRM
• V-REx

Figure 2. Scheme of the experimental pipeline.

HAR is a task where different domains naturally occur, becoming a Domain General-
ization task if these domains are preserved when splitting the data into training and test
sets. To measure how different a test set is from the training set, or how OOD it is, Bento
et al. [13] computed Wasserstein distance ratios. Following that study, our experiments
were conducted over the same four domain generalization settings, comprised of a baseline
ID setting and three OOD settings [13]: (a) splitting by user within the same dataset (OOD-
U); (b) leaving a dataset out for testing (OOD-MD); and (c) training on a dataset and leaving
another for testing (OOD-SD). Test sets in the OOD-U setting were closer to the training
distribution, being further away in the OOD-MD and OOD-SD settings. Non-exhaustive
hyperparameter optimization was applied to the regularization methods on a small private
HAR dataset. The chosen hyperparameters for each method are specified in Table 3.
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Table 3. Chosen hyperparameters for each regularization method.

Method Hyperparameter Value

Mixup α 0.1

GraNet
prune rate 0.5

initial density 0.5
final density 0.1

SAM base optimizer Adam
ρ 0.05

IRM λ 100

V-REx β 10

IB-IRM λ 100
γ 10

Table 4 presents the results for the first experiment, which combines neural network
architectures and regularizers. The DRO models (IRM, V-REx, and IB-IRM) used in this
experiment require the formulation of different environments (i.e., domains) in the training
set. For the ID and OOD-U settings, the environments are split by the user. For OOD-MD,
each environment can be trivially devised as a dataset. However, for the OOD-SD, only
a single dataset is present in the training set, so there is no trivial way to simulate the
distribution shift that occurs between the training and test sets. Consequently, this setting
was removed from the experiment. In Table 4, it can be verified that ResNet is the best-
performing deep learning architecture, as it consistently shows higher f1-scores compared
to CNN-base. For CNN-base, only SAM improved over the baseline model without
regularization. Still, this improvement was not significant, and the performance was far
from its hybrid version (CNN-base hybrid). For the ResNet architecture, Mixup, SAM,
IRM, and IB-IRM improved over the baseline. Mixup achieved the best results (76.44%),
marginally surpassing the score of the hybrid version (76.29%). Overall, Mixup and SAM
can be considered the best-performing regularizers since the scores either improved or
remained approximately the same in both architectures. The larger improvement verified
on the ResNet may be due to the increased effectiveness of regularization methods in
overparameterized regimes [12,48].

DRO methods are known to heavily depend on the chosen hyperparameters [36]. This
may have hindered their performance. For these methods, hyperparameter optimization
was performed over only three different values (10, 100, and 1000) for their regularization
weights since the regularization methods should require as little computational overhead
as possible.

As a second experiment, the best architecture (ResNet) and the two best regularizers
(Mixup and SAM) were chosen, so that it could be assessed whether a combination of the
best regularizers could further improve the generalization of deep learning models. The
results are presented in Table 5. Since none of the DRO methods were considered, the
OOD-SD setting could be recovered for this experiment, as none of the remaining methods
require information about the environments. After adding the OOD-SD setting, the ResNet
hybrid (66.77%) slightly outperformed the regularized ResNet models (66.42% and 66.48%).
However, the difference is minimal, so we can consider that their performance is approx-
imately the same. In the OOD-MD setting, ResNet with Mixup regularization (71.18%)
outperformed some classical models. Despite that, this improvement loses significance
when assessing the average scores.

The best-performing model across both experiments was TSFEL + LR, followed by
the remaining HC feature-based models, which includes TSFEL + MLP and the hybrid
models. Despite the effectiveness of regulariztion, it was insufficient for deep learning
models to reach the desired OOD performance levels. Still, as regularizers did not improve
the overall results of any of the models that make use of HC features (i.e., TSFEL + LR,
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TSFEL + MLP and hybrid models), it can be observed that these regularizers can help bridge
the generalization gap between deep learning models and models based on HC features.

Table 4. Average f1-score in percentage (%) over all the tasks in all the settings except OOD-SD.
Values in bold indicate the best performance for each setting. * indicates the experiments without
regularization performed in [13].

Model
Setting

Avg. OOD
ID OOD-U OOD-MD

CNN-base * 92.10 ± 5.06 80.79 ± 9.68 66.94 ± 5.19 73.87 ± 5.49
CNN-base Mixup 91.18 ± 4.56 80.66 ± 9.33 67.05 ± 3.88 73.86 ± 5.05
CNN-base Sparse 92.01 ± 5.02 80.75 ± 10.04 66.11 ± 5.48 73.43 ± 5.72
CNN-base SAM 91.44 ± 4.86 81.46 ± 10.56 66.68 ± 4.49 74.07 ± 5.74
CNN-base IRM 90.70 ± 5.41 80.24 ± 9.89 66.86 ± 4.25 73.55 ± 5.38

CNN-base V-REx 88.69 ± 7.29 80.31 ± 9.71 67.05 ± 5.68 73.68 ± 5.63
CNN-base IB-IRM 84.33 ± 14.98 80.55 ± 10.60 65.59 ± 4.90 73.07 ± 5.84
CNN-base hybrid * 93.48 ± 4.35 85.28 ± 6.64 67.74 ± 3.37 76.51 ± 3.72

ResNet * 92.46 ± 4.73 81.16 ± 9.60 67.22 ± 4.89 74.19 ± 5.39
ResNet Mixup 92.10 ± 4.59 81.71 ± 9.91 71.18 ± 4.18 76.44 ± 5.38
ResNet Sparse 92.48 ± 4.61 80.86 ± 10.80 67.10 ± 3.32 73.98 ± 5.65
ResNet SAM 92.01 ± 4.46 81.36 ± 10.56 68.82 ± 3.57 75.09 ± 5.57
ResNet IRM 91.40 ± 4.68 80.66 ± 9.80 69.00 ± 5.53 74.83 ± 5.63

ResNet V-REx 90.64 ± 5.54 80.74 ± 9.61 67.00 ± 5.66 73.87 ± 5.58
ResNet IB-IRM 85.14 ± 15.26 80.63 ± 10.00 68.69 ± 5.52 74.66 ± 5.71
ResNet hybrid * 93.79 ± 4.21 84.71 ± 7.72 67.87 ± 3.40 76.29 ± 4.22
TSFEL + MLP * 92.87 ± 4.70 87.09 ± 5.35 70.11 ± 3.57 78.60 ± 3.22
TSFEL + LR * 90.54 ± 5.15 87.08 ± 5.55 71.94 ± 3.19 79.51 ± 3.20

Table 5. Average f1-score in percentage over all the tasks in a given setting. Values in bold indicate
the best performance for each setting. * indicates the experiments without regularization performed
in [13].

Model
Setting

Avg. OOD
ID OOD-U OOD-MD OOD-SD

ResNet * 92.46 ± 4.73 81.16 ± 9.60 67.22 ± 4.89 46.57 ± 4.84 64.98 ± 3.94
ResNet Mixup 92.10 ± 4.59 81.71 ± 9.91 71.18 ± 4.18 46.56 ± 6.27 66.48 ± 4.15

ResNet Mixup SAM 92.03 ± 4.27 82.22 ± 10.32 70.04 ± 4.00 46.99 ± 6.25 66.42 ± 4.24
ResNet hybrid * 93.79 ± 4.21 84.71 ± 7.72 67.87 ± 3.40 47.73 ± 2.11 66.77 ± 2.90

ResNet hybrid Mixup SAM 93.30 ± 3.54 83.83 ± 9.00 69.87 ± 2.47 46.60 ± 4.22 66.77 ± 3.41
TSFEL + MLP * 92.87 ± 4.70 87.09 ± 5.35 70.11 ± 3.57 51.45 ± 5.31 69.55 ± 2.78
TSFEL + LR * 90.54 ± 5.15 87.08 ± 5.55 71.94 ± 3.19 50.97 ± 3.29 70.00 ± 2.40

TSFEL + LR Mixup SAM 90.38 ± 5.03 87.05 ± 5.23 71.67 ± 3.97 50.41 ± 3.58 69.71 ± 2.49
TSFEL + MLP Mixup SAM 93.03 ± 4.58 87.46 ± 5.97 70.39 ± 2.71 51.26 ± 4.00 69.71 ± 2.56

5. Discussion

The work conducted in this study evaluated the differences in the performance of differ-
ent regularization techniques on Domain Generalization tasks applied to HAR classification.

In the first experiment, a comparison between various combinations of neural network
architectures and regularizers was carried out. ResNet outperformed CNN-base consis-
tently across different ID and OOD settings. This result aligns with the general perception
about the superiority of ResNet in handling a broad range of tasks due to its deeper archi-
tecture and residual connections, enabling it to learn more complex representations [49].
Regarding regularization methods, Mixup and SAM were considered to be the best-
performing methods in both architectures. This agrees with the original premises behind
these techniques, as Mixup attempts to improve generalization by enforcing a smoother
decision boundary [24], while SAM adds robustness to label noise [26].
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In the second experiment, a combination of the two best regularizers (Mixup and
SAM) and the best architecture (ResNet) was performed to assess if it further improves
the generalization of deep learning models. Combining the two methods did not yield
better results than using Mixup alone. This experiment also showed that regularization
only improved the performance of deep learning models that did not include HC features.
The fact that the average OOD score of the ResNet hybrid did not change with the use of
regularizers may indicate that the use of these features as an auxiliary input can already
have a regularizing effect.

Overall, despite none of the deep learning models being able to surpass the perfor-
mance of models based on HC features, regularization improved the generalization ability
of deep Llearning models and was as effective as the auxiliary features for the ResNet
architecture. Moreover, as regularizers did not improve the results for the classical methods,
they were clearly able to reduce the generalization gap.

This study shows that HC features still have their place in modern machine learning,
as they can be more robust to distribution shift and allow simple classifiers to achieve
better results.

We also showed that merging all the datasets for training (OOD-MD) resulted in a
performance gain of 20% when compared to using a single dataset for training (OOD-SD).
This indicates that each dataset has limited information. In practice, if a larger space of
possible scenarios can be covered during the acquisition process, it will result in a more
diverse dataset and, consequently, in better generalization. This means that an ML-based
HAR system can improve if data are recorded using a wider range of devices, users, sensor
positions, and physical environments, among other possible factors of variation.

Our work has some limitations, as the choice of datasets was limited to the field of
HAR and only a few regularization techniques were tested. Additional research should
explore datasets from different fields and a wider range of increasingly novel regularization
methods to comprehensively understand their effects on domain generalization. Future
work could also investigate the use of different neural network architectures, such as
transformers, or even neural architecture search [50] since it has been shown that, in some
cases, the choice of model architecture may have more impact than the loss function [51].
Domain-specific regularization methods [37] were also demonstrated to have the potential
to vastly improve the generalization of deep learning models. Despite that, these methods
suffer from the caveat of not being directly applicable to other tasks.

6. Conclusions

This study has addressed the impact of different regularization methods on the domain
generalization performance of HAR models and whether these methods can bridge the
OOD performance gap between deep neural networks and HC feature-based models.
Our experimental results indicate that state-of-the-art regularization methods, such as
Mixup and SAM, can improve OOD generalization and reach the results of hybrid models.
However, it was not enough to be on par with classical ML approaches. We conclude that
the use of HC features, regularizers, and diverse training data may enable more robust
HAR systems.

Overall, this study contributes to the understanding of how regularization methods
can impact the Domain Generalization performance of HAR models and their potential
to narrow the OOD performance gap between deep neural networks and traditional
approaches. These insights will be valuable for researchers and practitioners working on
HAR and related fields, helping them build more robust and generalizable models for
real-world applications.
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